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Optimizing the Resource Utilization in Cloud
Computing Environment with Autoscaling using
Machine Learning Methods

SriMadhan Shettihalli Anandreddy
x21230064

1 Introduction

The primary goal of this document is to provide the reader with a comprehensive manual
for successfully installing, configuring, and executing the project. It serves as a step-by-
step guide for effectively setting up and running the system from start to finish. The
document covers detailed installation instructions for each module, including relevant
configuration options and parameters that may need to be set. Next, it delves into the
the overall system architecture at a high level first, providing the reader with an un-
derstanding of the different components and how they fit together. With the system
installed, the execution flow and workflows are described to give the reader a clear pic-
ture of how modules interact during operation. The guide Also includes troubleshooting
advice for common errors and issues that may be encountered during installation or ex-
ecution. Following the steps outlined in this end-to-end guide will equip the reader with
the knowledge to smoothly deploy the project in a new environment.. It is highly re-
commended that this document be thoroughly read and understood by those looking to
operate the system.

2 Prerequisites

Users should have a basic working knowledge of Amazon Cloud, Ubuntu, Python pro-
gramming, and common machine learning algorithms before using this system. Basic
proficiency in Ubuntu is required to be able to navigate the file system, install packages,
and execute commands through the terminal. Users should be familiar with Ubuntu
administration including managing software, users, and processes. A fundamental un-
derstanding of the Python programming language is also expected. Users should be
comfortable with Python syntax, data structures, control flow, modules, and virtual en-
vironments. Additionally, users should have experience with standard machine learning
algorithms and models, including concepts like training, testing, feature engineering, and
performance evaluation. Exposure to libraries like Scikit-Learn for implementing machine
learning in Python is beneficial.

While advanced expertise is not required, having basic Ubuntu system administra-
tion skills, working knowledge of Python programming, and grounding in core machine
learning concepts and techniques will ensure users can effectively work with the system.



Amazon Machine Image (AMI)

Ubuntu Server 22.04 LTS (HVM), S5D Volume Type Free tier eligible
ami-03f65b8614a860c29 (64-bit (xB6)) / ami-0c79a55ddas2434da (64-bit (Arm)) hd
Virtualization: hvmm  EMA enabled: true  Root device type: ebs

Description

Canonical, Ubuntu, 22.04 LTS, amdé4 jammy image build on 2023-05-16

Architecture AMIID

64-bit (x86) v ami-03f65b8614a860c29

¥ Instance type info

Instance type

c5.xlarge
Family: 5 4wCPU 8 GiB Memory  Current generation: true (P All generations
On-Demand SUSE pricing: 0.226 USD per Hour v

On-Demand Linux pricing: 0.17 USD per Hour
On-Demand Windows pricing: 0.354 USD per Hour
On-Demand RHEL pricing: 0.23 USD per Hour

Compare instance types

Figure 1: AWS EC2 Instance

3 Environment Setup

Figure [2 summarizes the hardware and software requirements for executing the project. I
am using AWS cloud for my implementation. I have used configuration for EC2 instance
as specified in Figure

3.1 Packages and Libraries

I have developed my project using python programming language and python version of
3.7 or later is required. You can install python latest version from https://www.python.
org/downloads/
We are using multiple library functions in the project, we need pip package manager to
install these library functions. pip can be installed by executing the below commands as
shown in Figure [3] and Figure

sudo apt update && sudo apt upgrade
sudo apt install python3-pip

The library functions used in the project include TensorFlow for implementing deep
learning models, scikit-learn for traditional machine learning algorithms, Matplotlib for
visualization, NumPy for numerical processing, and Pandas for data analysis and ma-
nipulation. Boto3d provides interfaces for AWS services like accessing s3. The code is


https://www.python.org/downloads/
https://www.python.org/downloads/

Resource Configuration

Operating System Linux

Main Memory ( RAM) 1GH

Number of CI’'lJ Cores & (Virtual Cores)

Storage 30GB

I'rogramming Language I'vthond

I’ython Libraries Numpy, "andas, Threading, Matplotlib, Sk-
learn, Keras, Tensorflow

Figure 2: Hardware and software Requirements

:$ sudo apt update && sudo apt upgrade
http://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy InRelease
http://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-updates InRelease
http://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-backports InRelease
http://security.ubuntu.con/ubuntu jammy-security InRelease
g package lists... Done
ng dependency tree... Done

Reading state information... Done

105 packages can be upgraded. Run 'apt list --upgradable' to see them.

