
Optimizing the Resource Utilization in Cloud
Computing Environment with Autoscaling

using Machine Learning Methods

MSc Research Project

Cloud Computing

SriMadhan Shettihalli Anandreddy
Student ID: x21230064

School of Computing

National College of Ireland

Supervisor: Punit Gupta

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: SriMadhan Shettihalli Anandreddy

Student ID: x21230064

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Punit Gupta

Submission Due Date: 18/09/2023

Project Title: Optimizing the Resource Utilization in Cloud Computing En-
vironment with Autoscaling using Machine Learning Methods

Word Count: 2031

Page Count: 16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sri Madhan Shettihalli Anandreddy

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Optimizing the Resource Utilization in Cloud
Computing Environment with Autoscaling using

Machine Learning Methods

SriMadhan Shettihalli Anandreddy
x21230064

1 Introduction

The primary goal of this document is to provide the reader with a comprehensive manual
for successfully installing, configuring, and executing the project. It serves as a step-by-
step guide for effectively setting up and running the system from start to finish. The
document covers detailed installation instructions for each module, including relevant
configuration options and parameters that may need to be set. Next, it delves into the
the overall system architecture at a high level first, providing the reader with an un-
derstanding of the different components and how they fit together. With the system
installed, the execution flow and workflows are described to give the reader a clear pic-
ture of how modules interact during operation. The guide Also includes troubleshooting
advice for common errors and issues that may be encountered during installation or ex-
ecution. Following the steps outlined in this end-to-end guide will equip the reader with
the knowledge to smoothly deploy the project in a new environment.. It is highly re-
commended that this document be thoroughly read and understood by those looking to
operate the system.

2 Prerequisites

Users should have a basic working knowledge of Amazon Cloud, Ubuntu, Python pro-
gramming, and common machine learning algorithms before using this system. Basic
proficiency in Ubuntu is required to be able to navigate the file system, install packages,
and execute commands through the terminal. Users should be familiar with Ubuntu
administration including managing software, users, and processes. A fundamental un-
derstanding of the Python programming language is also expected. Users should be
comfortable with Python syntax, data structures, control flow, modules, and virtual en-
vironments. Additionally, users should have experience with standard machine learning
algorithms and models, including concepts like training, testing, feature engineering, and
performance evaluation. Exposure to libraries like Scikit-Learn for implementing machine
learning in Python is beneficial.

While advanced expertise is not required, having basic Ubuntu system administra-
tion skills, working knowledge of Python programming, and grounding in core machine
learning concepts and techniques will ensure users can effectively work with the system.

1



Figure 1: AWS EC2 Instance

3 Environment Setup

Figure 2 summarizes the hardware and software requirements for executing the project. I
am using AWS cloud for my implementation. I have used configuration for EC2 instance
as specified in Figure 1.

3.1 Packages and Libraries

I have developed my project using python programming language and python version of
3.7 or later is required. You can install python latest version from https://www.python.

org/downloads/

We are using multiple library functions in the project, we need pip package manager to
install these library functions. pip can be installed by executing the below commands as
shown in Figure 3 and Figure 4

sudo apt update && sudo apt upgrade
sudo apt install python3-pip

The library functions used in the project include TensorFlow for implementing deep
learning models, scikit-learn for traditional machine learning algorithms, Matplotlib for
visualization, NumPy for numerical processing, and Pandas for data analysis and ma-
nipulation. Boto3 provides interfaces for AWS services like accessing s3. The code is

2

https://www.python.org/downloads/
https://www.python.org/downloads/


Figure 2: Hardware and software Requirements

Figure 3: sudo apt update && sudo apt upgrade

developed in Python for its widespread use in machine learning and data science ap-
plications. TensorFlow enables building deep neural networks for approaches like CNNs
and LSTM. Scikit-learn offers a range of classical ML algorithms like regression and ran-
dom forests. Matplotlib and Pandas support analyzing and visualizing datasets. NumPy
facilitates mathematical operations. Using these core libraries provides the modeling cap-
abilities and data handling tools needed for an autoscaling prediction system based on
machine learning. We can install this by executing the command as shown in Figure 5 :
pip install scikit-learn tensorflow matplot

4 Methedology

4.1 Components

Project model consists of 5 main components, which are explained below.

