~

""—-
\ National
College

Ireland

Serverless Auto-scaling mechanism using Re-
inforcement learning

MSc Research Project
Cloud Computing

Vikrant Sonawane
Student 1D: 21210403

School of Computing
National College of Ireland

Supervisor: Rashid Mijumbi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Vikrant Sonawane
Student ID: 21210403
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Rashid Mijumbi
Submission Due Date: 14/08/2023
Project Title: Serverless Auto-scaling mechanism using Reinforcement learn-
ing
Word Count: 23445
Page Count: [19]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Serverless Auto-scaling mechanism using
Reinforcement learning

Vikrant Sonawane
21210403

Abstract

Serverless computing represents a paradigm of cloud computing that caters to
the dynamic needs of users by providing computing resources on an as-needed
basis, with charges being levied based on the actual usage of these resources. Infra-
structure management is handled by cloud providers, thereby enabling developers
to concentrate on business logic development. However, scalability management
necessitates the optimization of resource provisioning based on workload, which
can prove to be a daunting task and may impose administrative overhead. In or-
der to overcome the challenges that arise when managing scalability for serverless
applications, this paper delves into the use of Reinforcement Learning (RL) tech-
niques for autoscaling mechanisms. To manage dynamic workloads while ensuring
Quality of autonomous Service (QoS) guarantees and optimizing resource utiliza-
tion, RL environments and agents are employed, utilizing Q-learning algorithms.
Nonetheless, Q-learning algorithms are not without their constraints, such as the
overestimation of action values and delays in training and action enforcement. To
surmount these limitations, this research proposes the use of Double Q-learning
as an alternative solution. The research is driven by a dual motivation. Firstly,
it aims to assess the effectiveness of the Double Q-learning algorithm and invest-
igate the feasibility of reducing enforcement time. Secondly, it aims to evaluate
the performance of the developed agents in dealing with new workloads comprising
multiple serverless applications and cloud services. The proposed mechanisms un-
dergo evaluation in both real and simulated environments, leveraging the Knative
open-source serverless platform. Their efficacy in efficiently managing scalability
for serverless applications is subsequently validated.

1 Introduction

Serverless computing platforms assume responsibility for the majority of system admin-
istration tasks that are required for deploying workloads on the cloud. This results in
numerous advantages such as enhanced resource utilization, potential cost savings, and
simplified application development. Despite the fact that serverless functions exhibit
faster startup and scaling when compared to traditional virtual machines, their perform-
ance metrics can still demonstrate variability, which may be unsuitable for customer-
facing products.Eismann et al.| (2021)

Current offerings in serverless computing exhibit a dearth of workload awareness, as
they apply uniform policies to all functions, leading to underutilization of opportunities

for cost optimization, energy conservation, and performance enhancement. The estab-
lishment of an analytical model for performance evaluation could facilitate rapid capacity
planning and system analysis, thereby obviating the need for costly experiments, and con-
ferring advantages upon both application developers and serverless operators/Jonas et al.
(2019) Hence, the primary objective is to scrutinize the efficiency of serverless computing
platforms and discern methodologies to augment their efficiency.

The implementation of precise performance modeling for serverless computing plat-
forms can contribute significantly to the preservation of satisfactory levels of quality of
service, performance metrics, and workload costs. Moreover, it can offer valuable as-
sistance to providers in optimizing their management strategies for different workloads,
ultimately leading to a reduction in infrastructure and energy costs. The Cloud Native
Computing Foundation characterizes serverless computing as a contemporary approach
to cloud-native computing that prioritizes the development of business logic, its encap-
sulation in containers, and strict adherence to microservices-based software development
principles.Eismann et al.| (2021) The serverless platform created by a cloud provider un-
dertakes the management of servers, encompassing activities such as provisioning and
scaling. This is a noteworthy facet of the cloud provider’s services.

One of the primary attributes of serverless computing is its ability to dynamically
scale with minimal intervention from developers. The serverless framework efficiently
makes real-time decisions on horizontal scaling efforts based on the varying workload of
different components within the application,Pimpley et al.| (2021) This methodology is
notably advantageous in dealing with sporadic workloads, and can similarly be imple-
mented in diverse application contexts. This approach is particularly advantageous for
handling irregular workloads and can be applied in various application contexts as well.
Nevertheless, these strategies do entail an administrative burden on the cloud provider,
given that appropriate configuration of the serverless platform remains a requisite.

Cloud providers face a set of challenges in effectively managing dynamic and bursty
workloads.Zafeiropoulos et al.| (2022)) Manual approaches to scaling management can lead
to administrative burdens, resource inefficiencies, and breaches of resource restrictions.
To govern fluctuating and abrupt workloads effectively, it is imperative to have agility
and automation. The capacity to scale resources on an as-needed basis, without ne-
cessitating advanced application-level expertise, is indispensable. Swift reaction times,
encompassing the deployment of new instances and the prompt determination of whether
to provision or de-provision instances, assume utmost significance in this context.

Identifying the optimal conditions of equilibrium that stimulate elasticity actions
presents an additional challenge. The objective of this equilibrium is twofold: firstly,
to decrease the number of Service Level Agreement (SLA) violations between the cloud
provider and the application provider and secondly, to optimize the utilization of com-
puting resources in order to minimize deployment and operation costs of the serverless
application. Striking the appropriate balance between these two objectives is a funda-
mental challenge in the management of serverless applications in a manner that is both
cost-effective and compliant with SLAs|Lin and Khazaei| (2021a)) The goals of minimizing
SLA violations and optimizing resource usage can at times be contradictory. Therefore,
it is essential to strike a balance between the two objectives to fully realize the benefits

of adopting the serverless computing paradigm over other methods. Efficiently managing
this trade-off can result in enhanced performance, reduced costs, and improved effective-
ness in utilizing serverless computing resources.