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

Calculating upgrade... Done

#

# You can verify the status of security

# E.g., a recent Ruby vulnerability can be checked witl

# For more detail see: https://ubuntu. (om/s:(ur\ty/notl(:s/
#

The following NEW packages will be installed:
linux-aws-5.19-headers-5.19.6-1629 linux-headers-5.19.0-1029-aws Linux-image-5.19.0-1029-aws linux-modules-5.19.0-1029-awus
The following packages will be upgraded:
ands4-microcode apport base-files bind9-dnsutils bind9-host bind9-libs binutils binutils-common binutils-x86-64-linux-gnu ca-certificates cloud-init curl distro-info dpkg ec2-hibinit-agent
fwupd-signed gcc-12-base grub-common grub-pe grub-pc-bin grub2-common hibagent initramfs-tools initramfs-tools-bin initramfs-tools-core iptables libbinutils libcap2 libcap2-bin libctf-nobfde libctfe
libcurl3-gnutls libcurld libfwupd2 libfwupdplugins libgcc-si libglib2.6-6 libglibz.e-bin libglib2.e-data libgpgme11 Llibipatc2 libipstc2 libldap-2.5-6 libldap-common libmm-glibe libncursess
libncursesws libpam-cap libperls.34 libpython3.16 libpython3.10-minimal libpython3.10-stdlib libssh-4 libssl3 libstdc++6 libtinfos libunwindg libx11-6 libx1l-data libxtablesi2 linux-aws
linux-headers-aws linux-image-aws mdadm mokutil motd-news-config ncurses-base ncurses-bin ncurses-term open-vm-tools openssh-client openssh-server openssh-sftp-server openssl perl perl-base
perl-modules-5.34 python-apt-common python3-apport python3-apt python3-debian python3-distro-info python3-distupgrade python3-distutils python3-gdbm python3-lib2to3 python3-problem-report
python3-requests python3-software-properties python3.10 python3.10-minimal snapd software-properties-common tzdata ubuntu-advantage-tools ubuntu-minimal ubuntu-release-upgrader-core ubuntu-server
ubuntu-standard ufw vim vin-common vin-runtime vim-tiny xxd
105 upgraded, 4 newly installed, © to remove and © not upgraded.
60 standard LTS security updates
Need to get 128 MB of archives.
After this operation, 282 MB of additional disk space will be used.
Do you want to continue? [Y/n] yes
e ://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-updates/main amde4 motd-news-config all 12ubuntud.4 [4472 B]
://us-west-2.ec2.archive.ubuntu.con/ubuntu jammy-updates/main amde4 base-files amd64 12ubuntud.4 [62.6 ki
://us-west-2.ec2.archive.ubuntu.con/ubuntu jammy-updates/main amd64 dpkg amds4 1.21.1ubuntuz.2 [1239 kB]
://us-west-2.ec2.archive.ubuntu.con/ubuntu jammy-updates/main amd64 ncurses-bin amds4 2ubuntue.1 [184 kB]
://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-updates/main amde4 libperls.34 amd64 5.34.6-3ubuntul.2 [4818 kB]
://us-west-2.ec2.archive.ubuntu.con/ubuntu jammy-updates/main amd64 perl amd64 5.34.0-3ubuntul.2 [232 kB]
e ive.ubuntu.com/ubuntu jammy-updates/main ands4 perl-base amde4 5.34.@-3ubuntul.2 [1759 kB]
ive.ubuntu.com/ubuntu jammy-updates/main andé4 perl-modules-5.34 all 5.34.8-3ubuntul.2 [2977 kB]
e.ubuntu.com/ubuntu jammy-updates/main amds4 ncurses-base all 6.3-2ubuntu6.1 [26.2 kB]
http://us-west-2.ec2.archive.ubuntu.com/ubuntu janmy-updates/main ande4 libpython3.10 and64 3.10.12-1-22.04.2 [1949 k8]
http://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-updates/main and64 python3-distutils all 3.10.8-1~22.64 [139 kB]
http://us-west-2.ec2.archive.ubuntu.com/ubuntu janmy-updates/main ande4 python3-1ib2to3 all 3.10.8-1-22.04 [77.6 kB]
http://us-west-2.ec2.archive.ubuntu.com/ubuntu janmy-updates/main ande4 libss13 ande4 3.6.2-6ubuntul.10 [1901 kB]
http://us-west-2.ec2.archive.ubuntu.com/ubuntu janmy-updates/main and64 python3.10 and64 3.10.12-1-22.04.2 [509 kB]

