
A Robust Computation Offloading
Methodology for Improved Mobile
Performance and Throughput

MSc Research Project

Cloud Computing

Swapnil S Vernekar
Student ID: 21174041

School of Computing

National College of Ireland

Supervisor: Yasantha Samarawickrama

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Swapnil S Vernekar

Student ID: 21174041

Programme: MSc. in Cloud Computing

Year: 2022-2023

Module: MSc Research Project

Supervisor: Yasantha Samarawickrama

Submission Due Date: 14/08/2023

Project Title: A Robust Computation Offloading Methodology for Improved
Mobile Performance and Throughput

Word Count: 7591

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Swapnil S Vernekar

Date: 17th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

A Robust Computation Offloading Methodology for
Improved Mobile Performance and Throughput

Swapnil S Vernekar
21174041

Abstract

The main objective of offloading the task to a remote cloud is to reduce the bat-
tery power consumption, improving performance and life of the mobile device. Lots
of work have already been done by the researchers in this domain, however there
is still a considerable amount of improvement that can be achieved. This research
will be focusing on reducing the time of execution and the CPU usage thereby im-
proving the battery life of the device. A novel decision making algorithm named
Mobile Offloading Computational Algorithm (MOCA) is been implemented which
makes use of latency, bandwidth, live location of the device along with the previous
historical records of that location while taking the decision. The algorithm makes
use of a special performance equation which makes it possible to make accurate
decisions. Using this algorithm, it has been seen that the execution time and the
utilization of CPU has considerably reduced hence saving power and improving user
experience.

1 Introduction

There have been a lot of advancements in the application development sector. These ad-
vancements brings multiple complex algorithms which require heavy computation power
but the mobile devices which are used often does not have such powerful hardware which
restricts the maximum throughput of the underlying software algorithms hence hindering
the performance of the entire system. Due to this reason, computation offloading was
brought forward. This involves offloading complete or certain part of the algorithm which
potentially require heavy computation to the remote cloud server which processes it with
high computation power hence results in saving battery power and improving perform-
ance of the entire system as a whole. A lot of research has been done in this domain and
there is still a large scope for improvements in this sector.
The algorithms which help in offloading the part of heavy computation comprises of series
of decision making steps which help in deciding whether the task needs to be offloaded or
needs to be allowed to run on the local hardware. There are a loads of network parameters
which are taken into consideration such as the bandwidth, network strength etc, however,
there is very limited research involved on offloading systems which consider latency of
the network in addition with the live location of the device on which the application is
installed on. Involving latency as the parameter for the decision making process is very
critical as considering only the bandwidth of the connected network cannot gurantee that
the network can be trusted for the computation offloading process because even if the

1

network has high bandwidth with superior speed, the latency can be involved which re-
tards the network speed from the target web address.

Research Question:- Considering the gaps in the ongoing research, following research
questions can be taken into study:

1. To what extent CPU utilization and time of execution be improved by tracing the live
location and the latency of the underlying network along with other network parameters
for decision of offloading?

2. How can the historical records of offloading be used to optimize the decision mak-
ing process of mobile offloading and computation algorithm (MOCA)?

The structure of the report is as follows:-
The Section-2 will give the detail analysis of the previous works done by the researchers
in this domain. Section-3 will provide insights to the methodology on how this research
is been carried out. Section-4 gives the design approach which is followed and the ar-
chitecture which is used for designing this system. Section 5 will elaborate more on the
implementation approaches, followed by sections 6 and 7 which gives a discussion of the
research and the future work which can be done to improve the system. Finally Section
8 provides a list of references which are used to carry out this research work.

2 Related Work

Following are some of the main existing works which has been done in mobile cloud
offloading domain which are as follows:

2.1 Previous works related to mobile cloud offloading

Chun et al. (2011) came up with a system named CloneCloud which is an offloading
framework which makes use of threads for the process of computation offloading. The
special part about this framework is that logic of the application is broken down into
small minor parts or the modules and only small part of the application which can be
offloaded is sent to the cloud for the process of remote computation. This entire thing is
done using the two main modules of this framework which are mainly the static analysis
and the dynamic profiling module. The use of threads helps this framework to execute
and run the threads in concurrent manner such that some part of the code is run on
the local device which is the mobile phone and other part of the code is executed on the
cloud. Any dependency which arises on executing the code on the local is taken care by
pausing its execution on the device until the computation results are obtained from the
cloud for managing the dependency.

Kwon et al. (2016) researched on the performance metrics and came up with a perform-
ance predictor making use of f Mantis which was designed to predict the performance
in real time . This system accurately predicted whether the process of offloading will
improve the performance of the system and it also provided the value of the real-time
power consumed by system. In addition to this, he also proved empirically that the per-
formance of the system actually increased in real time after making use of this predictor.