Reinforcement Learning (RL) has the ability to autonomously solve decision-making
problems in complex and ambiguous environments.Gari et al. (2020) The use of Rein-
forcement Learning (RL) is viewed as a promising technique to manage autoscaling in
cloud environments, in contrast to conventional rule-based methodologies that are less
dynamic and rely on the evaluation of time-series data. RL provides adaptive scaling
policies that ensure Quality of Service (QoS) satisfaction, even when confronted with
various performance-related issues. An advantage of RL is that it obviates the need for
human intervention, as policy learning is accomplished through interaction with the en-
vironment.Kardani-Moghaddam et al| (2021) This facilitates the ability to be dynamic
and adaptive, as the process of learning is ongoing and the policies generated have the
capability to be modified in response to alterations that arise in the cloud environment.

Double Q-learning is a widely adopted approach in the field of reinforcement learning,
which is often utilized to facilitate decision making in a complex environment that in-
volves uncertain rewards. The fundamental principle that underpins Double Q-learning
is to overcome the potential problem of action value overestimation, which is a com-
mon challenge encountered in standard Q-learning. van Hasselt et al. (2015) Within the
Q-learning algorithm, the agent derives the value of each action through a procedural ap-
proach which involves assessing the maximum Q-value that corresponds to the next state.
Nonetheless, this approach may result in overconfident approximations, whereby the agent
may opt for actions that possess higher estimated Q-values, regardless of whether they
are the most optimal actions to undertake.

Double Q-learning is a strategy that resolves this issue through the maintenance of
two distinct sets of QQ-values, colloquially referred to as the ”online” and ”target” Q-
values. The former Q-value set is utilized by the agent to determine its actions, while
the latter is employed to appraise the efficacy of these actions,van Hasselt et al.| (2015)
The avoidance of overestimation of action values and the consequent improvement in
decision-making accuracy are key benefits of the approach adopted by the agent. In
the Double Q-learning algorithm, the learning process involves alternating between two
distinct steps, namely, action selection based on online Q-values, and value estimation
based on target Q-values. The incorporation of this two-step approach is particularly ad-
vantageous in minimizing the overestimation of action values, resulting in more effective
learning and decision-making by the RL agent.

The principal contribution of this study pertains to the establishment of a modeling
framework designed for RL environments, which effectively employs a Double Q-learning
algorithm to oversee the administration of autoscaling mechanisms in the context of
serverless computing platforms. This achievement holds considerable significance, given
the paucity of extant research works that are explicitly geared towards addressing the
issue of autoscaling in serverless computing platforms.

2 Related Work

2.1 Serverless computing

Serverless computing, as previously mentioned, constitutes a cloud computing paradigm
in which software developers can author and publish code without needing to oversee
the foundational infrastructure. Within a serverless architecture, the cloud provider as-
sumes responsibility for automatically allocating and overseeing the resources necessary
to execute the code and assesses fees predicated upon the actual usage, usually quantified
by the number of function invocations or the duration of execution. |Jonas et al.| (2019)
This feature enables software developers to concentrate exclusively on software develop-
ment and application construction without being concerned about the management of
infrastructure.

Serverless computing offers a plethora of advantages, encompassing expedited develop-
ment cycles, curtailed operational overhead, and financial savings predicated on pay-per
use pricing. This methodology is especially suitable for event-triggered, stateless applic-
ations with fluctuating workloads and indeterminate resource requisites. Nevertheless,
it also entails certain drawbacks, including the possibility of vendor lock-in, restricted
customization alternatives, and deliberations regarding data privacy and security.

2.2 Autoscaling in Serverless computing

Serverless computing platforms effectively manage a vast majority of the system admin-
istration tasks necessary for deploying workloads on the cloud. Such platforms offer
users an array of benefits that include optimized system administration operations, en-
hanced resource utilization, potential cost reductions, heightened energy efficiency, and
simplified application development.Mahmoudi and Khazaei| (2022) Although cloud func-
tions have rapid deployment and scalability capabilities compared to conventional VM-
based instances, they still exhibit unpredictability in their essential performance metrics,
which may be unsatisfactory for products intended for customer interaction. A serverless
strategy is often an apt alternative for ephemeral and unencumbered applications that
are disseminated in character and can manage asynchronous workloads that are divisible
into autonomous assignments that can be executed in parallel. CNCEF| (2023). Serverless
applications are frequently utilized for tasks with a short duration, low data volume, and
bursty workloads. Moreover, they are commonly employed for crucial functions that ne-
cessitate low latency and high-volume processing. Analysis of 89 serverless applications
at Pujol Roig et al.| (2020) reveals that 84% of these applications serve bursty workloads,
82% consist of five functions or fewer, and 93% consists of 10 functions or fewer [Eismann
et al.| (2021)).

Developing precise performance models for serverless computing platforms is crucial
in guaranteeing that the quality of service, performance metrics, and workload costs are
maintained within acceptable limits. Furthermore, it can be advantageous for providers
as it allows them to fine-tune their management strategies for each workload, which may
result in lower infrastructure and energy expenses.Lin and Khazaei (2021b) The per-
formance model employed to address performance-related issues in serverless computing
platforms ought to be both controllable and comprehensive, inclusive of a diverse range
of system parameters. As far as our understanding extends, no such performance model
has yet been presented for contemporary serverless computing platforms/Mahmoudi and

4

Khazaei (2022))

The utilization of various techniques in serverless computing, including per-request
scaling, concurrency-based scaling, and metrics-driven scaling, has been observed to fa-
cilitate the handling of scaling operations of functions based on diverse criteria. The
scale per request pattern responds to the number of incoming requests, but may en-
counter challenges related to the cold start of functions and the absence of queuing of
new requests. Concurrency value scaling, on the other hand, enables the processing of
multiple requests concurrently, but has a predefined upper limit. Metrics-based scaling,
which aims to ensure the preservation of key performance metrics, such as CPU usage,
memory usage, throughput, or latency, within a predetermined range, has also been
designed.Zafeiropoulos et al. (2022) While metrics-based scaling may not be the most
optimal selection for workloads that exhibit sporadic bursts in terms of performance, it
does consider various performance, resource, and cost indicators. This feature renders it
a compelling option for cloud providers to proficiently manage scaling actions.

