
Optimization of Load Balancing in Fog
Computing using Bacterial Colony

Optimization algorithm

MSc Research Project

Cloud Computing

Shalini Vaibhav
Student ID: 21196354

School of Computing

National College of Ireland

Supervisor: Prof. Yasantha Samarawickrama

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shalini Vaibhav

Student ID: 21196354

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Prof. Yasantha Samarawickrama

Submission Due Date: 14/08/2023

Project Title: Optimization of Load Balancing in Fog Computing using Bac-
terial Colony Optimization algorithm

Word Count: 7903

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shalini Vaibhav

Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Optimization of Load Balancing in Fog Computing
using Bacterial Colony Optimization algorithm

Shalini Vaibhav
21196354

Abstract

Fog computing is one of the most important paradigm shifts, transforming data
processing through enhanced efficiency and adaptability, achieved by extending
computational capabilities to the edge of the network. Load balancing, which in-
cludes distributing the computational demand over a number of fog nodes to im-
prove resource utilisation and system effectiveness, is one of the most important
issues in fog computing. This research aims to tackle load balancing in fog comput-
ing by using the Bacterial Colony Optimisation (BCO) technique. The goal of this
project is to implement an effective, and flexible load balancing method specifically
designed for fog computing settings. Simulated tests were used to validate the sug-
gested approach and performance metrics were obtained. BCO outperforms Round-
Robin (RR) algorithm and Throttle Load Balancing (TLB) algorithm, with average
improvements of roughly 56.85% in latency, 51.83% in makespan, and 33.77% in
cost across various node configurations.BCO demonstrates superior performance
compared to RR and TLB algorithms, it achieves an improvement in the latency
of approximately 56.85%, 51.83% in makespan, and 33.77% in cost across diverse
node configurations.

1 Introduction

Fog computing is a decentralised computational approach that extends cloud capabilities
to the edge of the network, enabling computation, storage, and networking services close
to data sources, diverging from the traditional centralised data centre paradigm. Both the
studies by Kumar et al. (2019) and Chakraborty (2019) evaluate both technologies and
come to the conclusion that fog computing, rather than moving all data to the cloud, offers
a more flexible structure and improved data processing capabilities by making efficient use
of limited network resources. A significant number of interconnected devices are organised
into fog nodes in fog computing, which are in charge of performing computational tasks
on behalf of the connected devices, the architecture of fog network Mahmud et al. (2018)
is shown in Figure 1.

It makes handling and analysing data from Internet of Things (IoT) devices and other
edge devices easier because there is no need to send the data to a distant data centre or
cloud. As a result,performs efficiently in terms of latency, power consumption, capital
and operational expenses, network traffic and content distribution Mahmud et al. (2018).
When real-time analysis is required or when faraway sites are involved where cloud access
is scarce or inconsistent, fog computing appears to be especially beneficial.

1



Figure 1: The architecture of Fog network Mahmud et al. (2018)

1.1 Background and Motivation

With the growing need for IoT, enormous amounts of data are produced, placing heavy
load on fog nodes. Load balancing, which is the distribution of load among fog nodes,
emerges as a crucial process that improves resource utilisation and task response times.
In order to manage the exponential growth of data, avoid network congestion, and avoid
overloading fog nodes, which could result in performance degradation and significant
service interruptions, load balancing is essential. The complex environment and limited
hardware capabilities of fog devices present special difficulties for load balancing in fog
computing. The key to improving Quality of Service (QoS) metrics including resource
utilisation, throughput, cost-efficiency, response time, performance, and energy consump-
tion is load balancing, which is a key characteristic of fog networks Kashani et al. (2020).
Additionally, it reduces the possibility of load imbalances, preventing potential overload-
ing while leaving other fog nodes underutilised.

Numerous research studies highlight the complex nature of load balancing within fog
computing due to the variety of fog servers, client mobility, and increasing network
traffic.Conventional load balancing techniques are ineffective for meeting the QoS re-
quirements of the fog domain because their computations become unreliable. A wide
range of load balancing approaches, including heuristic, meta-heuristic, probabilistic,
graph theory-based, and hybrid solutions, have been presented in comprehensive studies
and practical implementations in an effort to overcome this difficulty. In fog computing,
efficient load balancing emerges as a key element in improving network speed, scalability,
and stability. It has the ability to reduce energy consumption by evenly distributing
workloads across fog nodes by maximising the utilisation of processing and storage re-
sources and minimizing response times.

Despite many investigations and practical implementations, there is still a need to im-
prove load balancing effectiveness because of the rising needs of IoT and rising data size.
There have been many different load balancing systems proposed, taking into factors like

2



latency, bandwidth, deadlines, cost, security, execution time, and responsiveness. The
importance of finding a better solution is discussed in Singh, Kumar, Sharma and Nayyar
(2020) and Kashani et al. (2020). Furthermore, Kashani et al. (2020) emphasises the con-
tinued requirement to use optimisation methods like BCO to find the optimal solutions.

The motivation behind this research is to evaluate the Bacterial Colony Optimisation
algorithm’s effectiveness in load balancing, assuring efficient task allocation, and avoiding
both underloading and overloading situations. This strategy aims to maximise resource
utilisation, improving overall effiency of fog computing. As discussed in Batra et al.
(2022) and Kashani et al. (2020), the field of load balancing comprises a wide range of
approaches, including heuristic, meta-heuristic, probabilistic, graph theory-based, and
hybrid techniques. In fog computing, optimisation strategies have the potential to en-
hance load balancing, resulting in better resource usage and increased performance. While
well-known algorithms like Particle Swarm Optimisation (PSO), Artificial Bee Colony,
and fuzzy logic-based load balancing have made beneficial contributions, they also have
intrinsic advantages and disadvantages that have been thoroughly discussed in Kashani
et al. (2020) and Batra et al. (2022). This goal of this research is to identify the extent
to which BCO algorithm can further improve several QoS parameters such as latency,
energy consumption, makespan and cost for a smooth functioning fog network.