Figure 3: sudo apt update && sudo apt upgrade

developed in Python for its widespread use in machine learning and data science ap-
plications. TensorFlow enables building deep neural networks for approaches like CNNs
and LSTM. Scikit-learn offers a range of classical ML algorithms like regression and ran-
dom forests. Matplotlib and Pandas support analyzing and visualizing datasets. NumPy
facilitates mathematical operations. Using these core libraries provides the modeling cap-
abilities and data handling tools needed for an autoscaling prediction system based on
machine learning. We can install this by executing the command as shown in Figure
pip install scikit-learn tensorflow matplot

4 Methedology

4.1 Components

Project model consists of 5 main components, which are explained below.

e Data Generator: Generates simulated load data over time intervals. The load data



$ sudo apt install python3-pip
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed
build-essential bzip2 cpp cpp-11 dpkg-dev Fakeroot fontconfig-config fonts-dejavu-core g++ g++-11 gcc gcc-11 gec-11-base javascript-common libalgorithm-diff-perl libalgorithm-diff-xs-perl
libalgorithm-merge-perl libasans libatomici libc-dev-bin libc-devtools libce-dev libcc1-6 liberypt-dev Libdeflated libdpkg-perl libexpati-dev libfakeroot libfile-fentllock-perl libfontconfigl
libgcc-11-dev libgd3 libgomp1 Llibisl23 libitmi libjbige libjpeg-turbos libjpegs libjs-jquery libjs-sphinxdoc libjs-underscore liblsane libmpc3 libnsl-dev libpython3-dev libpython3.1e-dev hbquadmatho
libstdc++-11-dev Libtiff5 libtirpc-dev libtsane libubsan1 libwebp7 libxpm4 linux-libc-dev lto-disabled-list make manpages-dev python3-dev python3-wheel python3.16-dev rpcsvc-proto zlibig-de
Suggested packages
bzip2-doc cpp-doc gec-11-locales debian-keyring g++-multilib g++-11-multilib gec-11-doc gec-multilib autoconf automake libtool flex bison gdb gec-doc gec-11-multilib apache2 | lighttpd | httpd
glibc-doc bzr libgd-tools libstdc++-11-doc make-doc
The following NEW packages will be installed
build-essential bzip2 cpp cpp-11 dpkg-dev fakeroot fontconfig-config fonts-dejavu-core g++ g++-11 gcc gcc-11 gec-11-base javascript-common libalgorithm-diff-perl libalgorithm-diff-xs-perl
libalgorithm-merge-perl libasans libatomici libc-dev-bin libc-devtools libc6-dev libcci-6 liberypt-dev Libdeflated libdpkg-perl libexpati-dev libfakeroot libfile-fentllock-perl libfontconfigl
libgcc-11-dev libgd3 libgomp1 libisl23 libitmi libjbige libjpeg-turbos libjpegs libjs-jquery libjs-sphinxdoc libjs-underscore liblsane Llibmpc3 libnsl-dev libpython3-dev libpython3.16-dev libquadmathe)
libstdc++-11-dev Libtiff5 libtirpc-dev libtsane libubsani libwebp7 libxpm4 linux-libc-dev lto-disabled-list make manpages-dev python3-dev python3-pip python3-wheel python3.10-dev rpcsvc-proto
zlibig-dev
0 upgraded, 64 newly installed, © to remove and © not upgraded.
Need to get 71.3 MB of archives
After this operation, 239 MB of additional disk space will be used.