2

Kosta et al. (2012) introduced a framework named ThinkAir which proved that on em-
ploying this framework, the performance of the system increased drastically with compar-
atively less consumption of power. This was possible due to the virtual machine images
which made the execution Parallelizable . Few of the simple benchmarking application
algorithms along with certain complex applications were tested for the effectiveness of
this framework. The framework comprised of many components and those components
contained several modules. The component included the environment for execution of ap-
plication, application server and the profilers. In addition to this, the profilers comprised
of the hardware, software and lastly the network profilers. Using this framework they
made a conclusion that the parallelizable application can execute over multiple virtual
machine’s.

Yet another framework was brought forward by Beloglazov and Buyya (2015) named
MobiCOP-iot which made used of both, the cloud and the edge environment and eval-
uated that the performance increase was 9 times in cloud and 16 times in edge. They
showed that the system had the capability to scale horizontally with varying loads without
any loss in performance. The algorithm in the framework operated in 3 different modes
mainly the Optimistic mode, Concurrent mode and the cloud-first mode. They tested this
framework on four different algorithms which were the N-Queens, RenderScript, Video-
processing and lastly the Chess problem. As stated above, this framework showed 9 times
performance increase in cloud were as in the edge environment, it was 16 times increase
in the performance.

Xia, Ding, Li, Kong, Yang and Ma (2014) introduced a system named Phone2Cloud
which was focused on reducing the amount of energy that was consumed while the task
was executed on the system. The logic behind its decision making algorithm was that it
calculated the average time that it would take to execute the task on local device. It then
fixed certain delay tolerance for the task and this tolerance is then compared with the
average execution time. If it is found to be less than the threshold value then the task
is offloaded to the cloud else, the power consumption of the local and cloud is estimated
and is compared with each other, if energy consumption of the local is less than cloud
then task is executed on local else it is offloaded on the cloud.

An algorithm named MAO(Mobile Application’s Offloading) was introduced by Ellouze
et al. (2015) which was invoked using two conditions- load on the CPU and the battery
charge value. They used simulations which were numerical in nature in order to get the
efficiency of the algorithm and also how it performs based on the jobs which are rejected
by it and the energy which is saved. What this algorithm does is it breaks the task in
small jobs and then it compares the delay in execution to that of delay which is set for
that particular job and the state of charge. It checks if the battery charge is less than or
equal to 20%. If yes then it checks if the task is energy efficient and if it is not then the
job is rejected else it checks if it meets the quality of service. If all these conditions are
met then the job is offloaded else next job is taken.

3

2.2 Previous works related to mobile cloud offloading taking
location into consideration

Neto et al. (2016) came up with a decision making engine which used location as one
of its parameters for the process of offloading. This is a hybrid engine which can be
used in any of the offloading framework. After the evaluation, it was found that there
was about 50% less energy consumption by the hardware while computing and there
was around 10% less CPU overhead. In this algorithm, certain number of annotations
were used in order to identify what part of the code needs to be offloaded and what all
parts of the code needs to be run on the local device itself. This system comprises of
three main components which are Instrumentation module, Decision making engine and
the connector component. The instrumentation module is responsible for fetching the
parts of the application logic which contains the annotation and then transfers it to the
decision making engine for further process. The DME (Decision Making Engine) on the
other hand decides whether the task can be offloaded or not. To make this decision, it
considers the amount of CPU that will be used and the battery energy that will be con-
sumed if it was executed on the local device. Based on this appropriate decision is made.
Once the task is offloaded to the cloud, the connector module comes into action which is
responsible for remote connection of the cloud environment to the local. It also serializes
and deserializes the objects as and when needed. Furthermore, this engine makes use of
location as one of its main parameters and based on the traced location of the device,
the bandwidth of the connected network is calculated and inorder to do so, Shannon’s
equation is used which internally makes use of SNR value to get the final bandwidth.

Xia, Liang, Xu and Zhou (2014) introduced an online location based decision making
system in which the units were arranged in two tiers, the first one being the cloudlets
and the second being the remote clouds which aimed to maintain their SLA while using
same amount of energy. This system makes use of location as one of its parameters for
offloading. Each Access Point in the particular location can have is own local cloudlets
and the tasks that needs to be executed might be executed on the local device, local
cloudlets or over the remote could environment. Each location can have a lot of workload
at any point of time over its local cloudlet hence it would be reasonable to execute that
task over the local device to save the time else it can be offloaded on the cloudlet or the
remote cloud for its execution and computation if there is not much workload. This is
where the location as a parameter is considered. However, it is not actively in use to
make the decision to offload the task.