Bacterial Colony Optimization is a bio-inspired optimization technique, imitates the
chemotaxis, intercellular communication, and self-adjusting feeding patterns of bacterial
colonies. Through extracellular chemicals, it mimics how colonies move, communicate,
and seek out nutrients. These principles are used by this algorithm to produce potential
solutions and identify the best fit for a particular task. Its capacity to improve load
balancing emphasises its viability. The goal in this study is to examine and compare this
strategy with the existing load balancing approaches.

1.2 Research Question

The above research problem motivates the following research question: [What is the
extent of the improvement in load balancing optimization achieved by us-
ing the Bacterial Colony Optimization algorithm in fog computing, especially
in terms of critical performance measures like latency, energy consumption,
makespan, and cost? Furthermore, how does it compare to other optimiza-
tion algorithms, across different node configurations?].

This study is organised as follows in the sections that follow: Section2, Related Work,
examines previous studies, evaluates their main goals, and outlines their projected con-
tributions. Section 3 describes the research methods in more detail and explains the flow
of Bacterial Colony Optimisation algorithm to improve load balancing in fog computing.
The design specification is presented in Section 4, Implementation is covered in Section
5, and evaluation is covered in Section 6. The study comes to a conclusion in Section 7,
which summarises the conclusions, implications, and directions for further investigation.

3



2 Related Work

According to various studies and prior related work, fog computing has a significant
potential, but it also faces a lot of challenges that need to be tackled, including resource
allocation, privacy and security, job scheduling, control and management. Load balancing
is an important element that can enhance the QoS measures such as resource utilisation,
throughput, price, response time, performance, and energy consumption.

2.1 Understanding Fog Computing, its architectures, scope, chal-
lenges and future work

Naha et al. (2018), Mouradian et al. (2018), and Mukherjee et al. (2018) provide an
extensive overview of fog computing, a distributed computing model that extends cloud
computing to the network edge. Naha et al. (2018) provides a thorough review of the
newly developing issue of fog computing. For academics and industry professionals inter-
ested in the subject, studying the history of fog computing, its essential traits, and the
numerous architectures and technologies that make it possible is a significant resource.
The authors also emphasise security, privacy, load balancing, and energy efficiency as
requirements and challenges of fog computing. These concerns, which involve resource
scheduling as one of the key issues, can help focus future research in this topic. Overall,
the state of the art in fog computing is reviewed in-depth in this research. Although the
authors provide a thorough theoretical framework for understanding the advantages and
difficulties of fog computing, the paper lacks actual examples of how fog computing has
been successfully deployed in many sectors.

The research by Mouradian et al. (2018) is significant since it provides a thorough
analysis of fog computing. Using a simple set of criteria, the study carefully evaluates the
state of the art, taking into account both the structural designs and algorithms included
into fog systems. The challenges and opportunities for more research in the field are briefly
discussed in the paper, with a focus on load balancing in fog computing. The authors
present a clear framework for evaluation criteria, but they do not provide a thorough
assessment of how well the current fog computing architectures and technologies meet
these criteria.

Mukherjee et al. (2018) discusses various elements of fog computing, including its
limitations and potential prospects. The authors identify one such problem as resource
management, which is particularly complex given that fog computing consumes different
resources such as processing power, storage capacity, and network bandwidth in real-time.
Effective load balancing solutions, as well as advances in job scheduling and resource
allocation, are required. Obtaining interoperability across the multiple diverse devices
and systems used in fog computing can be quite difficult. The researchers also note
prospects for future growth, such as its use in emerging applications like healthcare,
smart cities, and transportation – which could potentially result in new business models
and revenue streams.

Key challenges for fog computing include concerns about security and privacy, oper-
ational challenges, service-related challenges, and software architecture challenges. Fog
computing raises security and privacy issues because of the distributed architecture and
the vast device network. Operational problems include effective management and depend-
ability assurance for various devices. A crucial service consideration is ensuring resource
efficiency and excellent service quality. The successful integration and broad acceptance

4



of fog computing across diverse applications depend on overcoming these challenges.

2.2 Load Balancing in Fog Computing and its challenges

According to the paper Kashyap and V (2022), load distribution in the context of fog
computing becomes crucial with the growth in network-level traffic. Inadequate load
balancing can result in unfavourable outcomes such delays in processing, responsiveness,
and security standards, which lowers the overall quality of services. The research articles
also explore the challenges of load balancing in fog computing, including the severely
confined environments and constrained hardware capabilities of fog devices. The public-
ations highlight the need for more research to address the obstacles and limitations that
come with load balancing in the context of fog computing.

A thorough analysis of load balancing in fog computing is included in the study
Chandak and Ray (2019). The paper addresses load balancing issues in fog computing
along with offloading techniques, dynamic load distribution, and effective resource man-
agement. Additionally, it assesses other existing load balancing techniques, such as fog
cluster-based load balancing. The analysis, however, falls short of rating the effectiveness
of these various load balancing solutions in various fog computing scenarios, as well as
their advantages and disadvantages.

Multiple researchers present a thorough examination of load balancing approaches
in fog computing. Kashani et al. (2020) and Saroa 2021 provide systematic reviews of
load balancing methods in fog computing, whereas Chandak and Ray (2019) and Abbasi
et al. (2018) provide surveys of load balancing algorithms utilised in fog computing. The
research papers examine the importance of load balancing in the context of fog computing
and how it might improve QoS metrics such as resource utilisation, throughput, costs,
response time, efficiency, and energy consumption. The studies also identify a variety of
load balancing algorithms and methods, including fundamental, exact, approximate, and
hybrid solutions, and provide a thorough analysis of their benefits and drawbacks. The
articles also examine the current difficulties and anticipated developments in the field of
fog computing load balancing approaches.