• Data Generator: Generates simulated load data over time intervals. The load data

3



Figure 4: sudo apt install python3-pip

Figure 5: pip install scikit-learn tensorflow matplot

4



Figure 6: Sinusoidal Cloud workload generation

5



is a combination of sine and cosine wave with some randomness. Figure 6 shows
code snippet for the same.

• Task Generator: This component is responsible for generating jobs. The Loader
class adds generated jobs to the Scaler component and executes them. Code for
handling this work is all included in jobs.py file.

• Scaler: Defines the Scaler class responsible for scaling the VM instance based on
historical load data. It receives input from the Loader, maintains a history of
load values, and uses a model to predict the next load value. It then adjusts the
capacity of the executing node and executes the job. Code for handling this work
is all included in scaler.py file.

• Resource allocation unit: this component is where actual tasks execute on. It
defines the Node class that simulates a cloud instance capable of vertical scaling.
The capacity of the resource allocation unit is adjusted by the Scaler. Code for
handling this work is all included in node.py file. It keeps track of historical error
and load data which will be utilized in comparing algorithms on the error metrics.

• Visualizer: With this component we plot graphs to visualize the data for better
understanding. Code for handling this component is all written in visualizer.py
file. It contains the Visualizer class responsible for generating various plots to
visualize the project’s performance. It creates plots related to load vs. capacity,
underuse vs overuse, scaling error for different models, and delayed tasks for each
model and stores these graphs in Amazon S3 bucket.

4.2 Algorithms

In this research we are using 3 different kinds of implementation for predicting auto-
scaling in cloud.

4.2.1 Traditional threshold based method

In this method, scaling is done by a scaling factor which is predetermined by examining
the historical data. Engineers analyze the load and use formula to calculate scaling factor.
In our case we are calculating the scaling factor by taking the average of the historical
load values. Figure 7 shows the code snippet for Rule-based model

4.2.2 Machine Learning Models

We are using two machine learning models for prediction of auto-scaling: Random Forest
(RF) and Support Vector Regression (SVR) Model.

• Support Vector Regression: We are using a simple SVR model with linear kernel.
this model works based on Simple linear boundary which is easier to interpret. It
also has advantage of faster execution times when compared to Non-Linear patterns.
Figure 8 shows the code snippet for SVR model.

• Random Forest: We are using simple Random forest model with shallow tree. The
max depth parameter is set to 2 and random state is set to 0. Setting the ran-
dom state to zero ensures consistent output results. After setting this parameters

6



Figure 7: Rule-based Model

Figure 8: Support Vector Regression (SVR) Model

7



Figure 9: Random Forest Model

we are reshaping the input values into a 2D array with one column as required by
the model and train the model on these input values. Figure 9 shows the code
snippet for SVR model.

4.2.3 Deep Learning Models

We are predicting auto-scaling using two deep learning models: Gated recurrent unit
(GRU) and an ensemble model- CNN LSTM Model.

• CNN LSTM Model: The primary concept behind using these models on time-series
data is that while CNN models are beneficial in extracting the valuable features and
may filter out the noise of the input data, LSTM networks are capable of capturing
sequence pattern information. The model workflow is explained as below: Input
data is loaded and reshaped to 3d array format as samples, time steps and features.
A sequential model is then created and convolution model is applied for feature
extraction. then LSTM is applied for sequence modelling. Finally a dense layer is
added to prediction output. We are using Adam optimizer with learning rate set to
0.0001. also loss parameter is set to mean squared error. then the model is trained
for 1000 epochs with batch size of 128. after 1000 epochs, the loss value remains
constant. Figure 10 shows the training for CNN LSTM model.

• Gated recurrent unit Model: the workflow of model is as follows: The input data
is loaded and it contains the features x and targets y. A Sequential Keras model is
created. A GRU layer is added to the model to handle the sequential nature of the
data. The input shape is set to (9,1) based on the 9 time steps. A Dense output
layer is added for making a single value prediction. The model is compiled with

8



Figure 10: CNN LSTM Model

9



Figure 11: GRU Model

Adam optimizer using a learning rate of 0.001 and MSE loss function. The model
is trained for 100 epochs by fitting on the input x and target y data. The trained
GRU model is then saved. Figure 11 shows the GRU model training for 100 epochs.