2.3 Other related work relating to mobile cloud offloading

Boukerche et al. (2019) made a comparison of the various algorithms which were used for
the purpose of computation offloading process. It compares all the architectures of the
systems and also provides the advantages and the disadvantages of the same. In addition
to this, it also provides the open challenges and the future directions which can help to
uncover this research area more deeply.

Karunanithi (2020) designed a system and a smart algorithm which had two main use
cases, first one being the QR-Code scanner and the image processing. QR-Code scanning
was considered as a latency intensive iteration where as image processing was considered

4

as a computational intensive task. The cloud platform that was used is Amazon’s AWS
and the application was developed using Android Studio Code. The algorithm that was
implemented had the ability to handle both, computational intensive task as well as the
Latency intensive task. Normal device parameters were used in this algorithm such as
the battery level, free memory space and the connectivity state of the mobile device. The
future work of this paper was to implement a machine learning algorithm. The imple-
mentation in this particular paper is the continuation of the research that was done by
Karunanithi (2020) however, instead of machine learning algorithm, a smart algorithm
will be used which will take into consideration the previous decisions that were made
along with the bandwidth, latency and the location of the device in order to improve
the decision making process. The base of this research will be the same however, the al-
gorithm that was used will be completely changed to improve the time taken to complete
the task.

3 Methodology

This section will elaborate on the methods which are used in order to make this research
successful along with the tools and the technologies used to achieve the results. The task,
based on the evaluation by the inbuilt custom algorithm developed the decision is made
whether to run the task on the local device i.e mobile phone or to offload and execute
the task on the cloud and get the results to be displayed on the mobile screen for further
studies and conclusion.

3.1 Tools, Technologies and Techniques for application devel-
opment

The base application is installed on the android emulator to be better connected with
the underlying application code, however this application APK can easily be installed on
the mobile device and can be tested out on the same. For the purpose of development,
Android Studio Code is used which is 2022.2.1 Patch 2 Flamingo version.
The Virtual Machine embedded on this studio is of OpenJDK which is a 64-bit server
Virtual Machine. Furthermore, Pixel 6 Pro is been used as an Emulator of the device
on which the application will be installed and run upon. This virtual device is running
on Android API 34 Google APIs. The entire application is developed using JAVA pro-
gramming language of version 8. Several Async functions are used in order to allow the
application to run smoothly while performing background activities.

3.2 Application algorithm used for the purpose of system test-
ing

The application which is developed on android studio is embedded with an image pro-
cessing algorithm used to transform the image captured through device camera. Image
processing is a very high computing task and requires potentially higher computation
power than any other activities. It requires a use of Graphical Processing Unit (GPU)
to manipulate and render each of the tiny pixel in the captured image. Each of the im-
age captured are a very large data composed of high number of small pixels which are
divided into RGB which is basically a combination of 3 different colors RED, GREEN

5

and BLUE. Higher the resolution of the camera, higher is the size of the image to be
processed as it will contain a lot of small individual pixels needed to be rendered which
is computationally intensive task hence requiring more CPU power.
The more computation the CPU does, more is the battery consumption by the device
hence an efficient decision making algorithm needs to be in place so that the task is of-
floaded on the remote processing area in order to save some battery of the local device is
low on power. The decision made by the offloading algorithm is based on various different
variables and amongst them, bandwidth and the latency along with the location plays
a vital role in predicting the better execution environment (local or the cloud). If the
decision is made to be offloaded on the cloud environment, then the API call is done by
the algorithm which invokes the algorithm which is present on the cloud server. This
API call is possible using AJAX technique. After the processing, the results are then
sent back to the device in the form of JSON which are then extracted from the template
to be rendered and displayed on the device screen.

3.3 Performance Equation

The decision making algorithm which is the main module for the process of deciding the
execution environment relies on the performance equation along with other parameters
in order to make the decision. This equation consumes values which are pre-fetched
before algorithm is executed. These parameters include weights W1,W2,W3 and W4, the
bandwidth, latency, signal strength and lastly the current battery level of the device. The
values of the weights which are specified above depends on the priority of the algorithm
to select amongst other parameters which are specified above. There is a threshold value
of the performance which is set below which it will take the decision to execute the
algorithm on local device. If the live performance value which is calculated is more than
the threshold then the decision to offload the task to the cloud will be taken.