Singh, Sharma and Kumar (2020) addresses the issue that traditional algorithms do
not work well in the fog zone and proposes a fuzzy logic-based load balancing solution due
to the severely constricted environment and limited hardware capabilities of fog devices.
Rani (2022) proposes a unique hybrid model for load balancing in smart grids that uses
throttled, round-robin, and particle swarm optimisation techniques. The importance of
fog computing in addressing cloud computing’s latency, privacy, and congestion challenges
is emphasised in the article. The research examines many types of fog-based scheduling
algorithms but does not provide any gaps or comparisons between these strategies. It
also looks at how fog computing helps end users by bringing computation, storage, and
networking capabilities closer to them.

2.3 State-Of-the-Art and potential solutions

In the field of fog computing, load balancing is an important area of research and devel-
opment. The problem of load balancing in this domain is being addressed by numerous
active studies and practical applications.

Multiple studies have examined the load balancing techniques utilised in fog comput-
ing. Batra et al. (2022) concisely describes and compares load balancing strategies such

5



as heuristic, meta-heuristic, probabilistic, graph theory-based, and hybrid. Round-robin
and source IP hash are two load balancing algorithms that are explored and compared in
Kumar et al. (2019). Xu et al. (2018) recommends a heuristic virtual machine scheduling
technique for load balancing in fog-cloud computing. Overall, these publications provide
a comprehensive review of the present state-of-the-art in fog computing load balancing,
covering the several methodologies, measures, and assessment strategies used.

The study Rehman et al. (2019) highlights how fog computing may improve the per-
formance of smart building applications by minimising latency. The proposed technique
is evaluated using simulations and compared with alternative scheduling methods. The
results show that the Min-Min algorithm outperforms alternative techniques in terms of
makespan and resource utilisation. Six fog nodes from six distinct locations were used in
the study, and the microgrids were linked to measure the energy consumption on these
fog nodes. The ideal method queues up jobs that take more time to finish and completes
those that take less time. Based on tasks that have been performed and those that have
been added, the list is updated. Despite not being addressed in this work, fog computing’s
use in smart buildings poses security and privacy issues.

Throttled, Round Robin (RR), and First Fit (FF), three load balancing algorithms
designed to provide effective resource allocation in fog computing, are compared in depth
in the study Ahmad et al. (2019). The evaluation is based on factors including price,
processing time, and response time. The results show that, in terms of cost optimisa-
tion, the suggested approach performs better than other algorithms; however, the RR
and Throttled algorithms perform better in terms of processing time and response time.
Despite these insightful observations, the research might benefit from an in-depth review
of the performance metrics.

The paper Kashani et al. (2020) gives an in-depth analysis of load balancing strategies
in fog computing. In order to provide a thorough classification and review of existing
approaches, along with their advantages and disadvantages, they divide these techniques
into approximation, exact, fundamental, and hybrid methods. The analysis presents a
favourable picture of the field. Additionally, Kashani et al. (2020) discusses a variety of
research issues and persistent concerns, offering practical solutions. Although many other
heuristic and meta-heuristic methods have been used, the study introduces optimisation
techniques such as Bacterial Colony Optimisation as optimal solution for future work.
The extensive comparison and assessment of all load balancing approaches provides a
strong insight and direction for future study.

Heuristic algorithms are methods for problem-solving that rely on trial and error
or actual experience to produce solutions. These methods are not always accurate but
are nevertheless regarded as good. Meta-heuristic algorithms, on the other hand, are
optimisation procedures that draw inspiration from human or natural behaviour. It
is more complicated than the heuristic approach, but it is thought to provide a solid
solution. Bacterial Colony Optimisation method, the suggested best solution algorithm
in Kashani et al. (2020), is employed for this research; it is a meta-heuristic algorithm.
BCO is an algorithm that has been developed to simulate bacteria’s behaviour with swarm
intelligence, simplifying the optimisation process and introducing novel communication
methods to boost efficiency (Revathi et al. (2019) and Niu and Wang (2012)). The
introduction and functionality of the BCO algorithm are covered in further detail in
Section 4.4.

6



3 Methodology

3.1 Experimental Setup and Procedure

The research methodology included numerous crucial procedures, each of which contrib-
uted to this research. The following part explains these major steps, demonstrating the
systematic approach used in this study:

1. Problem Formulation: The first critical step in this research was to develop a clear
and straightforward issue description for optimising load balancing in fog computing
systems. A thorough study of the related work helped in identifying the issues
that fog computing face as well as potential areas for development. Following
that, outlining the objectives and scope of the study was very important, learning
about the Bacterial Colony Optimization algorithm and the primary performance
indicators used to evaluate the efficiency of load balancing algorithms. With a solid
foundation for the research by developing a well-structured problem formulation, it
helped to proceed with the succeeding stages in a focused and purposeful manner.

2. Data Collection: The next important step was to collect the necessary data for
this research. A publicly available dataset, Cloud-Fog computing dataset, was
selected as useful for this research and was so utilised. This dataset is available on
Kaggle, and the source paper for this dataset Nguyen et al. (2019) is licenced under
the Creative Commons Attribution 4.0 International (CC BY 4.0) licence, which
governs its use, allowing for the sharing and adaptation of datasets for any purpose
with proper citation. The dataset contains 13 nodes, containing 10 fog nodes and
3 cloud nodes. It consists of seven files, each of which corresponds to a different
amount of tasks, beginning with 40 and increasing in increments of 40 tasks until
it reaches 280 tasks.