5 Execution and Results

5.0.1 Execution steps

Once we have Environment setup and all the project files copied to destination path, we
are now good to execute the models. We have created python files for invoking all the
components specified in project methodology for each Model.

• Data generation: Code for generating data is stored in sequence.py python file.
Executing this file creates ds.pkl file which will be used for training ML and deep
learning algorithms. Also a sample graph is plotted to visualize the generated data.
Figure 12 shows sample plot of dataset generated using sequence.py Figure 13 shows
the command for generating synthetic data. We can see the output file ds.pkl
created after executing the python file.

• Train Algorithms: We use the synthetic dataset generated in above step to train
Moving avg, RF, SVR, GRU, CNN LSTM algorithms. Figure 14, Figure 15 and
Figure 16 shows the output generated for Model training.
For moving avg we had fed input as [1,2,3,4,5] resulting in average of 3 as shown in
Figure 14. We could see different predicted capacity for different models.

10



Figure 12: Dataset graphical representation

Figure 13: Data Generation

11



Figure 14: Moving avg, RF, SVR Model Training

Figure 15: GRU Model Training

• Execute Trained Models on dynamically generated loads: code for this step are
included in Execute Model.py files. Executing these files creates jobs with random
loads and the scalar component loads the respective algorithm in the file and pre-
dicts the capacity required- the scaling factor to which the resource allocation unit
vertically scales the node. visualizer plots graphs for the log data generated by
resource allocation unit.

Executing these files creates jobs with random loads and the scalar component loads
the respective Model and predicts the capacity required - the scaling factor to which the
resource allocation unit scales the node. visualizer plots graphs for the log data generated
by resource allocation unit. Figure 17, Figure 18, Figure 8, Figure 20, Figure 21 shows
the sample output generated when executing these files for Moving avg, RF, SVR, GRU,
CNN LSTM models respectivelly.

We Could see in figures that jobs are first loaded and scaler component predicts
the required capacity, then the node is scaled to the predicted capacity. Once the task
is assigned to the node, if the predicted capacity is less than the required capacity to
execute the task, the task has to wait until the node has capacity to execute the job. We
can see in the same in sample outputs for few cycles the job executes as soon as it is
assigned to node. But for few some cycles, job is delayed for a while.

The visualizer component generates graphs and uploads the same to Amazon S3
bucket. Figure 22 shows the graphs generated and stored in AWS S3 accounts.

Figure 16: CNN LSTM Model Training

12



Figure 17: Moving avg Model Execution on dynamically generated task

Figure 18: RF Model Execution on dynamically generated task

13



Figure 19: SVR Model Execution on dynamically generated task

14



Figure 20: GRU Model Execution on dynamically generated task

Figure 21: CNN LSTM Model Execution on dynamically generated task

Figure 22: Graphs stored in AWS S3 bucket

15



5.1 Evaluation Metrics

We have used the following evaluation metrics to compare models performance in pre-
dicting auto-scaling:

• Overused vs Underused: this graph represents whether the predicted capacity for
executing the job resulted in over usage or an under utilization of resource.

• Combined error: this is a bar chart representation showing the combined error for
different models. Error history from different model instances are retrieved and
sum of absolute error values are then plotted.

• Delayed tasks: This is a graph showing the number of delayed tasks for different
models. It retrieves the error history from different model instances and counts the
number of delayed tasks (where error ¿ 0) for each model. The number of delayed
tasks for different models is then plotted using matplotlib as a bar chart.

• Load vs Capacity: This graph represents the actual load versus predicted load
required for executing the task for each model.

16


	Introduction
	Prerequisites
	Environment Setup
	Packages and Libraries

	Methedology
	Components
	Algorithms
	Traditional threshold based method 
	Machine Learning Models
	Deep Learning Models


	Execution and Results
	Execution steps
	Evaluation Metrics