There exist several proposed mechanisms for achieving autoscaling in the context of
serverless computing. These mechanisms can be categorized into two main approaches,
namely static and dynamic approaches. In the case of static approaches, scaling rules
are defined based on thresholds and time-series analysis. However, updating such rules
requires manual intervention, which can be quite cumbersome for microservices-based
applications with numerous functions. In contrast, dynamic approaches rely on machine
learning techniques to improve the automation of the scaling process. This method exhib-
its promise in enhancing scalability and reducing administrative overhead|Zateiropoulos
et al.| (2022) In|Zafeiropoulos et al.| (2022);|Schuler et al.| (2020) these problems are tackled
using RL techniques. The approach presented in [Zafeiropoulos et al. (2022)) regarding
the autoscaling of functions in serverless computing platforms involves implementation
through the use of reinforcement learning (RL) agents, which employ decision-making
processes.

2.3 Auto-scaling using Reinforcement Learning

The topic of scaling and scheduling in cloud autoscaling has been thoroughly explored in
the literature of |Gari et al. (2020). This area is characterized by stochastic environments
and involves adjusting the number of virtual machines (VMs) in the virtual infrastruc-
ture, as well as assigning tasks to specific VMs. As a result of the inherent uncertainty
in these subproblems, researchers have proposed modeling the autoscaling problem as
a Markov Decision Process (MDP) and utilizing various Reinforcement Learning (RL)
techniques to develop effective scaling or scheduling policies. These policies enable an
autoscaler to dynamically determine the most suitable action at any given time to op-
timize a long-term objective.

The comprehensive exploration of auto-scaling through the utilization of Reinforce-
ment Learning on platforms without server-less services is also extensively examined.
Xiao and Hul (2022)) has developed an automated scaling framework known as ” Dscaler”.
Experimental evaluations of Dscaler’s effectiveness in scaling microservices in Kubernetes
have revealed that our proposed approach results in a significant reduction of resource
usage by 19.90% and 10.80% in two distinct workloads. Moreover, the proposed method

also effectively mitigates SLA violations by 8.56% and 12.75% in the respective work-
loads, when compared to the Horizontal Pod Autoscaler (HPA). Santos et al.| (2023),
on the other hand, use Advantage Actor-Critic (A2C) and Recurrent The implementa-
tion of Proximal Policy Optimization (RPPO) has been demonstrated in literature as a
means to inform autoscaling decisions. Empirical evidence indicates that Reinforcement
Learning frameworks exceed threshold-based HPA mechanisms in terms of performance.
Consequently, RL presents the potential to enhance the quality of auto-scaling decisions.

Reinforcement Learning (RL) constitutes a distinct subset of Artificial Intelligence
(AI) algorithms that pivot around the fundamental concepts of environment, agents, and
rewards. (Gari et al. (2020). The agent engages in interactions with its surrounding en-
vironment by executing actions that have the potential to affect both its own state and
that of the environment. The ultimate objective is to accomplish a specific goal. As a
result of each action, the agent is subject to either rewards or penalties, contingent upon
the extent to which the action aligns with the goal. By amassing information on a series
of actions, the agent acquires knowledge that it uses to refine policies with the aim of
maximizing the cumulative reward over time.

Reinforcement Learning (RL) has demonstrated impressive competencies in address-
ing decision-making challenges in intricate and indeterminate environments. Specifically,
in the domain of cloud autoscaling management, RL is deemed a promising approach
when compared to conventional static rule-based techniques that rely on the analysis of
time-series data. RL provides the adaptability to modify scaling policies to ensure the
attainment of Quality of Service (QoS) satisfaction in the presence of diverse performance-
related predicaments.Kardani-Moghaddam et al. (2021) One of the advantages of Rein-
forcement Learning (RL) is its independence from human intervention in policy learning.
This is due to the continuous learning process and the capability to adjust policies in
accordance with changes in the cloud environment.Kardani-Moghaddam et al. (2021));
Gari et al.| (2020) The dynamic and adaptive nature of Reinforcement Learning renders
it highly suitable for effectively managing autoscaling within the cloud environment.

The focus of the study discussed in [Zafeiropoulos et al.| (2022) is on the development
and execution of unobstructed and compatible environments for reinforcement learning
(RL). This is aimed at promoting the horizontal expansion of serverless applications. The
utilization of these settings is feasible in both artificial and factual serverless computing
environments. The investigation executed a series of RL settings and agents that were
constructed on the basis of Q-learning, DynaQ+, and Deep Q-learning algorithms. While
Q-learning algorithms were implemented on genuine environments, the others were ap-
plied to a combination of authentic and simulated environments. These RL agents were
purposefully designed to steer autoscaling mechanisms that can independently operate
dynamic workloads, ensuring Quality of Service (QoS) guarantees, while concurrently
optimizing resource efficiency.

Nonetheless, certain deficiencies have been ascertained in the execution. The exe-
cution of serverless workloads is restricted to microservices’” HT'TP payloads and CPU-
intensive applications. This may culminate in substandard performance owing to overfit-
ting, suboptimal policies, and the arduousness of handling infrequent occurrences. Fur-
thermore, it is worth noting that the Q-learning algorithm, as outlined in the publication

by |Zafeiropoulos et al. (2022)), can be further optimized by incorporating the Double
Q-learning approach mentioned previously.