Dr) you want to continue? [Y/n] y
http://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-updates/main andé4 libc-dev-bin amde4 2.35-@ubuntu3.1 [26.4 kB]
.ec2.archive.ubuntu.con/ubuntu jammy-updates/main amde4 linux-libc-dev amd64 5.15.6-78.85 [1307 kB]
.ec2.archive.ubuntu.con/ubuntu jammy/main and64 libcrypt-dev amd64 1:4.4.27-1 [112 kB]
.ec2.archive.ubuntu.con/ubuntu jammy/main amd64 rpcsvc-proto amdsd 1.4.2-6ubuntus [68.5 kB]
.ec2.archive.ubuntu.con/ubuntu jammy-updates/main amdé4 libtirpc-dev and64 1.3.2-2ubuntud.1 [192 kB]
.ec2.archive.ubuntu.com/ubuntu jammy/main amde4 Libnsl-dev amde4 1.3.6-2build2 [71.3 kB
.ec2.archive.ubuntu.con/ubuntu jammy-updates/main amde4 libc6-dev amded 2.35-Gubuntu3.1 [2699 kB]
-2.ec2.archive.ubuntu.com/ubuntu jammy-updates/main amd64 gcc-11-base amd64 11.4.0-lubuntul-22.04 [20.2 kB]
.ec2.archive.ubuntu.con/ubuntu jammy/main amd64 Libisl23 amdea e.24-2buildl [727 kB]
.ec2.archive. ubuntu.com/ubuntu jammy/main amdé4 libmpc3 amd6a 1.2.1-2buildl [46.9 kB]
.ec2.archive.ubuntu.con/ubuntu jamny-updates/main amd64 cpp-11 and64 11.4.0-1lubuntu1~22.04 [10.0 MB]
.ec2.archive. ubuntu.con/ubuntu jammy/main amdé4 cpp amd64 4:11.2.0-lubuntul [27.7 kB]
.ec2.archive. ubuntu.com/ubuntu jammy-updates/main amdé4 libcci-6 amdéd 12.3.6-1ubuntui~22.04 [48.3 kB]
.ec2.archive. ubuntu.con/ubuntu jammy-updates/main amdé4 libgompl amd64 12.3.@-lubuntu1~22.04 [126 kB]
.ec2.archive. ubuntu.con/ubuntu jammy-updates/main amdé4 libitml amd64 12.3.0-lubuntul~22.84 [36.2 kB]
.ec2.archive. ubuntu.com/ubuntu jammy-updates/main amd64 libatomici amd64 12.3.-1ubuntul-22.04 [10.4 kB]
.ec2.archive. ubuntu.com/ubuntu jammy-updates/main amdé4 libasané amd64 11.4.0-lubuntul-22.04 [2282 kB]
.ec2.archive. ubuntu.com/ubuntu jammy-updates/main amdé4 liblsan® amde4 12.3.-1ubuntu1-22.04 [1069 kB]
.ec2.archive.ubuntu.con/ubuntu jamny-updates/main amd64 libtsan® and64 11.4.-lubuntul~22.04 [2260 kB]
.ec2.archive. ubuntu.com/ubuntu jammy-updates/main amdé4 libubsani amd64 12.3.0-1lubuntu1~22.64 [976 kB]
.ec2.archive. ubuntu.com/ubuntu jammy-updates/main amdé4 libquadmath® amdé4 12.3.0-lubuntui~22.64 [154 kB]
http://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-updates/main ande4 libgcc-11-dev amd64 11.4.0-lubuntul~22.04 [2517 kB]
http://us-west-2.ec2.archive.ubuntu.com/ubuntu jammy-updates/main and64 gcc-11 amds4 11.4.0-lubuntul-22.04 [26.1 MB]
http://us-west-2.ec2.archive. ubuntu.con/ubuntu jammy/main ands4 gcc anded 4:11.2.6-lubuntul [5112 B]
.ec2.archive. ubuntu.com/ubuntu jammy-updates/main amdé4 libstdc++-11-dev and64 11.4.0-1lubuntul~22.84 [2101 kB]
6 http://us-west-2.ec2.archive.ubuntu.con/ubuntu jamny-updates/main amd64 g++-11 amd64 11.4.6-lubuntul-22.04 [11.4 MB]

Figure 4: sudo apt install python3-pip

$ pip install scikit-learn tensorflow matplot
Defaulting to user installation because normal site-packages is mot writeable
Collecting scikit-learn
Downloading scikit_learn-1.3.8-cp316-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB)
—_— eta