3. Simulation Tool Used - iFogSim: In this research, the tests were performed by set-
ting up the simulation environment for the suggested load balancing methods in
fog computing. To address load balancing issues in the fog network and improve
service quality, numerous researchers have carried out experiments in the field of
fog computing. Many simulators made specifically for fog computing have been
developed to help with these investigations. A significant example is iFogSim, an
open-source application created to study and simulate scenarios including fog com-
puting, edge computing, and the Internet of Things Gaurav (2018) and Margariti
et al. (2020). In addition to resource allocation guidelines, communication methods,
and evaluation standards, iFogSim has a variety of functionalities. The simulation
toolkit iFogSim, which evolved from CloudSim for cloud computing, expands on its
capabilities by adding specialised models and modules for simulating fog computing
systems. This Java-based simulator expertly mimics a wide range of systems and
applications, including smart home automation, video streaming, and natural lan-
guage processing. On GitHub, the iFogSim project is openly accessible and provides
access to its source code, documentation, and example programs. The project has
received a lot of attention and currently has 44 forks and 80 stars.

The open-source simulator iFogSim provides a valuable platform for modelling and
testing resource management methods in IoT, edge, and fog computing settings.
Researchers can experiment with different settings and policies to optimise resource

7



utilisation and application performance. The Application Module, Device Module,
Communication Module, and Resource Module are the four major components of
iFogSim.

The Application Module specifies the workflow and processing requirements for each
job in the application. The Device Module represents physical devices like sensors,
actuators, and fog nodes. The Communication Module defines the communication
architecture and network topology. Meanwhile, the Resource Module simulates
hardware resources such as the CPU, RAM, and storage. These modules together
simulate the behaviour of a fog computing environment.To enable successful load
balancing in the fog computing environment, iFogSim dynamically adapts the load
balancing algorithm during the simulation based on the current workload and fog
node performance. This adaptive technique ensures that the application performs
optimally.

Given the comprehensive functionalities of iFogSim and the financial constraints
associated with establishing a real fog computing infrastructure, using iFogSim as
a simulation tool becomes a smart alternative for studying fog computing load
balancing solutions. The key components of iFogSim as shown in Figure 2 are:

Figure 2: Fundamental classes of iFogSim Gupta et al. (2017)

• Fog Device: - The capabilities of these nodes, which include compute, storage,
memory, and downlink and uplink bandwidths, are comparable to those of
data centre servers.

• Sensors: - Similar to a sensor used in the Internet of Things (IoT), there is an
entity of the sensor class in the simulator. It essentially detects the sensors’
output properties as well as the tuples arrival rate.

• Actuator: - This class is mostly used to carry out the operations depending
on the arrival of tuples from modules that are present in the application.

• Tuple: - In addition to acting as a layer for data streams in the architecture,
this serves as the basic method of communication among the fog.

8



• Application: - This information determines how the application modules will
be scheduled or placed on the fog device.

4. Algorithm Implementation and Integration To improve load balancing in fog com-
puting, implementation of the BCO method into the process of assigning jobs to fog
nodes is done. The adaptability and capability of the BCO algorithm to manage
dynamic and unpredictable settings make it well-suited for fog computing environ-
ments.

The load balancing method comprises evaluating the available resources and net-
work conditions of fog nodes and assigning jobs to them accordingly. Using the
BCO technique, we can optimally distribute workload among fog nodes, enhancing
resource utilisation and overall system efficiency. The flow diagram Niu and Wang
(2012) of BCO algorithm is shown in Figure 3.

Figure 3: The flow diagram of Bacterial Colony Optimization algorithm Niu and Wang
(2012)

The steps for implementing the Bacterial Colony Optimization algorithm for load
balancing are discussed as follows:

9



• Step 1: Initialization: Set up the fog nodes, tasks, and associated parameters.
Set the number of iterations, population size, and other algorithm-specific
parameters.

• Step 2: Generate Initial Population: Initialize the population of bacterial
colonies, with each colony representing a potential solution. Assign tasks to
fog nodes at random or according to the load balancing strategy.

• Step 3: Chemotaxis and Communication: Chemotaxis and communication is
used to simulate bacterial migration towards a nutrition gradient. Each bac-
terium’s position in the search space is updated based on its current position
and the concentration of the nutrient (fitness value).

• Step 4: Reproduction: Based on their fitness levels, select parent bacteria for
reproduction. To develop offspring bacteria, use reproduction operators such
as mutation. - Replace less fit bacteria in the population with their offspring.

• Step 5: Migration: Migration allows moving of bacterial colonies around the
search space. This deliberate movement promotes diverse investigation, en-
abling the algorithm to effectively investigate new areas and maybe identify
better solutions.

• Step 6: Elimination: Eliminate some bacteria based on the elimination cri-
terion to create space for new bacteria.

• Step 7: Termination: Repeat steps 3-6 for a specified number of iterations
or until a termination condition is met. Terminate the algorithm when the
maximum number of iterations is reached, or a satisfactory solution is found.

• Step 8: Select Best Solution: After the termination condition is met, select
the best solution (bacterial colony) based on the fitness value.

5. Performance Metrics The BCO algorithm’s performance is measured using the fol-
lowing metrics:

• Latency: The amount of time it takes to process a cloudlet from submission
to completion.

• Energy Consumption: The overall amount of energy utilised by fog devices.

• Makespan: The overall time required to execute all cloudlets on their allocated
fog devices.

• Cost: The total cost of running cloudlets on fog devices, taking into account
execution time and device utilisation cost.

6. Comparison with Existing Algorithms In this research, the load balancing per-
formance metrics result obtained from Bacterial Colony Optimization algorithm is
compared with the below two load balancing algorithms:

• Round-Robin algorithm: Round Robin is a simple load balancing mechanism
that assigns work to fog nodes in a Fist Come First Serve basis. It ensures
that each node receives an equal proportion of tasks, supporting a relatively
fair workload distribution. However, RR lacks adaptation to dynamic work-
load variations and node heterogeneity, resulting in suboptimal performance
in terms of latency, energy consumption, and makespan.

10



• Throttled Load Balancing algorithm: Throttled Load Balancing (TLB) is a
load balancing method used in fog computing settings to optimise energy con-
sumption. It focuses on dynamically altering fog node processing speeds ac-
cording on workload and energy availability. TLB tries to create a balance
between energy efficiency and job completion time by reducing node opera-
tional frequency.