2.4 Proposal to overcome limitations

The work of (Gari et al.| (2020) presents a taxonomy of three distinct applications, which
are workflows, independent tasks, and cloud services. Through the development of new
workloads with varying workloads, there is potential to improve the modeled data and
actions. These applications, specifically the utilization of multiple serverless functions
interconnected in a graph or linked to other cloud services, as well as internal queues,
can be effectively employed to train the environments. Such workloads can offer a diverse
range of data, which is essential for enhancing the algorithm’s performance.

The article by Hasselt| (2010) introduces the innovative concept of Dual Q-learning,
which utilizes a dual estimator approach to accurately estimate the value of the next
state. Significantly, this represents the initial off-policy value-based reinforcement learn-
ing algorithm that effectively mitigates the positive bias that occurs in estimating action
values in stochastic environments. Upon analysis, it was discovered that while Double
Q-learning may occasionally underestimate action values, it does not suffer from the over-
estimation bias observed in Q-learning. The experimental results of the roulette game
and maze problem demonstrate that Double Q-learning exhibits swifter convergence to
good performance levels than Q-learning.

The study conducted by Google, as presented in van Hasselt et al. (2015]), posits
that the Q-learning algorithm, which is widely used, tends to overestimate action values
in certain situations. Nonetheless, it remained ambiguous whether such overestimations
were prevalent, had a negative impact on performance, and were avoidable. This research
endeavors to respond to these inquiries, and validates the occurrence of overestimations
in practical settings. Specifically, the DQN algorithm, which merges Q-learning with a
deep neural network, was discovered to have significant overestimations in some Atari
2600 games. The article also proposes a modification to the DQN algorithm, founded on
the Double Q-learning concept, initially developed for tabular settings, to handle large-
scale function approximation. The proposed adaptation mitigates overestimation and
enhances performance in various games.

The work by the authors in Kim et al.| (2022)) features an enhanced rendition of DQN
(Deep Q Network) which utilizes the Markov Decision Process (MDP) algorithm, referred
to as Double DQN. This approach effectively addresses the overestimation challenges
encountered in the original DQN algorithm and presents superior performance.

2.5 Reinforcement Learning Environment

The environments are comprised of two distinct components. The initial component is the
monitoring system, which provides real-time information on resource utilization, service
limits, deployment status, number of services, and Quality of Service (QoS). The second
component, known as the agent, processes this information and takes appropriate action.
The actions taken by the agent include provisioning or scaling up based on the threshold
value as outlined in the SLA agreement and similarly de-provisioning if the resources are

no longer necessary. The primary goal of this system is to reduce the number of services as
much as possible without negatively impacting the SLA. A reward is generated based on
the results, with penalties applied if the SLA is not honored. The RL agent is designed
with the objective of maximizing the number of rewards obtained. Subsequently, the
resulting action-state information is relayed back to the agent. This particular modus
operandi is referred to as the on-policy approach, which will be employed in the upcoming
implementations. The diagrammatic representation of the agent’s operational framework
is depicted in the [2]

In instances where the state is continuous and the action space is discrete, the Double
Q-Learning algorithm is implemented. The determination of state involves the consider-
ation of a set of metrics which can impact the decision-making process of the autoscaling
policy. These metrics encompass various aspects such as resource usage, quality of service
(QoS), configuration elements, and the status of deployed containers. Metrics pertain-
ing to resource usage are related to the CPU and memory usage of the containers. On
the other hand, QoS metrics relate to the latency (response time) and throughput (re-
quests served per second) of the service offered. Moreover, information concerning active
and terminated containers is also taken into account in the state representation. For
a comprehensive list of the metrics utilized in constructing the state in the defined RL
(Reinforcement Learning) environments, please refer to Table .

2.6 Double Q Learning Algorithm

Q-learning can be understood as utilizing a single estimator to approximate the value of
the subsequent state. Specifically, max,Q¢(si11, a) serves as an estimate for Emaz,Qy(si41,a),
which, in turn, is an approximation of maz, EQq(st + 1,a). Here, the expectation should
be interpreted as averaging over all potential runs of the same experiment, contrary to its
typical usage in reinforcement learning contexts, where it often represents the expectation
over the next state (denoted as E{|Pt} and encountered in the subsequent subsection).

As a consequence, max,Q;(st + 1,a) can be regarded as an unbiased sample drawn
from an independent and identically distributed (iid) distribution with a mean of Emazx,
Q:(st+1,a). However, it has been empirically shown that this approach can lead to
significant overestimations, a problem that the following section seeks to address through
a proposed algorithm called Double Q-learning.

Double Q-learning utilizes two separate () functions: Q)4 and (). Each Q) function is
updated using the value from the other () function for the next state. The action a* in line
6 represents the action with the highest value in state s* according to the value function
Q4. However, instead of using the value Q4(s‘, a*) = max,Q 4(s‘, a) for updating Q 4, as
Q-learning does, the value Qp(s0,a*) is employed. Since Qp was updated on the same
problem but with a different set of experience samples, it can be considered an unbiased
estimate for the value of this action. A similar update is applied to Qg using b* and @) 4.