3.4 Offloading task to the cloud server

The algorithm present on the local device is replicated on the AWS cloud services. Micro-
services architecture is used in order to achieve the results. The main application logic is
written using Node.Js and then all the node modules are installed. As the application size
after installing all the node modules is greater than 10MB, it is first uploaded on S3 and
then the zip file for the same is pulled by the lambda service. Lambda is very light weight
execution environment and is serverless. All the code present on the serverless is in the
form of functions which are invoked as and when needed. Apart from this, it is highly
scalable which gives it the ability to expand or retract depending on the application load.
Due to the above mentioned specifications lambda was found to be the best environment
for execution. The API gateway is connected to the lambda function which acts as a
middleware to route all the requests to their respective lambda endpoint.

The monitoring of the cloud server is done using cloud watch service of AWS which
gives detailed logs of the services which are running. Using this any issues pertaining to
the lambda can be identified and be resolved.

6

Figure 1: Cloud Server Architecture using API Gateway and Lambda

4 Design Specification

Before any task is offloaded on the cloud server, lots of background parameters are checked
to make sure that the decision made is precise and accurate when it comes to mobile per-
formance. For this purpose several modules are designed each having specific evaluation
function which scans the underlying service and helps the engine to make the appropriate
decision on whether the task needs to be offloaded or run on the local device.

For the purpose of this research four main components are developed and used which
are namely the Device Analyzer module, Network Analyzer module and the Location
detector. The fourth one is the performance calculator which calculates and provides
with an integer number based on the output of other modules.

4.1 Architecture diagram of the system

Figure 4 below shows the architecture of the entire system under research with each of its
modules along with the control flow. The Network Analyzer, Device Analyzer, location
detector along with the decision making engine and performance calculator are the part
of Mobile Offloading and Computational Algorithm (MOCA) .

4.2 Device Analyzer

This is the module designed to fetch all the real time data about the android device
on which the application is installed on. Android studio code, the IDE on which the
application is developed comes with a set of plugins which help in getting a lot of hardware
specific information about the device. For the implementation of this algorithm in this
research, memory information is collected using the activity manager module present on
android studio which provides with all the related information of the device memory.
Apart from the memory, battery level and the state of the battery is collected using the
battery manager module. All these parameters is stored into a hash map in the form of
key and value pair which is fetched by other modules for further processing.

4.3 Network Analyzer

The process of offloading is entirely dependent on the values obtained by the network
analyzer module. This component fetched important network information and provides

7

Figure 2: Architectural Diagram of the system

8

it to the decision making engine for analyzing the values. This checks whether the mobile
device is connected to the internet and if so, then it check what type of data networks
it is connected to. The wifi and the mobile data can be two types of data network
that the device can be connected. The android.net.ConnectivityManager and the an-
droid.net.NetworkInfo are the two main device packages which this component makes
use of. All the values of the network obtained is then stored into a hashmap so that they
can be used to make appropriate decision by calculating the performance which acts as
a main parameter for making the offloading decision.

This module is also responsible for checking the latency of the connected network. Getting
the actual network latency is very challenging as it requires a lot of background activity
while the application is running. Implementing it with the normal approach cannot be
possible to get the precise value hence, async task implementation was followed. This
is a kind of programming approach followed when a certain important task needs to be
carried out while the application is still under processing state. This is quite a complex
approach but it allows smooth process of the entire task under execution.

4.4 Location Detector

This algorithm makes an active use of live location of the device while the application is
executed along with the bandwidth and latency of the network. These parameters play
an important role in the performance calculating module in order to make an appropriate
decision of offloading a task. The output of this module is stored in a data store and is used
actively by the algorithm for improving the time of execution every time the application is
opened at the same location. The android package named Location manager is used to get
the precise latitude and longitude of the device. The LocationManager.GPSPROVIDER
is the plugin used to fetch the location by making use of GPS actively.

4.5 Performance Calculator

This component is responsible for calculating the performance based on the values provided
by the three analyzer modules. It consumes the bandwidth, latency, signal strength and
the battery level values stored into the hashmap. Based on these values the estimated
performance is calculated and is provided to the decision making engine for further ana-
lysis. The performance equation used is as follows:-

Performance = W1 ∗ bandwidth + W2 ∗ (latency−1) + W3 ∗ signalStrength + W4 ∗
batteryLevel

Where W1, W2,W3 and W4 are the weights which can be adjusted.

For this research work, latency is the most important parameter followed by bandwidth
hence W2 is given the value 1 followed by bandwidth as 0.3 and W3 and W4 are given
the values 0.2 and 0.1 respectively. This will be termed as Equation-1 and will be referred
throughout this paper.