4 Design Specification

4.1 Techniques

The techniques used in this research includes the following:

• BCO Algorithm Customization: The BCO algorithm was adapted to the load bal-
ancing requirements of fog computing environments. The chemotaxis, reproduc-
tion, migration, and communication components have been fine-tuned to optimise
resource management and reduce response time.

• Integration with iFogSim: The BCO algorithm has been integrated into iFogSim,
an open-source fog computing simulator, to allow for realistic fog computing en-
vironment simulations. iFogSim provides the infrastructure for fog nodes, cloud
nodes, and cloudlets (tasks).

• Performance Metrics Selection: The research identifies the relevant performance
metrics, such as response time, job completion rate, resource utilisation, and energy
consumption, to evaluate the efficiency of the BCO-based load balancing approach.

• Simulation Requirements: In order to run simulations effectively, the dataset cita-
tion of fog nodes with certain properties, cloud nodes, and cloudlets representing
tasks is used. The dataset is produced using actual fog computing conditions with
10 fog nodes.

4.2 Architecture Configuration

The architecture configuration consists of specifying the fog computing environment, fog
nodes, cloud nodes, and their features. The following elements will be considered:

• Fog Nodes: Several fog nodes with varied computational capacity, memory, and
bandwidth have been modelled. The properties of these fog nodes has been de-
termined from a realistic dataset reflecting physical fog computing resources.

• Cloud Nodes: Cloud nodes will represent centralised cloud resources. These nodes
have higher computing capacity and bandwidth than fog nodes but will be limited
in quantity to encourage fog-based processing.

• Fog-Cloud Connectivity: Communication linkages between fog nodes and cloud
nodes are constructed to simulate communication in a fog computing architecture.

• Cloudlets (Tasks): Using real-world fog computing workloads, cloudlets represent-
ing tasks are formed. The computing requirements and processing times for these
cloudlets differ.

11



4.3 Simulation Configuration

The simulation configuration consists of setting up the simulation environment and set-
tings to test the BCO-based load balancing strategy. The BCO method is integrated into
iFogSim, an open-source fog computing simulator. iFogSim will provide the infrastructure
required for simulating fog nodes, cloud nodes, and cloudlets in a realistic manner.

Parameter Specification
System architecture x86
Operating system Linux
Virtual Machine Xen
Cost Per Storage 0.001

Table 1: System Specifications

4.4 Bacterial Colony Optimization

The BCO algorithm is implemented in this study to optimise load balancing in fog com-
puting. BCO is inspired by fundamental bacterial life cycle behaviours such as chemo-
taxis, elimination, reproduction, migration, and communication. Chemotaxis allows bac-
teria to travel towards a gradient of nutrient concentrations, and it is coupled with com-
munication in BCO to produce a single model. To move and interact inside the optim-
isation process, the bacterial colonies undertake runs and tumbles. The BCO algorithm
is divided into five submodels: reproduction, elimination, migration, chemotaxis, and
communication. Each submodel has its own set of optimisation rules and processes.

Chemotaxis and communication are both incorporated into a single framework in
the BCO technique. An agent-environment-rule schema serves as the foundation for the
entire bacterial lifecycle model. The artificial bacterial lifecycle model within BCO is
made up of five different submodels: communication, migration, chemotaxis, elimination,
and reproduction. Each of these submodels has unique rules and processes designed for
optimisation.

Bacterial colonies move and communicate using runs and tumbles in the chemotaxis
and communication model of the BCO algorithm. The following equations can be used
to describe this behavior (1)(2):

PositionT = Positioni(T − 1) +Ri ∗ (RuInfo) ∗R∆i (1)

PositionT = Positioni(T − 1) +Ri ∗ (TumbInfo) ∗R∆i (2)

The elimination and reproduction model in BCO allocates an energy level to various
bacterial colonies based on their search capacities, helping in making decisions regard-
ing these processes. This energy level (Li) determines the elimination and reproduction
activities, which leads to the selection of subsequent actions as shown below :

12



if Li > Lgiven, and i ∈ healthy, then i ∈ Candidaterepr,

if Li < Lgiven, and i ∈ healthy, then i ∈ Candidateeli,

if i ∈ unhealthy, then i ∈ Candidateeli.

Another critical component of the BCO optimisation process is migration. It prevents
getting stuck in poor solutions by allowing a change in location within a specified range.
The migration process is dependent on precise parameters, and if those requirements are
met, bacteria migrate to new random locations inside the search space. BCO is capable
of dealing with dynamic and unpredictable settings, making it suited for load balancing
in fog computing. The migration is determined by a set of criteria, which, when satisfied,
causes it to move to a new, random location, it can be defined as :

Positioni(T ) = rand× (ub− lb) + lb (3)

Where rand is a random number between 0 and 1, and lb, ub are the position’s lower
and upper boundaries, respectively.

The versatility and capability of the BCO algorithm to handle dynamic settings make
it an attractive alternative for load balancing optimisation in fog computing. Aiming
to demonstrate the usefulness of the BCO-based technique in attaining load balancing
objectives in fog computing systems through empirical evaluation and comparison with
other algorithms.

During the research the influential factors were identified and after running simulation
tests, the below parameters were tuned for the optimization of load balancing process.

Parameter Value
Bacteria Population Size 100
BCO Iterations 100
Step size for movement 0.1
Replication rate 0.1

Table 2: BCO Parameters

5 Implementation

The implementation part of the research on load balancing in fog computing using the
Bacterial Colony Optimisation (BCO) method includes developing a simulation model to
evaluate the performance of the BCO algorithm in a fog computing environment. This
section details the final step of implementation, including the outputs produced, tools
used, and simulation model developed.