It is crucial for both @) functions to learn from distinct sets of experiences, while
during action selection, one can use the value functions of both. Hence, this algorithm
is not less data-efficient than Q-learning. In their experiments, the authors computed
the average of the two () values for each action and then performed e-greedy exploration
using the resulting average) values|hasselt paper|. The Double Q learning algorithm is

Qui1(5t, ar) = Qu(se, ar) + au(se, ar) (e + ymaz,Q (541, a) — Qu(Se, ar))

The Horizontal Pod Autoscaler (HPA), which functions as a constituent of the Kuber-
netes orchestrator, is responsible for dynamically altering the number of replicas, also

Algorithm 1 Double Q-learning

Initialize Q 4, @B, s

repeat

Choose a, based on Q4(s,.) and QB(s,), observe r, s*
Choose (e.g. random) either UPDATE(A) or UPDATE(B)
UPDATE(A) then Define a* = argmaz,Q*(s‘, a)
Q4(s,a)Q%(s,a) + a(s,a)(r + ¥Q(s',a") — Q4(s, a))
else if UPDATE(B) then

Defineb* = argmaz,QP(s‘, a)

QB(S7 CL) — QB<57 CL) + 7(87 a)(,r + QA(SLv b*) - QB<57 a))
end if

5 ¢— s

until end

Metrics used in RL environment spaces

Table 1: Cost of Computing

Metric name

Unit

Metric type

CPU Usage

Percentage(%

Resource usage

Memory Usage

Percentage(%

Resource usage

CPU Usage Threshold

Percentage(%

Resource usage

Memory Usage Threshold

Resource usage

Active serverless functions

Percentage(%

Configuration - Status

Terminated serverless function instances

Percentage(%

Configuration - Status

Latency

Quality of Service

SLA Latency

(%)

(%)

(%)
Percentage(%)
(%)

(%)

)

)

Quality of Service

Throughput Rate

Number/Time

Quality of Service

Success Rate

Time(ms)

Quality of Service

= RL

Reward
RL Action

Training 4—»{
- v - RLAgent ‘T

RL State
Observa tion
|

J Fam
. State
[| OpenAl Gym Interface
3 A

A
Deployment Request forwarding

[Pods
4 Stress Testing

Scaling
Deployment action
¥
Inginx Ingress
\ Qmauve } [HPA J [MEUICS Sewer] [Controller] [Prometheus J/. /

Kubemetes Cluster

L , .

Figure 1: Architecture

known as instances, based on real-time metrics such as CPU utilization, memory utiliza-
tion, or custom metrics. The establishment of a target threshold for scaling is performed
by the system administrator. The Knative serverless platform implements Kubernetes
HPA to effectuate the automatic scaling of functions predicated upon defined workload
metrics |Horizontal Pod Autoscaling (n.d.). Within the context of this paper, RL agents
are employed to establish scaling targets and mechanize the scaling process. The HPA
operates in a control loop, receiving metric information at periodic intervals to make
scaling decisions. The determination of the suitable scaling action is predicated upon the
calculation of the ratio between the current metric value and the target metric value.

3 Methodology

This research proposes to improve the current state of the art by implementing the
Double Q-learning algorithm. Research on the interoperability of the RL agents with the
current serverless platform is limited. This research aims to fill this gap by developing
interoperable agents on the current serverless platforms. These agents can potentially
integrate with serverless platforms and better optimize workloads.

In this research, we plan to implement an environment using OpenAl’s Gym interface.
This interface will have the Double-Q) learning agent. This agent will be trained on
feedback received from the environment. The environment consists of a Kubernetes
cluster where we have deployed applications using the Knative serverless framework.
The application deployed is a demo REST API using Python. Ingress is used as a load
balancer for intercepting requests from the server jinfo on ingress;. Vegeta service will be

10

reward= reward +

\\\\\

Figure 2: Agent flow diagram

used as a stress testing mechanism which will try to load test the application by sending
it multiple requests. The load on the service will be monitored by the Metrics server
running on the kubernetes cluster. The feedback from this Metric server will be given
to the Agent. The agent will take action on the feedback provided by the metric server.
The agent will take action using the HPA service present on the Kubernetes cluster. The
high level details of the architecture are provided in

In the Kubernetes discrete environment, the state is comprised of four distinct metrics,
namely CPU utilization, the applied CPU threshold for autoscaling, the ratio of active
instances of the serverless function with the maximum permissible instances, and the
ratio of measured latency with the latency defined in the service level agreement (SLA).
In order to limit the overall state space, we have considered a set of discretized values
per metric. For the ratio of CPU utilization, we have defined seven distinct states.
These discrete states correspond to values ranging from 0%-20%, 20%-40%, 40%-60%,
60%—80%, 80%—100%, as well as values that range from 100%—-150% or are greater than
150% 2] A similar classification applies to the ratio with the latency metric, wherein we
have also defined seven distinct states. The present environment is characterized by 1225
states, which is the product of 7x7x5x5. The set of feasible actions available in this
context encompasses three potential alternatives. In light of these actions, the threshold
applied to CPU usage for triggering a scaling event can be subjected to a reduction of
20%, kept at the same level, or increased by 20%.

Upon the completion of each action, a reward is bestowed, which is extensively detailed
in the rewards flow diagram. The reward function’s definition takes into consideration the
primary parameters of the serverless function’s active instances and the average monitored
latency. These parameters are evaluated based on different weightings, with a higher
weight (0.7) being assigned to the latency component and a lesser weight (0.3) to the
active instances component. The number of active instances is subject to a linear function
with a maximum value (100) assigned to one active instance and a minimum value (0)
assigned to the maximum number of active instances. Regarding latency, the highest
reward is offered when the latency is as close as possible to 0.8 times the SLA latency/2]

The selection of a particular value takes into consideration the necessity to apply a
scaling action promptly in response to high latency to prevent SLA violations in bursty
workloads. The agent can be trained to effectively handle such situations. Conversely,
for small latency, the agent has the flexibility to reduce the number of allocated resources

11

‘ Agent W

/ Threshold/ reward Action
information

Metrics HPA

\—A—/ ~—
Y

- T

Knative >

Pods

/

4

Environment

Figure 3: High Level diagram

to avoid high costs while still ensuring the desired QoS level for the application. When
the value falls below or exceeds 0.8*SLA latency, the reward offered is subjected to an
exponential reduction, with steeper reductions for values exceeding 0.8*SLA latency. In
case of latency exceeding the SLA _latency, the occurrence is flagged as an SLA violation,
leading to zero reward. The autoscaling is achieved with the help of Horizontal Pod
Autoscaler.