Collecting tensorflow
Downloading tensorflow-2.13.6-cp310-cp310-nanylinux_2_17_x86_64.manylinux2014_x86_64.whl (524.1 MB)
. eta
Collecting matplo:
Downloading matplut 0.1.9-py2.py3-none-any.whl (5.0 kB)
Collecting scipy>=1.5.0
Downloading scipy-1.11.1-cp316-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.3 MB)
_—_— =
Collecting joblib>=1.1.1
Downloading joblib-1.3.2-py3-none-any.whl (302 kB)

Collecting threadpoolctl>=2.6.0
Downloading threadpoolctl-3.2.8-py3-none-any.whl (15 kB)
Collecting numpy>=1.17.3
Downloading numpy-1.25.2-cp316-cp316-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)
_—_— =
Collecting gast<=0.4.0,>=0.2.1
Downloading gast-©.4.6-py3-none-any.whl (9.8 kB)
Collecting wrapt>=1.11.0

Downloading wrapt-1.15.0-cp310-cp310-manylinux_2_5_» 4.manylinux1 4.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78 kB)
_— eta

Collecting astunparse>=1.6
Downloading astunparse-1.6.3-py2.py3-non e whl (12 kB)
Collecting tensorflow-io-gcs-filesystem>=0.23
Downloading tensorflow_io_gcs_filesysten- 0.33.0 cp310-cp316-manylinux_2_12_x86_64.manylinux2016_x86_64.whl (2.4 MB)

Collecting tensorboard<2.14,
Downloading tensorboard-2.13.6- py3 none-any.whl (5.6 MB)

Collecting tensorflow-estimator<2.14,>=2.13.
Downloading tensorflow_estimator-2.13.6-py2.py3-none-any.whl (440 kB)
eta
Collecting absl-p;
Downloading et _py- 1 4 6-py3-none-any.whl (126 kB)
_—_— eta
Collecting flatbuffers>=23.1.21
Downloading flatbuffers-23.5.26- py2 py3 none-any.whl (26 ki
Requirement already sat\sf\e st .0 in /usr/Llib/python3/dist-packages (from tensorflow) (1.16.6)
Collecting protobu .21.1, .21.2, .21.3,1=4.21.4,1=4.21.5,<5.0.0dev,>=3.20.3
Downloading protobuf- 4 24 0-cp37-abi3-manylinux2014 x86_64.whl (311 kB)
e eta
Collecting libclang>=13. o o
Downloading libclang-16.0.6-py2.py3-none-nanylinux2010_x86_64.whl (22.9 MB)

Figure 5: pip install scikit-learn tensorflow matplot



sequenc

sequence.py > ...

import | [
import math

import random
import csv

SCALE =1
VARIANCE = 0.1
INCREMENT = math.pi/36

generate_load_value(angle):

N = math.sin(angle) + (random.random()*VARIANCE )*SCALE
M = math.cos(angle)*(SCALE)

return abs(M) + abs(N)

__main__":

"

if __name__ ==

angle = 8.1
[]
[]
i in range(180):
angle += INCREMENT
x.append(angle)
y.append(generate_load_value(angle))

with open("generated_data.csv", "w", newline="") as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(["Angle", "Load Value"])
for angle, load_value in zip(x, y):
csvwriter.writerow([angle, load_value])

Figure 6: Sinusoidal Cloud workload generation



is a combination of sine and cosine wave with some randomness. Figure [6] shows
code snippet for the same.

e Task Generator: This component is responsible for generating jobs. The Loader
class adds generated jobs to the Scaler component and executes them. Code for
handling this work is all included in jobs.py file.

e Scaler: Defines the Scaler class responsible for scaling the VM instance based on
historical load data. It receives input from the Loader, maintains a history of
load values, and uses a model to predict the next load value. It then adjusts the
capacity of the executing node and executes the job. Code for handling this work
is all included in scaler.py file.

e Resource allocation unit: this component is where actual tasks execute on. It
defines the Node class that simulates a cloud instance capable of vertical scaling.
The capacity of the resource allocation unit is adjusted by the Scaler. Code for
handling this work is all included in node.py file. It keeps track of historical error
and load data which will be utilized in comparing algorithms on the error metrics.

e Visualizer: With this component we plot graphs to visualize the data for better
understanding. Code for handling this component is all written in visualizer.py
file. It contains the Visualizer class responsible for generating various plots to
visualize the project’s performance. It creates plots related to load vs. capacity,
underuse_vs_overuse, scaling error for different models, and delayed tasks for each
model and stores these graphs in Amazon S3 bucket.