9

4.6 Firebase Plugin

The android application is connected with the firebase plugin which provides a lot of
additional features. It is a service provided by google which is connected to the google
cloud service. For this research it is used for the purpose of data storage medium and
performance tracking interface. There are two tables which are maintained for storing
the values traced out by the algorithm which are offload records and history table. The
first table which is the offload records table maintains every record of each decision made
by the algorithm. Its field include the latitude, longitude, execution environment and
the total time taken for the execution. This table is made to visualize the time taken
by the algorithm to execute on the two platforms, cloud and the local. The second
table is the history table which maintains a single record per location. It updates the
value of its field when the performance is changed or when the algorithm detects that its
the best location for offloading for future executions. Its field include bandwidth, best
location, latitude, longitude, performance and the execution environment information.
Apart from the firebase database, it also provides insights on total CPU that was utilized
while executing the application along with the graphical representation of change in
application response time.

4.7 Decision Making Engine

This module is responsible for making appropriate decisions based on the performance
value provided by the performance calculator and the previous values obtained by the
firebase database for that particular location. It makes the decision to either execute the
task on local device or the cloud environment.

4.8 Cloud Offloading

If the performance value obtained from the performance calculator is greater than the
threshold value then the task is offloaded to the cloud environment. The architecture
followed on the cloud is microservice type where the main application logic is deployed
on the lambda service which is in the form of function which gets invoked as and when
API gateway is hit by the appropriate request. For this research, post request is used and
the result is obtained in the form of 64 bit image which is decoded on the local device
after the cloud response is successful and the result is displayed on the device screen. For
monitoring purposes, cloud watch service of AWS is used which provides cloud logs of in
very detail which can be used for resolving any cloud related issues which may arise.

5 Implementation

5.1 Mobile Offloading Computational Algorithm

For making this offloading system a custom algorithm named Mobile Offloading Com-
putational Algorithm is designed which is shown below in two sub parts. The first part
shows the basic structure of the algorithm where as the second one shows the actual
breakdown of the internal logic which is used by the system for making the decision of
cloud offloading.

10

Algorithm 1 Mobile Offloading Computational Algorithm (MOCA)-1

0: if NetworkConnectivity then
0: if Charging == True then
0: if avaiMemPct ≤ 50 then
0: makeDecision()
0: else
0: executeOnLocal()
0: end if
0: else
0: if avaiMemPct ≤ 50 or batteryPercentage ≤ 20 then
0: makeDecision()
0: else
0: executeOnLocal()
0: end if
0: end if
0: else
0: executeOnLocal()
0: end if=0

The algorithm first checks whether network connectivity is present on the device or
whether it is disconnected from the network. If it detects the connection with the network
provider then the algorithm proceeds with checking the charging status of the battery.
If the device is connected to the power then next step is to check the memory available.
The algorithm is designed in such a way that only when the memory available on the
device is less than 50% only then it will check for further conditions for offloading. Free
memory availability in the device ensures that whenever a task is running on the local,
it will have space when the application data increases which can add up some level to
performance, however when there is less or no free space available on the device, the
performance can decrease which can hinder the user experience hence it becomes a right
opportunity to offload while checking with other parameters which is done by the second
part of the algorithm.
The state of charge detection is added in this approach as it will ensure that the device
has adequate power supply from either of the power sources i.e the charging device or the
battery. If the algorithm detects that the device is disconnected from the power supply
and is dependent on the internal battery then it will check for the amount of charge
that the battery has at that unit of time. If the memory is less than 50% and battery
percentage is less than the threshold which in this case is set to 20% then it will consider
other conditions to make sure that the offloading step is the right decision and will not
decrease the performance further. If any of the condition is not met, decision to run the
task on the local device is taken and the task is run on the mobile device itself.

The second part of the algorithm shows the actual steps and parameters considered
while making up appropriate and accurate decisions which helps in improving perform-
ance of the mobile device by reducing the execution time. After a call to makeDecision
function is made, it calculates and fetches the latency of the connected network and
for this, a ping to host name www.example.com is done which is a testing server made
available to the developers all around the world. After getting the appropriate value of

11

Algorithm 2 Mobile Offloading Computational Algorithm (MOCA)-2 (MakeDecision())