desiredReplicas = ceil[current Replicas * (current M etricV alue/desired M etricV alue)]

The above formula is used by Horizontal Pod Autoscaler to manage the number of
replicas. The Horizontal Pod Autoscaler (HPA) is a constituent of the Kubernetes or-
chestrator which dynamically adjusts the number of replicas (instances) in accordance
with real-time metrics such as CPU utilization, memory utilization, or custom metrics.
The scaling target is established by the system administrator. Knative serverless plat-
form employs Kubernetes HPA in order to automatically adjust functions in accordance
with pre-established workload metrics. Within the context of this paper, RL agents are
utilized to establish scaling targets and facilitate the scaling process. The HPA functions
within a control loop and periodically receives metric information in order to make scaling
decisions. The appropriate scaling action is determined by computing the ratio between
the current metric value and the target metric value.

presents an inventory of the developed environments. The specifics of each envir-
onment are explicated, encompassing the nature of the state and its actions, as well as
the metrics that constitute the state and those employed for the purpose of defining the
reward function. Moreover, the overall count of the potential states and actions is enu-
merated, alongside the RL agents that are utilized and the deployment testbeds with
which they interact.

12

4 Design Specification

4.1 Testbed serverless setup for environment

There exist numerous cloud platforms, both open-source and commercial, that can be
employed to create a real-world testbed setup. Among these platforms are AWS Lambda,
Azure functions, and Google Cloud functions, as well as open-source alternatives such as
Nuclio, OpenFaaS, Knative, and Kubeless. Each of these serverless platforms, whether
open-source or commercial, has its own set of advantages and limitations. While open-
source platforms offer greater customization, flexibility, and cost-effectiveness, they may
require more effort in terms of support and maintenance. Commercial platforms, on
the other hand, may provide additional features, support, and optimizations, but may
come with licensing costs, vendor lock-in concerns, and limitations on customization. In
their study, |Zafeiropoulos et al.| (2022) utilized the Knative platform in conjunction with
Kubernetes Horizontal Pod Autoscaler (HPA). The testbed setup is illustrated in Figure
Il

A cloud computing testbed has been established for evaluating the performance of the
developed RL agents in specific environments, as illustrated in [l The testbed combines
real environments. For the real environment, a Kubernetes cluster has been set up on
three nodes, each equipped with different hardware configurations, including Intel NUC
PCs with varying specifications. The Knative serverless computing platform is deployed
to manage function deployments on the cluster, and scaling mechanisms are applied us-
ing the Kubernetes Horizontal Pod Autoscaler (HPA) for efficient resource management
(more about HPA in Section 4.2). The Kubernetes Metrics Server is utilized to collect
resource usage and Quality of Service (QoS) metrics, which are then fed into the Pro-
metheus Monitoring Engine functioning as a time series database. For experimentation
purposes, a serverless microservice calculating Fibonacci numbers has been developed,
and NGINX Ingress Controller acts as the load balancer for this microservice. Stress
testing of the serverless functions is performed using the Vegeta HT'TP load testing tool,
with each serverless function instance deployed within a Pod.

The RL environment is modeled using the OpenAI Gym toolkit as shown in[I] OpenAl
Gym facilitates the definition of test problems (environments) for training RL agents.
These environments act as intermediaries between the RL agents and the testbed. As
depicted in Figure 3, the environment gathers resource and SLA metrics from HPA, the
Metrics Server, and Prometheus, presenting them as an observed state to the RL agent.
Additionally, it receives the selected action from the RL agent and applies new thresholds
in the Kubernetes cluster HPA mechanism accordingly. Furthermore, based on the ob-
served state and the action provided, the environment calculates the reward and provides
it as feedback to the agent. To expedite the training process of RL agents, distributed
training techniques are employed, enabling parallel deployment of the developed envir-
onments and agents. This approach allows for a larger amount of experience, which is
stored in the same Q function (Q-table or deep neural network). Prometheus is set up for
monitoring the pods running on the Kubernetes cluster. The functions are setup using
Knative, Ingress is used to handle the HT'TPs requests.

13

e Memory Usage

Mﬂf)ﬁ" W“I\W«'M'WMM'W“WWWL*

Figure 4: Grafana dashbord showing python app stats

5 Implementation

5.1 Create and configure python demo application

A simple Python application is created with a rest endpoint where the response is re-
turned with a delay. This simulates the processing of a typical web server. All the code
is available in | | (n.d.). A docker file is required to create a container of the python
application. Docker containers are lightweight, portable, and self-sufficient units that
can encapsulate an application and its dependencies, ensuring consistent behavior across
different environments. The container image is published to the docker hub. Docker Hub
provides a centralized platform for sharing your container images with others. It’s a con-
venient way to distribute your application or software stack to colleagues, collaborators,
or the wider community.

5.2 Setup Kubernetes, Prometheus, and Grafana

Prometheus and Grafana are two popular open-source tools commonly used in the field
of monitoring and observability for applications, systems, and infrastructure. They work
together to provide comprehensive monitoring, data collection, visualization, and alerting
capabilities.

To set up Prometheus, we need to run the prometheus.yml file in kubernetes. The steps
are provided in the implementation document. After setup up, we should be able to see
the Grafana dashboard as shown in [

5.3 Setup Knative

Knative is an open-source platform that aims to simplify the deployment, scaling, and
management of serverless workloads and microservices on Kubernetes. It provides a set of
building blocks and abstractions that enable developers to focus on writing code without
having to worry about the underlying infrastructure complexities. Knative is built on
top of Kubernetes and extends its capabilities to provide a higher-level abstraction for
serverless development. In the context of this research, Knative Serving is required.
Knative serving component focuses on automating the deployment, scaling, and routing

14

knativ
A RESTARTS AGE
0) 7d1h
7d1h
7d1h

domain-mapping-6)56 c2mk6 (5h< 7d1h
domainmappi) 7 <) : ning 4 (7d1h
d56cbf854-j6brn nin A (S5hdm a 7d1h

Running 4 (Sh 7d1h

Figure 5: knative running on Kubernetes

of containerized applications. It introduces concepts like ”Services” and ”Routes” to
define and manage workloads, as well as automatic scaling based on incoming traffic.