5.1 Development of a Simulation Model

The simulation model was created using the iFogSim simulator, an open-source tool
designed primarily for simulating fog computing, edge computing, and Internet of Things

13



(IoT) scenarios. iFogSim offers a versatile and adaptable framework for representing fog
computing infrastructures, devices, applications, and scheduling algorithms. The major
components of the model were fog nodes, cloud nodes, cloudlets, and the BCO-based load
balancing algorithm.

5.2 Outputs Produced

The simulation model generated a realistic fog computing system with many fog nodes and
cloud nodes interconnected via communication channels. MIPS, RAM, uplink bandwidth,
downlink bandwidth, hierarchy level, and cost factors were used to characterise the fog
nodes. Cloud nodes represented centralised cloud resources with increased computational
power.

Workload (Cloudlets): The model generated a collection of cloudlets (tasks) with
varied processing lengths, file sizes, memory requirements, and utilisation models. In
the fog computing environment, these cloudlets were employed to simulate processing
activities.

Load Balancing Algorithm Based on BCO: The BCO-based load balancing algorithm
was developed and included into the iFogSim simulator. The algorithm was modified to
optimise cloudlet allocation to fog nodes based on processing capacity, available resources,
and workload characteristics.

5.3 Tools and Languages Used

• iFogSim: The iFogSim simulator was used to create the simulation model and
evaluate the BCO-based load balancing algorithm. It provides the necessary func-
tionality for modelling fog computing environments, fog nodes, cloud nodes, and
cloudlets.

• Java Programming Language: The Java programming language was used to create
the simulation model and the BCO-based load balancing method. The object-
oriented characteristics and libraries of Java aided in the creation of a modular and
extendable simulation framework.

5.4 Final Stage of the Implementation Process

• Dataset Integration: The simulation model included a realistic dataset comprising
information about fog computing resources and features. This dataset was used to
configure fog node properties such as MIPS, RAM, bandwidth, and prices.

• Cloudlet Generation: Cloudlets were created using a distinct dataset including
real-world fog computing workloads. Each cloudlet was given its own set of charac-
teristics, such as processing length, file size, memory requirements, and utilisation
models.

• Customization of the BCO Algorithm: The BCO algorithm was modified and fine-
tuned to meet the special requirements of load balancing in the fog computing
environment. To improve the load balancing process, chemotaxis, reproduction,
migration, and communication parameters were optimised.

14



• Execution of the Simulation Model: The simulation model was run with several
experimentation situations to evaluate the performance of the BCO-based load bal-
ancing strategy. To evaluate the algorithm’s performance under various scenarios,
each scenario included variable fog node setups and workload conditions.

• Performance metrics collection: Relevant performance indicators such as latency,energy
consumption, makespan, and cost were collected throughout simulation runs. These
data revealed the algorithm’s efficiency and efficacy at load balancing in fog com-
puting.

The implementation phase of the project focused on creating a simulation model with
the iFogSim simulator and integrating the BCO-based load balancing algorithm. The
simulation model established a realistic fog computing environment, generated cloudlets,
and ran the BCO algorithm for load balancing. The results comprised a well-configured
fog computing environment, cloudlets simulating real-world tasks, and performance stat-
istics gathered during simulation runs. The Java programming language and iFogSim
were the primary tools used during the implementation phase. The customised BCO al-
gorithm and simulation model provided vital insights into the efficiency and effectiveness
of load balancing in fog computing settings.

6 Evaluation

This section provides a thorough evaluation of the load balancing algorithm in fog com-
puting. BCO algorithm has been implemented, and its performance metrics are compared
to those of other load balancing algorithms such as RR and TLB algorithm. The assess-
ment focuses on critical performance indicators such as latency, energy usage, makespan,
and cost. The experiments were carried out in a simulated fog computing environment,
which closely resembled a real-world condition.

6.1 Performance Metrics 1 : Latency

Latency is an important statistic in fog computing since it shows the time delay between
task submission and job completion. Lower latency means faster task processing and less
communication overhead. In terms of latency, BCO outperforms RR and TLB.A substan-
tial latency decrease of roughly 52.63% compared to RR and 41.94% compared to TLB
is attained by BCO with 5 fog nodes. Even with 10 nodes, BCO continues to outperform
RR and TLB by roughly 56.19% and 54.27%, respectively. As the number increases to
15 nodes, BCO shows its expertise in latency optimization by cutting latency by about
47.18% compared to TLB and 47.83% compared to RR. With 20 nodes, the pattern con-
tinues, with BCO achieving latency reductions of roughly 42.55% compared to RR and
45.45% compared to TLB. When compared to Round-Robin algorithm, BCO effectively
optimised task assignments based on colony behaviour, resulting in lower latency. TLB
achieved reduced latency than RR due to its fine-grained task distribution mechanism as
shown in Figure 4.

15



Figure 4: Latency obtained using BCO, Round-Robin and Throttled load balancing
algorithms

6.2 Performance Metrics 2 : Energy Consumption

Considering fog computing is dependent on resource-constrained devices, energy con-
sumption is a critical challenge. We assessed the total energy usage for executing the
cloudlets across all fog nodes in each method. TLB outperformed both BCO and RR in
terms of energy efficiency. TLB showed approximately 17.18% lower energy consumption
compared to BCO and 14.55% lower energy consumption compared to RR. TLB’s dy-
namic throttling method optimised resource utilisation and decreased idle times, resulting
in lower total energy usage, even with increasing number of nodes as shown in Figure 5.

Figure 5: Energy Consumption obtained using BCO, Round-Robin and Throttled load
balancing algorithms

16



6.3 Performance Metrics 3 : Makespan

Makespan is the entire amount of time required to execute all jobs in the workload. A
shorter makespan suggests better work allocation and a shorter overall execution time.
BCO outperformed RR and TLB with 5 nodes by a margin of 52.36% and 41.03%, re-
spectively. This pattern persisted as the number of nodes rose: BCO with 10 nodes
showed a 54.50% improvement over RR and a 42.35% improvement over TLB, a 39.30%
improvement over RR and a 36.65% improvement over TLB, and finally a 37.19% im-
provement over RR and a 20.51% improvement over TLB with 20 nodes. Among the
three methods, the BCO algorithm had the shortest makespan (as shown in Figure 6)
due to its intelligent and dynamic load distribution.