0: location ← getLocation
0: latency ← getNetworkLatency
0: performance ← getPerformance
0: firebaseRecords ← getF irebaseRecords
0: if firebaseRecords.count == 0 then
0: if performance≥ threshold then
0: firebaseRecords.Store(”state ← cloud”)
0: executeOnCloud()
0: else
0: firebaseRecords.Store(”state ← local”)
0: executeOnLocal()
0: end if
0: else if firebaseRecords.count ≥ 1 and firebaseRecords.env==cloud then
0: averagePerformance ← getAveragePerformance()
0: if averagePerformance ≥ threshold then
0: firebaseRecords.bestLocation=true
0: executeOnCloud()
0: else
0: executeOnLocal()
0: end if
0: else if firebaseRecords.count ≥ 1 and firebaseRecords.env==local then
0: if performance ≥ firebaseRecords.lastPerformance then
0: averagePerformance ← getAveragePerformance()
0: if averagePerformance ≥ threshold then
0: firebaseRecords.bestLocation=true
0: firebaseRecords.state=cloud
0: executeOnCloud()
0: else
0: firebaseRecords.lastPerformance=performance
0: executeOnLocal()
0: end if
0: else
0: executeOnLocal()
0: end if
0: else if firebaseRecords.bestLocation==true then
0: executeOnCloud()
0: else
0: executeOnLocal()
0: end if
=0

12

latency, location of device is detected using a plugin which makes use of GPS to get the
live location of the device. The device, network and location analyzer is responsible for
obtaining the values. All these values are stored into a hash map which links the value
to its key. Next, the battery level which was detected along with the location and the
latency of network is given for calculating the performance using the Equation-1 men-
tioned in this paper above. The weights W1, W2, W3 and W4 is adjusted as per the
requirements, however, for this implementation W1 is given a value of 0.3 followed by
W2 as 1, W3 as 0.2 and lastly W4 as 0.1 respectively. The reason behind W2 taken as 1
is that in this research, latency is given the highest priority to study the use of latency
to improve the performance.

Performance Parameter weight Value
Bandwidth W1 0.3
Latency W2 1

Signal Strength W3 0.2
Battery Level W4 0.1

After the performance is calculated, the call to the firebase is made to check for previous
records. If no records exists then it check the performance value with the threshold value
which in this research is taken as 8. If the performance is greater or equal to this value
then the data is stored on the firebase and cloud execution is done. If the performance
is less than the threshold then data is stored on firebase and local execution is done.

If there exist previous records, and is the previous record environment is cloud then
the average performance is calculated using the current performance and previous per-
formance value and this average performance value is checked if it is greater than or equal
to the threshold, if yes then best location is set to true and is executed on cloud else it
is executed on local.

If the previous record environment is local then it checks if the performance calculated
is greater than or equal to previous performance value is yes then average performance
is calculated and same approach is followed as explained above. The state of previous
record is set to cloud and cloud execution is done. If the performance calculated is not
greater than last performance value then the last performance value of firebase is updated
with the latest performance value and the local execution is carried out. If none of the
above conditions are met and if the previous record location is set to true then cloud
execution is done else the task is executed on local. Figure 5 shows the flowchart of the
algorithm.

5.2 Cloud Execution Environment

When the decision of offloading is made, the cloud execution starts. For the purpose of
developing the cloud architecture, two of the Amazon’s main services are used which are
mainly the API gateway and the Lambda functions.

5.2.1 The API Gateway

The API is a service provided by Amazon which allows to develop several API based on
Restful web services. These API can be connected to Lambda function so that it gets

13

Figure 3: Architectural Diagram of the system

14

invoked everytime an API call is made. For the research purpose, an API is developed
with POST request and this API gateway is connected to the Lambda function. Figure
6 shows the developed API gateway which is used for this research purpose. This API is
tested on Postman before it is integrated in this system.

Figure 4: API gateway implementation

5.2.2 The Lambda Function

The entire image rendering logic in the cloud is been implemented on the Lambda service
of AWS. Using Lambda promotes the microservice approach which makes the system
loosely coupled hence allowing changes to the source code in future. Lambda follows a
FAAS architecture where each implementation is in the form of a function. This can
be invoked using API gateway and the response from this can be sent back. For the
implementation process Node js is used and the code is first added to s3 bucket. Lambda
function then pulls the code form this bucket and then is used as the API end function
during offloading. It offers Cloud watch service out off the box which can be used for
monitoring process of the application on the cloud.

5.3 Firebase Environment

All the decisions made by the decision engine is stored into the Firebase Datastore, For the
purpose of the research, two tables have been maintained named History Table and the
Offload Records. The first table maintains single record per location. This table includes
Bandwidth, Best location, Latitude, Longitude, performance and the store parameters.
The decision making engine uses Best Location and the performance field in order to
make the decision based on the previous records. The Offload Records on the other hand
keeps track of each and every decision made by the system for the purpose of evaluation.