For installation, we need to apply serving yml files and create a deployment for the
Python application. The detailed steps are provided in the configuration document. After
installation, we are able to see the output shown in [f

5.4 Install Ingress

In Kubernetes, an Ingress is an API object that manages external access to services within
a cluster. It provides a way to route and control incoming network traffic to different
services based on rules defined in the Ingress resource. In other words, Ingress acts as a
traffic controller that allows you to expose and manage HTTP and HTTPS routes from
outside the cluster to services inside the cluster.

5.5 Create environment

For creating the environment we need to install Anaconda initially so that we can Jupyter
Labs. Creating OpenAl Gym environments involves defining the structure, behavior, and
rewards of an environment to model a specific problem or task for reinforcement learning.
OpenAl Gym is a toolkit that provides a standardized interface for creating and working
with reinforcement learning environments. Here’s a general outline of how you can create
OpenAl. [the original research| implementation is reproduced as a basis of current process.

5.5.1 Training Reinforcement learning agents
The goal of the agent is to learn how to take action in the environment to maximize its
long-term cumulative reward.

5.5.2 (Global Variables

The code begins by initializing and declaring global variables (q_table, tau_table, and
model) that are used for reinforcement learning. These variables hold information related
to the Q-learning algorithm and the agent’s knowledge of the environment.

5.5.3 Hyperparameters

Hyperparameters are defined, such as alpha, gamma, kappa, epsilon_init, and epsilon_min.
These parameters control the learning rate, discount factor, exploration rate, and other
aspects of the agent’s learning process.

15

5.5.4 Environment Initialization

The code initializes an OpenAl Gym environment using the gym.make() function. It
appears to be a custom environment that is specified by the gym_env variable. The
environment is set up with various parameters, such as timestep_duration, app_name,
sla_latency, prometheus_host, and
prometheus_latency_metric_name.

5.5.5 Training Loop

The code enters a loop for training the agent over multiple epochs. Within each epoch, the
agent interacts with the environment for a certain number of steps defined by steps_per_epoch.
5.5.6 Resetting the Environment

The environment is reset using the reset() method, which returns the initial state and
other information.

5.5.7 Main Loop

Within the training loop, the code enters a nested loop (for step in range(steps_per_epoch):).
Within this loop, the agent interacts with the environment by taking action and observing
the consequences.

5.5.8 Epsilon-Greedy Exploration

The code employs an epsilon-greedy exploration strategy to balance exploration and
exploitation. It randomly selects an action with probability epsilon, encouraging ex-
ploration, or selects the action with the highest Q-value with probability 1 - epsilon,
encouraging exploitation.

5.5.9 Taking Actions and Observing Outcomes

The agent takes an action based on the chosen strategy. It then receives information
about the next state, observations, rewards, whether the episode is done, and additional
information from the environment’s step() method.

5.5.10 Updating Historical Data

The code updates a historical log (likely for analysis and debugging purposes) with vari-
ous metrics, observations, and information related to the agent’s actions and the envir-
onment’s state.

5.5.11 Environment Manipulation

It appears that the code also manipulates the environment by starting and stopping a
stress test (vegeta_process) on an endpoint, deleting and deploying services, and creating
an Ingress. These actions might be part of a custom setup for the reinforcement learning
environment.

16

Rate: 1.5 request(s) per second

Number of peds per epoch Average CPU utilization per epoch Violatiens per epoch Reward per epoch

100
number_of_pods cpu_util | latency_violation = 4gq reward
1

20

25 [
3 NSNS

\ 75 { |
20 V]
= ¥ |/

50

25

Figure 6: Results for slow requests

5.5.12 Epoch Management

After each epoch, if the episode is done, the environment is reset, and certain actions are
taken related to the deployment of services and Ingress.

6 Evaluation

Performance evaluation results have been generated by deploying RL agents within custom-
built RL environments. The data collected from various agents was aggregated based on
the applied workload, allowing for performance assessment.

6.1 Experiment 1

For the k8s-env-discrete environment and the Q-learning agent, two scenarios were re-
viewed: one with low and another with high request rates. The learning rates were
distinct due to varying SLA violations and rewards. In high request rate conditions,
early epochs revealed more SLA breaches, yielding low rewards. As epochs progressed,
the agent improved by adjusting thresholds to prevent violations as shown in [while
optimizing pod numbers and CPU usage, resulting in increased rewards. Low request
rates led to a steady reward increase, significantly reducing SLA violations, and slightly
elevating pod CPU usage as shown in [7]

In the same k8s-env-discrete environment, the Double () learning agent’s results were
explored. In low request rates, Double () was theorized to swiftly reach an optimal policy
with high rewards and minimal SLA breaches, showing minor pod and CPU fluctuations.
But the result is that we can use the Double Q) learning algorithm for creating RL agents.
Further testing in this approach might yield more conclusive results.

It could be argued that the results of this study could serve as a foundation for
future performance evaluation research. This may involve implementing the proposed
solution on additional open-source serverless computing platforms and comparing their
performance. Furthermore, comparing the obtained outcomes with forthcoming relevant
datasets stemming from the application of autoscaling solutions on both open-source and
commercial serverless computing platforms is also worth considering.

