

Configuration Manual

MSc Research Project Cloud Computing

Divesh Soneji Student ID: X21172749

School of Computing National College of Ireland

Supervisor: Prof. Yasantha Samarawickrama

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Divesh Soneji
Student ID:	X21172749
Programme:	Cloud Computing
Year:	2022-2023
Module:	MSc Research Project
Supervisor:	Prof. Yasantha Samarawickrama
Submission Due Date:	14/08/2023
Project Title:	Configuration Manual
Word Count:	400
Page Count:	6

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).□Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).□You must ensure that you retain a HARD COPY of the project, both for
or□

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Divesh Soneji X21172749

1 Introduction

Mentioned below are the steps to Configure the Notebook file on SageMaker

1.1 Requirement

- Data in the form of CSV
- AWS account
- SageMaker Access with Compute optimize instances.
- Boto 3 and python knowledge
- VScode (For future work)

2 Implementation

- 1. Login into AWS
- 2. Get access to SageMaker studo with appropriate permission

Figure 1: SageMaker Jumpstart Page

3. Create a new Notebook experiment.

٩	Amazon SageMaker Studio	File	Edit	View	Run	Kernel	Git	Tabs	S	ettings	Help		
	SageMaker resources	,	lew lew Lau	uncher		Ct	rl+Shif) t+L	2	Consol Data V	ie /rangler Fl	low ^I	(21172749
♦	Select the resource to view.		Open fr	om Path						Noteb Examp	ook le Notebo	ok	
0	Experiments and trials								\$_ 	Termin Text Fi	al le		
۲	EXPERIMENTS 0 rows selected 0/20 filters	0	llose Ta llose ar	ıb nd Shutd	own	Ctr	Alt l+Shift	+W t+Q	⇒ €) п	Markd Model	own File group		ithms
a,	Q. Search column name to start	s S	lose Al	l Tabs					em	Experie	nent ecasting v	with Deep L	earning →

Figure 2: Creating New Notebook

4. Set up the notebook environment and choose suitable kernel image for our experiment select PyTorch 2.0.0 CPU optimized image kernel

Set up notebook environment				
Set up environment for "Untitled.ipyn	6°.			
Image		Kernel		
Data Science	•	Python 3		
PyTorch 1.13 Python 3.9 CPU Optimized				
AWS Deep Learning Containe Have Info	e			
PyTorch 1.13 Python 3.9 GPU Optimized				
AWS Deep Learning Containe Here Info	e		Cancel	Salar
PyTorch 2.0.0 Python 3.10 CPU			Cancer	-
Optimized	12			

Figure 3: Choosing Kernel Instance

5. Select instance type ml.C5.24xLarge as the model we are experimenting on is complex we need compute optimized instance with large memory and vCPU

Select Instance							
Running notebook	Curren	t instanc	e type				
Researchx21172749- Ensemble.ipynb	96 vCF	96 vCPU + 192 GiB ml.c5.24xlarge					
If you change your instand packages will not be carrie	e, existing settings for the	is noteb	ook will t	e lost, and i	nstalled		
Instances 54 of 54				Fast	launch o	nly	
Instance Type	Instance Category Compute optimized	vCPU 30	GPU V	Memory	Fast Launch		
ml.c5.12xlarge	Compute optimized	48		96 GiB			
ml.c5.18xlarge	Compute optimized			144 GiB			
O ml.c5.24xlarge	Compute optimized	96		192 GiB			
🔵 ml.g4dn.xlarge	Accelerated computing			16 GiB	~		
🔵 ml.g4dn.2xlarge	Accelerated computing	8		32 GiB			
🔵 ml.g4dn.4xlarge	Accelerated computing	16		64 GiB			
🔵 ml.g4dn.8xlarge	Accelerated computing	32		128 GiB			
🔵 ml.g4dn.12xlarge	Accelerated computing	48		192 GiB			
🚔 ani adda 16ularaa							
			Cancel	Save	and conti	nue	

Figure 4: Choosing Cluster Instance

6. Upload the mentioned data into the notebook by clicking on the highlighted button

Figure 5: Uploading dataset

7. To work on AWS notebook, we need boto 3. This package gives us access to python ${\rm SDK}$

Figure 6: Importing Boto3

8. Now we can import the necessary libraries for implementation of our experiment

9. Once the experiment prediction is complete, we can export the model as a pkl file which can then be imported into an API framework. Here we are importing joblib library that will dump the two objects and create .plk file with name as mentioned in the fig 8.

Figure 8: Dumping plk files

10. The files will be created in the root folder where the data is imported

Figure 9: .plk files in the root folder

3 Future work Implementation

1. Create flask API using python by adding the package through python package manger also known as pip using Vs Code terminal

pip install Flask

Figure 10: Installing flask using PIP

2. Then using the terminal create a virtual environment and activate it

python -m venv .venv

Figure 11: Creating Virtual Environment

3. Inside the environment create a class file

import joblib import numpy as np
class StackingModelAPI:
<pre>definit(self, model_path, scaler_path):</pre>
<pre>self.model = joblib.load(model_path) self.scaler = joblib.load(scaler_path)</pre>
<pre>def preprocess(self, input_data):</pre>
data_array = np.array(input_data) reshaped_data = data_array.reshape(1, -1)
<pre>scaled_data = self.scaler.transform(reshaped_data)</pre>
return scaled_data
<pre>def predict(self, input_data):</pre>
<pre>processed_data = self.preprocess(input_data)</pre>
<pre>predictions = self.model.predict(processed_data)</pre>
return predictions.tolist()

Figure 12: Creating class file with name StackingModelAPI

4. Now create main.py and create the endpoint in the following file

Figure 13: Creating an endpoint

5. To debug VS code will auto-generate a launch.json file which contain few debugging instructions

Figure 14: Auto-generated launch.json

6. We can use postman to test the API that will return a prediction

POST	http://1270.0.1:5000/predict
Params	Authorization Headers (B) Body • Pre-request Script Tests Settings
@ none	form-data
1	
2	····*features*:-[
3	
- 4	0.03860425160188263,
5	-1.1482834894478497,
6	0.7233688452914764,
7	
8	
9	
10	6.6388071924516712,
11	-0.5423191900164668,
12	0.0,
13	0.03000420106188203,
14	3-04
10	014.9
17	1301.0,
10	1. KASSA774A44011377
10	1.000/00/0000/0000/
20	1.20110284443313
21	1.791279478708134
22	813.0.
23	736.0.
24	455.0.
25	-0.34196154508889254,
26	-8.7166648455347371,
27	6.07865309445841371,
28	1.0040475061473032,
29	0.07707764613209859,
30	373.0,
31	829.0,
32	0.6522569383668378,
33	3.0,
34	
35	

Figure 15: Postman for calling API