Figure 6: Makespan obtained using BCO, Round-Robin and Throttled load balancing
algorithms

6.4 Performance Metrics 4 : Cost

Cost is an essential consideration for both providers and customers of fog computing
services. It takes into account a number of elements, including resource utilisation, task
execution time, and communication costs. In comparison to RR and TLB, BCO demon-
strated lower load balancing costs. BCO showed cost reduction by 51.69% when compared
to RR and TLB with 5 nodes. With more nodes, BCO was able to outperform the other
algorithms, showing cost reductions of 43.90% compared to RR and 45.93% compared
to TLB with 10 nodes, 38.17% compared to RR with 15 nodes, and 40.72% compared
with TLB with 20 nodes. The BCO’s colony-based optimisation and TLB’s energy-
aware method significantly decreased the overall cost of fog computing and outperformed
Round-Robin algorithm in terms of cost as shown in Figure 7.

17



Figure 7: Cost obtained using BCO, Round-Robin and Throttled load balancing al-
gorithms

6.5 Discussion

The use of the BCO algorithm in comparison to RR and TLB algorithms in the field of fog
computing load balancing results in significant performance gains, which are discussed.
The study included evaluating each algorithm’s scalability as the number of fog nodes
increased.

The unique capability of BCO to mimic the behavior of bacterial colonies could be the
reason for the constantly decreased latency it has been able to accomplish. BCO reduces
execution latency by dynamically altering task assignments using colony-inspired meth-
ods. This intelligent allocation directly lowers communication overhead and increases
overall task processing speed due to its fine-grained job distribution.

The ability of BCO in reducing energy consumption results from a complex balance
between exploring and using the solution space. The algorithm’s approaches for replic-
ation and removal, along with its dynamic adaptation, let it optimize resource usage.
The approach is based with the guiding principles of BCO, which aim to imitate the
adaptable and effective characteristics of bacterial colonies. However, when compared
with TLB and RR, BCO showed more energy consumption. The complex load balancing
method used by BCO, which relies on chemotaxis, can result in frequent task migrations
and more energy consumption. Better energy efficiency is observed in TLB due to its
fine-grained throttling mechanism and the straightforward job allocation in RR. Further
parameter adjustment could reduce energy consumption for BCO while maintaining a
balance between energy efficiency and other performance measures.

The reduction of the makespan demonstrated by BCO highlights its proficiency in
balancing and allocating workloads. BCO intelligently distributes jobs to fog nodes via
colony-based optimization, reducing the amount of time needed for task execution. This
supports a theory that BCO’s replication of bacterial movement and communication
patterns results in efficient load distribution and, eventually, shorter makespan.

BCO algorithms shows cost-effectiveness results, outperforming RR and TLB sub-
stantially. This accomplishment results from the innate capacity of BCO to optimize
resource consumption and task distribution, hence reducing operating costs. The as-

18



sumption that these enhancements result from biological analogies of BCO fits well with
the optimization variables that are based on concepts of effective foraging and group
behavior.

BCO improved performance in latency reduction, makespan reduction, and cost-
effectiveness can be linked to its biologically-inspired optimization parameters. The al-
gorithm’s flexibility, resource optimization, and dynamic task distribution processes are
consistent with the theories that support its biological roots. The overall performance im-
provement seen in BCO compared to RR and TLB highlights its potential as a promising
load balancing approach in the fog computing environment. However, while choosing a
load balancing method, individual use cases and needs must be considered, as the effect-
iveness of each solution varies based on workload characteristics and fog infrastructure
design.

7 Conclusion and Future Work

In this study, we used the Bacterial Colony Optimisation (BCO) technique to optimise
load balancing in fog computing settings and it shows promising results. The goal was
to improve overall system performance by efficiently allocating cloudlets to fog nodes
based on their processing capacities, available resources, and workload characteristics. We
learned a lot about the usefulness of the BCO method for load balancing by implementing
and evaluating a simulation model in the iFogSim framework. By constantly changing
the allocation of cloudlets to fog nodes, the BCO algorithm successfully optimised the
overall performance of the fog computing environment.

The findings of this research reveal that BCO provides significant benefits in terms of
latency reduction, demonstrating its capacity to speed up job processing and reduce
communication overhead. Additionally, BCO demonstrates outstanding performance
in lowering makespan, demonstrating effective workload distribution and job execution.
TLB’s energy-efficient design outperforms BCO in terms of energy consumption, showing
the complexity-energy trade-off.

To achieve effective load balancing in a dynamic and resource-constrained fog com-
puting environment, many performance measures must be carefully balanced. Although
BCO provides impressive gains in latency, makespan, and cost-effectiveness, future study
should concentrate on optimizing its energy use while utilizing its distinctive features.

7.1 Future Work

The BCO-based load balancing method can be evaluated in real-world fog computing
systems to validate its effectiveness and scalability. Implementing the algorithm in a real-
world fog infrastructure and comparing its performance to other load balancing algorithms
would yield practical insights. Applying mathematical model could also be another good
direction for future work, it could offer real-time adaptability and predictive insights.

Exploring the possibilities of integrating the BCO algorithm with other load balan-
cing methodologies, such as genetic algorithms or ant colony optimisation, can lead to
the development of hybrid algorithms that capitalise on the strengths of each technique.
With the help of this research, we have gained a deeper understanding of load balan-
cing optimization and created an opportunity for future investigation into algorithmic
improvements and useful implementations in actual fog computing scenarios.