4.2 Algorithms

In this research we are using 3 different kinds of implementation for predicting auto-
scaling in cloud.

4.2.1 Traditional threshold based method

In this method, scaling is done by a scaling factor which is predetermined by examining
the historical data. Engineers analyze the load and use formula to calculate scaling factor.
In our case we are calculating the scaling factor by taking the average of the historical
load values. Figure [7] shows the code snippet for Rule-based model

4.2.2 Machine Learning Models

We are using two machine learning models for prediction of auto-scaling: Random Forest
(RF) and Support Vector Regression (SVR) Model.

e Support Vector Regression: We are using a simple SVR model with linear kernel.
this model works based on Simple linear boundary which is easier to interpret. It
also has advantage of faster execution times when compared to Non-Linear patterns.
Figure |8 shows the code snippet for SVR model.

e Random Forest: We are using simple Random forest model with shallow tree. The
max_depth parameter is set to 2 and random state is set to 0. Setting the ran-
dom_state to zero ensures consistent output results. After setting this parameters



AvgModel:
predict(self,values):
return sum(values)/len(values)

am = AvgModel()
print(am.predict([1,2,3,4,5

Figure 7: Rule-based Model

SVRModel:
predict(self,values):
1r = SVR(kernel="linear")
X = np.arange(len(values),dtype=np.float32).reshape([9,1])
y = np.array(values,dtype=np.float32)
lr.fit(x,y)
X_p = np.array([[len(values)]],dtype=np.float32)

predict = lr.predict(x_p).item()
return predicﬂ

if __name__=="__main__":
lr = SVRModel()
print(lr.predict([1,2,3,4,5,6,7,8,9]))

Figure 8: Support Vector Regression (SVR) Model



from ble import RandomForestRegressor
import numpy as np

RFModel:
predict(self,values):
lr = RandomForestRegressor(max_depth=2, random_state=0)
X = np.arange(len(values),dtype=np.float32).reshape([9,1])
y = np.array(values,dtype=np.float32)
lr.fit(x,y)
Xx_p = np.array([[len(values)]],dtype=np.float32)
predict = lr.predict(x_p).item()
return predict

__main__":
RFModel()
print(lr.predict([1,2,3,4,5,6,7,8,9]))

Figure 9: Random Forest Model

we are reshaping the input values into a 2D array with one column as required by
the model and train the model on these input values. Figure [0 shows the code
snippet for SVR model.

4.2.3 Deep Learning Models

We are predicting auto-scaling using two deep learning models: Gated recurrent unit
(GRU) and an ensemble model- CNN_LSTM Model.

e CNN_LSTM Model: The primary concept behind using these models on time-series
data is that while CNN models are beneficial in extracting the valuable features and
may filter out the noise of the input data, LSTM networks are capable of capturing
sequence pattern information. The model workflow is explained as below: Input
data is loaded and reshaped to 3d array format as samples, time steps and features.
A sequential model is then created and convolution model is applied for feature
extraction. then LSTM is applied for sequence modelling. Finally a dense layer is
added to prediction output. We are using Adam optimizer with learning rate set to
0.0001. also loss parameter is set to mean squared error. then the model is trained
for 1000 epochs with batch size of 128. after 1000 epochs, the loss value remains
constant. Figure 10| shows the training for CNN_LSTM model.

e Gated recurrent unit Model: the workflow of model is as follows: The input data
is loaded and it contains the features x and targets y. A Sequential Keras model is
created. A GRU layer is added to the model to handle the sequential nature of the
data. The input shape is set to (9,1) based on the 9 time steps. A Dense output
layer is added for making a single value prediction. The model is compiled with
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model.fit(x,y,epochs=1000,batch_size=128)
Python