7 Conclusion and Future Work

Within this manuscript, we have outlined a strategy for addressing the scaling of functions
within serverless computing platforms through the decisions of RL agents. This approach

17

Rate: 3.5 request(s) per second
Number of pods per epoch
100
\ number_of_pods cpu_util| 40
8| |
| 75 A
It A A 30

Average CPU utilization per epoch Violations per epach Reward per epoch

latency_violation 459 reward

11
[V %

nl 2% ks,
\ s
0]

0 10 20] 10 20 0 10 20
Epech Epoch Epoch Epach

Figure 7: Results for high requests

emerged from recognizing a gap in existing literature concerning RL environments and
agents to support real-world tests of serverless computing platform autoscaling. We de-
signed and implemented an RL environment, encompassing both discrete state spaces,
and developed an RL agent using a Double Q-learning algorithm. These environments
and agents are accessible as open-source code on a Git repository || (n.d.)), aiming to en-
courage their adoption and expansion by fellow researchers, fostering further evaluations
and comparisons.

Our study demonstrates evaluation outcomes in real environments, confirming the
effectiveness of our approach for addressing autoscaling in serverless computing platforms.
The benefits of employing environments with discrete state spaces are highlighted, given
their quicker training and easier real-world applicability. Simulation environments also
play a vital role, enabling the application of trained datasets to predict RL agent behavior
and offer insights into their learning patterns. Further testing using Double Q learning
algorithm on various difference applications can be helpful in identifying in the application
behaviours and help make better decision during runtime.

References

, V. (n.d.). Github - Vikrant2691 /research-project,
https://github.com/Vikrant2691 /research-project.

CNCF (2023). Github - cncf/wg-serverless: Cncf Serverless WG,
https://github.com/cncf/wg-serverless.

Eismann, S., Scheuner, J., van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., Abad,
C. L. and Iosup, A. (2021). Serverless applications: Why, when, and how?, I[EEFE
Software 38(1): 32-39.

Gari, Y., Monge, D. A., Pacini, E., Mateos, C. and Garino, C. G. (2020). Reinforcement
learning-based application autoscaling in the cloud: A survey.

Hasselt, H. (2010). Double g-learning, in J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel and A. Culotta (eds), Advances in Neural Information Processing Systems,
Vol. 23, Curran Associates, Inc.

Horizontal ~ Pod Autoscaling (n.d.). https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/.

18

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A., Pu, Q., Shankar,
V., Carreira, J., Krauth, K., Yadwadkar, N., Gonzalez, J. E., Popa, R. A., Stoica, I. and
Patterson, D. A. (2019). Cloud programming simplified: A berkeley view on serverless
computing.

Kardani-Moghaddam, S., Buyya, R. and Ramamohanarao, K. (2021). Adrl: A Hy-
brid Anomaly-Aware Deep Reinforcement Learning-Based Resource Scaling in Clouds,
IEEE Transactions on Parallel and Distributed Systems 32(3): 514-526.

Kim, Y., Park, J., Yoon, J. and Kim, J. (2022). Improved q network auto-scaling in
microservice architecture, Applied Sciences 12(3).
URL: https://www.mdpi.com/2076-3417/12/3/1206

Lin, C. and Khazaei, H. (2021a). Modeling and optimization of performance and cost
of serverless applications, IEEE Transactions on Parallel and Distributed Systems
32(3): 615-632.

Lin, C. and Khazaei, H. (2021b). Modeling and Optimization of Performance and Cost
of Serverless Applications, IEEE Transactions on Parallel and Distributed Systems
32(3): 615-632.

Mahmoudi, N. and Khazaei, H. (2022). Performance Modeling of Serverless Computing
Platforms, IEEE Transactions on Cloud Computing 10(4): 2834-2847.

Pimpley, A., Li, S., Srivastava, A., Rohra, V., Zhu, Y., Srinivasan, S., Jindal, A., Patel,
H., Qiao, S. and Sen, R. (2021). Optimal resource allocation for serverless queries.

Pujol Roig, J. S., Gutierrez-Estevez, D. M. and Gunduz, D. (2020). Management and
Orchestration of Virtual Network Functions via Deep Reinforcement Learning, IEEFE
Journal on Selected Areas in Communications 38(2): 304-317.

Santos, J., Wauters, T., Volckaert, B. and Turck, F. D. (2023). gym-hpa: Efficient
auto-scaling via reinforcement learning for complex microservice-based applications
in kubernetes, NOMS 2023-2028 IEEE/IFIP Network Operations and Management
Symposium, pp. 1-9.

Schuler, L., Jamil, S. and Kiihl, N. (2020). Ai-based resource allocation: Reinforcement
learning for adaptive auto-scaling in serverless environments.

van Hasselt, H., Guez, A. and Silver, D. (2015). Deep reinforcement learning with double
g-learning.

Xiao, Z. and Hu, S. (2022). Dscaler: A horizontal autoscaler of microservice based on deep
reinforcement learning, 2022 23rd Asia-Pacific Network Operations and Management
Symposium (APNOMS), pp. 1-6.

Zafeiropoulos, A., Fotopoulou, E., Filinis, N. and Papavassiliou, S. (2022). Reinforcement
learning-assisted autoscaling mechanisms for serverless computing platforms, Simula-
tion Modelling Practice and Theory .

19

	Introduction
	Related Work
	Serverless computing
	Autoscaling in Serverless computing
	Auto-scaling using Reinforcement Learning
	Proposal to overcome limitations
	Reinforcement Learning Environment
	Double Q Learning Algorithm

	Methodology
	Design Specification
	Testbed serverless setup for environment

	Implementation
	Create and configure python demo application
	Setup Kubernetes, Prometheus, and Grafana
	Setup Knative
	Install Ingress
	Create environment
	Training Reinforcement learning agents
	Global Variables
	Hyperparameters
	Environment Initialization
	Training Loop
	Resetting the Environment
	Main Loop
	Epsilon-Greedy Exploration
	Taking Actions and Observing Outcomes
	Updating Historical Data
	Environment Manipulation
	Epoch Management

	Evaluation
	Experiment 1

	Conclusion and Future Work