19



References

Abbasi, S. H., Javaid, N., Ashraf, M. H., Mehmood, M., Naeem, M. and Rehman, M.
(2018). Load stabilizing in fog computing environment using load balancing algorithm,
Broadband and Wireless Computing, Communication and Applications.

Ahmad, N., Javaid, N., Mehmood, M., Hayat, M., Ullah, A. and Khan, H. A. (2019).
Fog-cloud based platform for utilization of resources using load balancing technique,
in L. Barolli, N. Kryvinska, T. Enokido and M. Takizawa (eds), Advances in Network-
Based Information Systems, Springer International Publishing, Cham, pp. 554–567.

Batra, S., Anand, D. and Singh, A. (2022). A brief overview of load balancing tech-
niques in fog computing environment, 2022 6th International Conference on Trends in
Electronics and Informatics (ICOEI), pp. 886–891.

Chakraborty, M. (2019). Fog computing vs. cloud computing, ArXiv abs/1904.04026.

Chandak, A. and Ray, N. K. (2019). A review of load balancing in fog computing, 2019
International Conference on Information Technology (ICIT), pp. 460–465.

Gaurav, K. (2018). ifogsim: An open source simulator for edge computing, fog computing
and iot, Retrieved May 16: 2019.

Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K. and Buyya, R. (2017). ifogsim: A toolkit for
modeling and simulation of resource management techniques in the internet of things,
edge and fog computing environments, Software: Practice and Experience 47(9): 1275–
1296.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509

Kashani, M. H., Ahmadzadeh, A. and Mahdipour, E. (2020). Load balancing mechanisms
in fog computing: A systematic review.

Kashyap, V. and V, A. K. (2022). Load balancing techniques for fog computing environ-
ment: Comparison, taxonomy, open issues, and challenges, Concurrency and Compu-
tation: Practice and Experience 34.

Kumar, V., Laghari, A., Karim, S., Shakir, M. S. and Brohi, A. A. (2019). Comparison
of fog computing & cloud computing, International Journal of Mathematical Sciences
and Computing .

Mahmud, R., Kotagiri, R. and Buyya, R. (2018). Fog Computing: A Taxonomy, Survey
and Future Directions, Springer Singapore, Singapore, pp. 103–130.

Margariti, S. V., Dimakopoulos, V. V. and Tsoumanis, G. (2020). Modeling and simula-
tion tools for fog computing—a comprehensive survey from a cost perspective, Future
Internet 12(5): 89.
URL: http://dx.doi.org/10.3390/fi12050089

Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J. and Polakos,
P. A. (2018). A comprehensive survey on fog computing: State-of-the-art and research
challenges, IEEE Communications Surveys Tutorials 20(1): 416–464.

20



Mukherjee, M., Shu, L. and Wang, D. (2018). Survey of fog computing: Fundamental,
network applications, and research challenges, IEEE Communications Surveys Tutori-
als 20(3): 1826–1857.

Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman, P. P., Gao, L., Xiang, Y. and
Ranjan, R. (2018). Fog computing: Survey of trends, architectures, requirements, and
research directions, IEEE Access 6: 47980–48009.

Nguyen, B. M., Thi Thanh Binh, H., The Anh, T. and Bao Son, D. (2019). Evolutionary
algorithms to optimize task scheduling problem for the iot based bag-of-tasks applica-
tion in cloud–fog computing environment, Applied Sciences 9(9).
URL: https://www.mdpi.com/2076-3417/9/9/1730

Niu, B. and Wang, H. (2012). Bacterial colony optimization, Discrete Dynamics in Nature
and Society 2012: 1–28.

Rani, S. (2022). Analytic vision on fog computing for effective load balancing in smart
grids, Transactions on Emerging Telecommunications Technologies 33(2): e3855.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3855

Rehman, S., Javaid, N., Rasheed, S., Hassan, K., Zafar, F. and Naeem, M. (2019).
Min-min scheduling algorithm for efficient resource distribution using cloud and fog in
smart buildings, in L. Barolli, F.-Y. Leu, T. Enokido and H.-C. Chen (eds), Advances
on Broadband and Wireless Computing, Communication and Applications, Springer
International Publishing, Cham.

Revathi, J., Eswaramurthy, V. P. and Padmavathi, P. (2019). Bacterial colony optimiza-
tion for data clustering, 2019 IEEE International Conference on Electrical, Computer
and Communication Technologies (ICECCT) pp. 1–4.

Singh, S. P., Kumar, R., Sharma, A. and Nayyar, A. (2020). Leveraging energy-efficient
load balancing algorithms in fog computing, Concurrency and Computation: Practice
and Experience 34.

Singh, S. P., Sharma, A. and Kumar, R. (2020). Design and exploration of load balancers
for fog computing using fuzzy logic, Simul. Model. Pract. Theory 101: 102017.

Xu, X., Liu, Q., Qi, L., Yuan, Y., Dou, W. and Liu, A. X. (2018). A heuristic virtual
machine scheduling method for load balancing in fog-cloud computing, 2018 IEEE
4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
International Conference on High Performance and Smart Computing, (HPSC) and
IEEE International Conference on Intelligent Data and Security (IDS) pp. 83–88.

21


	Introduction
	Background and Motivation
	Research Question

	Related Work
	Understanding Fog Computing, its architectures, scope, challenges and future work
	Load Balancing in Fog Computing and its challenges
	State-Of-the-Art and potential solutions

	Methodology
	Experimental Setup and Procedure

	Design Specification
	Techniques
	Architecture Configuration
	Simulation Configuration
	Bacterial Colony Optimization

	Implementation
	Development of a Simulation Model
	Outputs Produced
	Tools and Languages Used
	Final Stage of the Implementation Process

	Evaluation
	Performance Metrics 1 : Latency
	Performance Metrics 2 : Energy Consumption
	Performance Metrics 3 : Makespan
	Performance Metrics 4 : Cost
	Discussion

	Conclusion and Future Work
	Future Work