Epoch 1/1@600

2023-98-04 90:06:29.790287: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:@] (DEBUG INFO) Executor s
[[{{node gradients/split_2 grad/concat/split_2/split dim}}]]

2023-08-04 ©00:06:29.791213: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:@] (DEBUG INFO) Executor
[[{{node gradients/split_grad/concat/split/split dim}}]]

2023-08-84 00:06:29.791860: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:@] (DEBUG INFO) Executor
[[{{node gradients/split_1_grad/concat/split_1/split_dim}}]]

2023-08-84 00:06:30.168644: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:@] (DEBUG INFO) Executor
[[{{node gradients/split_2_grad/concat/split_2/split_dim}}]]

2023-08-84 00:06:30.169509: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:@] (DEBUG INFO) Executor
[[{{node gradients/split_grad/concat/split/split_dim}}]]

2023-08-84 00:06:30.170147: I tensorflow/core/common_runtime/executor.cc:1197] [/device:CPU:@] (DEBUG INFO) Executor
[[{{node gradients/split_1_grad/concat/split_1/split_dim}}]]

2023-08-84 90:06:31.602249: I tensorflow/compiler/xla/service/service.cc:169] XLA service Ox7ef99813f260 initialized f|

2023-08-04 ©0:06:31.602269: I tensorflow/compiler/xla/service/service.cc:177] StreamExecutor device (@): NVIDIA GeFd]

2023-08-04 ©00:06:31.632212: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash re

2023-08-84 00:06:31.887443: / ] Compiled cluster using XLA! This line

] - 3s 3s/step - loss
Epoch 2/1ee8

1/1 [= Sms/step loss: 1.8699
Epoch 3/1008
1/1 [ 4ms/step loss: 1.0553
Epoch 4/1000
1/1 [= Sms/step - loss: 1.0408
Epoch 5/1000
1/1 [= 4ms/step loss: 1.8265
Epoch 6/1600
1/1 [ 4ms/step - loss: 1.0122
Epoch 7/1000
1/1 [= 4ms/step - loss: ©.9980
Epoch 8/1eee
1/1 [ 4ms/step - loss: ©.9849
Epoch 9/100@

4ms/step loss: 8.9768

éms/step loss: ©.9562
Epoch 11/1eee
1/1 [= 4ms/step loss: ©.9425
Epoch 12/1@ee
1/1 [= 4ms/step loss: ©.9288
Epoch 13/10ee
1/1 [ 3ms/step - loss: ©.9153

Epoch 999/1000
1/1 [ 3ms/step : 9.1205e-04
Epoch 1000/1000
1/1 [= 4ms/step : 9.1205e-84

Figure 10: CNN_LSTM Model



model. fit(x,y, -100) ®

Epoch 1/100
282

202
2623-0

202

5

5.0.1

Once

Python

[/device:CPu:@] (DEBUG INFO) Executor start aborting (this does not indicate an error and you can ignore this message): IN
~flow/core/common_runtime or.cc:1197] [/device:CPU:0] (DEBUG INFO) Executo rt aborting (thi >t indicate an error and you can ignore thi
rad/concat/split/split_di

u/ core/common_runt ime or.cc:1197] [/device:CPU:0] (DEBUG INFO) Executor start aborting (this does mot indicate an error and you can ignore this messag
it_1/spli

or.cc:1197] [/device:CPU:@] (DEBUG INFO) Executor start aborting (thi: >t indicate an error and you can ignore thi
or.cc:1197] [/device:CPU:@] (DEBUG INFO) Executo rt aborting (thi ot indicate an error and you can ignore thi:
or.cc:1197] [/device:CPU:0] (DEBUG INFO) Executo rt aborting (thi >t indicate an error and you can ignore thi:

de gradients,
1: 260"

- loss: 1.
- loss: 8.6746
- @s 3ms/step - loss
- @s 3ms/step - loss
- @s 2ms/step - loss: ©.8856
- 05 3ms/step - loss: 0.8
- @s 2ms/step - loss
- @s 3ms/step - loss:
- @s 3ms/step - loss:
- @s 3ms/step - loss:
- @5 3ms/step - loss:

- es - loss:

Figure 11: GRU Model

Adam optimizer using a learning rate of 0.001 and MSE loss function. The model
is trained for 100 epochs by fitting on the input x and target y data. The trained
GRU model is then saved. Figure[11]shows the GRU model training for 100 epochs.