15

Figure 5: Firebase Records

6 Evaluation

For the purpose of evaluation of the proposed system, Firebase plugin is been integrated
into the android studio code and the apk of the ready system is been deployed on the
evaluation module to get the cpu usage. The pluggin is added to the android manifest.xml
file and the grade build is invoked manually to pull all the related dependencies from
the remote repository of Google. For the experimentation purposes, Oppo Realme X2
pro emulated device is used with API version 34 and having 2048 MB as the RAM
memory. The effectiveness of the system is evaluated using multiple parameters such as
the performance equation, time for execution on cloud vs local, CPU utilization, memory
usage and also the platform selection. Each Experiments below are linked to each other
and they together constitute the research findings.

6.1 Testing the Performance Equation of the System

The effectiveness of performance equation is done using 6 sub-epochs. First and the
second epoch is grouped under Test-1, third and the fourth is grouped under Test-2
followed by fifth and sixth test under Test-3. As shown in the graphical representation,
dark blue color indicates 5G/ WiFi Network connectivity whereas light blue shows that
the device is connected to 3G/4G Network.
Test-1 was carried out at 11 am and was observed that when the device is connected
to WIFI or the 5G networks, the performance came out to be around 26 where as the
same performance equation gave a value of 5 when the network connectivity was 3G/4G
network. On performing Test-2 at 6pm the same day, it was observed that there was not
much difference in the values for these networks as compared to the results given by Test-
1, however, 3G/4G network connectivity gave much lower value as compared to Wifi/5G
network. Test-3 on the other end was carried out at night resulting in low latency on
Wifi and 5G networks, hence giving much higher value of 60 while connected to 5G/
Wifi network connectivity. The reason behind choosing different time for evaluation of
performance was that latency of the network decreases at night when compared to day
as there is less network congestion and traffic hence proving that the parameters and
weights chosen in the equation is valid.

16

Figure 6: Performance Equation Output

6.2 Evaluation of time taken by the system on the two platforms

The aim of this research is to make an attempt to decrease the computation time by
offloading the task to the cloud. The algorithm was run several times and the data
on the firestore table is taken for plotting the time taken by the system to execute the
computation on cloud to that on local. Following are the results that were obtained.

Figure 7: Time evaluation of the algorithm

17

Figure 8: Time graph from Firebase performance evaluation module

A total of 24 epochs on the system were run and alternate epochs were grouped
together as one single unit hence in the above bar chart, the x-axis of the system has
12 process where each process has two sub process one for the local and the other one
for the cloud execution. It was studied that the time taken by the mobile execution is
much more than the time taken by the cloud. For the process numbered 1 and 12, mobile
network was switched from 3G to 4G hence there is very small difference between the
time taken but it can be concluded that execution on the cloud is much faster when it
comes to the time taken for the execution when compared with local device execution.

6.3 CPU and Memory Utilization on execution on Cloud and
Local

The network was constantly switched between the mobile and the Wifi and the algorithm
was run for several iterations to study the CPU and memory utilization in this process.
Figure 9 and 10 shows the CPU utilization obtained from firebase console.

Figure 9: CPU utilization on local execution

18

The mobile data was turned off and the network was disconnected from the provider,
The image editing application was then run. After the the execution was completed,
firebase analyzed the CPU utilization and the above result was obtained. It was seen
that the total CPU utilization was 87.27% which included the CPU utilization and User
CPU utilization which was 7.93% and 79.33% respectively.

After the mobile execution was completed, the network was turned on and the device
was connected to WiFi network and the application was re-executed. After completion
of execution, it was observed that the total CPU utilization was 10% which was 8 times
less than the CPU utilized during local execution. Furthermore, when the memory was
analyzed, it was seen that the utilization was quiet less than local execution hence proving
that offloading is reducing the utilization of CPU.

Figure 10: CPU utilization on cloud execution

Figure 11: Network Reliability

19

Figure 12: Analysis of the decision made

6.4 Discussion

This Mobile Offloading Computational Algorithm designed and implemented shows that
the time taken for completing the execution is considerably reduced. Apart from this, the
app startup time reduced from 2 seconds to less than 500 milliseconds. The algorithm
implemented by Karunanithi (2020) didn’t took into consideration the latency and the
previous offloading records. The implementation approach followed in this research took
into consideration latency of the network and also the previous records of offloading
hence making it reliable system improving CPU performance. The processor utilization
was considerably less hence reducing battery consumption. Few network conclusions are
obtained and are shown in the figure 13 and 14 respectively.

Figure 11 shows that the most reliable network which was evaluated based on the decision
taken to improve the performance of the device was the WiFi network followed by the
5G network with 50% and 44.4% reliability respectively. The least reliable network for
offloading was the 3G network which was only 5.6% reliable.

Figure 12 demonstrates the analysis of the decision made on different networks. It was
seen that when the device was connected to WiFi network, the latency was less and it
had high bandwidth hence performance value was more than the threshold which resulted
in the task getting offloaded on the cloud 99% of the time. On 5G network, the latency
was comparatively more than WiFi hence 10% of the execution was on local where as
rest 90% of the time the execution was on cloud. On the other hand, when 3G network
was used, the performance value obtained form the equation was considerably less due to
high latency which resulted in executing the task on local maximum times than on the
cloud platform.

7 Conclusion and Future Work

The objective of this research work was to make use of latency of the network along with
bandwidth and live location of the device to improve the performance of the system as a

20

whole. It made use of a custom made algorithm named Mobile Offloading Computational
Algorithm which had a special performance equation consisting of the above mentioned
parameters to calculate a performance value based on which appropriate decision was
made while taking the historical values into consideration. This approach was continu-
ation of the existing work done by Karunanithi (2020) with considerable modification in
the algorithm already implemented. On evaluation, it was found that the performance
was increased to an extent by reducing the CPU utilization 8 times while executing the
task on the cloud environment. Adding further, it also demonstrated how the time of
execution was reduced when the task was offloaded.

This research didn’t took into consideration then edge devices which can be used when
there is no network connections. Incorporating edge devices to this system can be a part
of future work along with implementation of a trained machine learning model which can
smartly decide the execution environment.

References

Beloglazov, A. and Buyya, R. (2015). Openstack neat: a framework for dynamic and
energy-efficient consolidation of virtual machines in openstack clouds, Concurrency and
Computation: Practice and Experience 27(5): 1310–1333.

Boukerche, A., Guan, S. and Grande, R. E. D. (2019). Sustainable offloading in mobile
cloud computing: Algorithmic design and implementation, ACM Comput. Surv. 52(1).
URL: https://doi.org/10.1145/3286688

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011). Clonecloud: Elastic
execution between mobile device and cloud, Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, Association for Computing Machinery, New York,
NY, USA, p. 301–314.
URL: https://doi.org/10.1145/1966445.1966473

Ellouze, A., Gagnaire, M. and Haddad, A. (2015). A mobile application offloading al-
gorithm for mobile cloud computing, 2015 3rd IEEE International Conference on Mo-
bile Cloud Computing, Services, and Engineering, pp. 34–40.

Karunanithi, N. e. a. (2020). Mobile offloading technique for latency-sensitive and
computational-intensive task, 2020 Masters thesis, Dublin, National College of Ireland.

Kosta, S., Aucinas, A., Hui, P., Mortier, R. and Zhang, X. (2012). Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading, 2012
Proceedings IEEE INFOCOM, pp. 945–953.

Kwon, Y., Yi, H., Kwon, D., Yang, S., Cho, Y. and Paek, Y. (2016). Precise execution
offloading for applications with dynamic behavior in mobile cloud computing, Pervasive
and Mobile Computing 27: 58–74.
URL: https://www.sciencedirect.com/science/article/pii/S1574119215001856

Neto, J. L. D., Macedo, D. F. and Nogueira, J. M. S. (2016). Location aware decision
engine to offload mobile computation to the cloud, NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium pp. 543–549.

21

Xia, F., Ding, F., Li, J., Kong, X., Yang, L. and Ma, J. (2014). Phone2cloud: Exploiting
computation offloading for energy saving on smartphones in mobile cloud computing,
Information Systems Frontiers 16.

Xia, Q., Liang, W., Xu, Z. and Zhou, B. (2014). Online algorithms for location-aware task
offloading in two-tiered mobile cloud environments, Proceedings of the 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing, UCC ’14, IEEE Com-
puter Society, USA, p. 109–116.
URL: https://doi.org/10.1109/UCC.2014.19

22

	Introduction
	Related Work
	Previous works related to mobile cloud offloading
	Previous works related to mobile cloud offloading taking location into consideration
	Other related work relating to mobile cloud offloading

	Methodology
	Tools, Technologies and Techniques for application development
	Application algorithm used for the purpose of system testing
	Performance Equation
	Offloading task to the cloud server

	Design Specification
	Architecture diagram of the system
	Device Analyzer
	Network Analyzer
	Location Detector
	Performance Calculator
	Firebase Plugin
	Decision Making Engine
	Cloud Offloading

	Implementation
	Mobile Offloading Computational Algorithm
	Cloud Execution Environment
	The API Gateway
	The Lambda Function

	Firebase Environment

	Evaluation
	Testing the Performance Equation of the System
	Evaluation of time taken by the system on the two platforms
	CPU and Memory Utilization on execution on Cloud and Local
	Discussion

	Conclusion and Future Work