Execution and Results

Execution steps

we have Environment setup and all the project files copied to destination path, we

are now good to execute the models. We have created python files for invoking all the
components specified in project methodology for each Model.

Data generation: Code for generating data is stored in sequence.py python file.
Executing this file creates ds.pkl file which will be used for training ML and deep
learning algorithms. Also a sample graph is plotted to visualize the generated data.
Figure[12|shows sample plot of dataset generated using sequence.py Figure [13[shows
the command for generating synthetic data. We can see the output file ds.pkl
created after executing the python file.

Train Algorithms: We use the synthetic dataset generated in above step to train
Moving_avg, RF, SVR, GRU, CNN_LSTM algorithms. Figure [14] Figure [15] and
Figure [16| shows the output generated for Model training.

For moving_avg we had fed input as [1,2,3,4,5] resulting in average of 3 as shown in
Figure [14] We could see different predicted capacity for different models.
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Figure 12: Dataset graphical representation

S python3 sequence.py
S 1s -1rth

total 512K
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
drwxrwxr-x
drwxXrwxr-x
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-T--
-TW-TW-r--
-TW-TW-T--
-TW-TW-T--

ubuntu ubuntu 43K 3 gru_notebook.ipynb
ubuntu ubuntu 1.3K B y.C5V

ubuntu ubuntu 9.8K B X.C5V

ubuntu ubuntu 4.8K

ubuntu ubuntu 4.8K

ubuntu ubuntu 134K 10 11:41 cnn_Llstm.ipynb
ubuntu ubuntu 11K 10 13: ds.csv

ubuntu ubuntu 1812 11 15:21 scaler.py

ubuntu ubuntu 1.4K 11 15: node.py

ubuntu ubuntu 667 3l alg cnn_lstm.py

ubuntu ubuntu 878 3l alg Execute CNN_LSTM.py
ubuntu ubuntu 860 3l al5g Execute_ GRU.py
ubuntu ubuntu 892 SIS Execute_moving_avg.py
ubuntu ubuntu 886 SIS Execute RF.py
ubuntu ubuntu 882 11 15: Execute SVR.py
ubuntu ubuntu 6606 11 15: gru_model. py
ubuntu ubuntu 1.9K 11 15: job.py

ubuntu ubuntu 237 3l alg mean_model.py
ubuntu ubuntu 547 3l alg rf_model.py

ubuntu ubuntu 568 11 18: svr_model. py
ubuntu ubuntu 922 12 13:17 sequence.py

ubuntu ubuntu 382 12 13:18 test.py

ubuntu ubuntu 27K : a3 cnn_lstm.pkl
ubuntu ubuntu 27K : a3 gru.pkl

ubuntu ubuntu 27K : 1: rf.pkl

ubuntu ubuntu 27K : 1: svr.pkl

ubuntu ubuntu 27K : 1: avg.pkl

e e T o T T e e e e S O = LS B P QST STy

Figure 13: Data Generation
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python3 mean_model.py

3.0
python3 rf model.py

python3 svr_model.py
9.875

U instructions in

Figure 15: GRU Model Training

e Execute Trained Models on dynamically generated loads: code for this step are
included in Execute_Model.py files. Executing these files creates jobs with random
loads and the scalar component loads the respective algorithm in the file and pre-
dicts the capacity required- the scaling factor to which the resource allocation unit
vertically scales the node. visualizer plots graphs for the log data generated by
resource allocation unit.

Executing these files creates jobs with random loads and the scalar component loads
the respective Model and predicts the capacity required - the scaling factor to which the
resource allocation unit scales the node. visualizer plots graphs for the log data generated
by resource allocation unit. Figure [I7, Figure Figure [§] Figure 20| Figure [21] shows
the sample output generated when executing these files for Moving_avg, RF, SVR, GRU,
CNN_LSTM models respectivelly.

We Could see in figures that jobs are first loaded and scaler component predicts
the required capacity, then the node is scaled to the predicted capacity. Once the task
is assigned to the node, if the predicted capacity is less than the required capacity to
execute the task, the task has to wait until the node has capacity to execute the job. We
can see in the same in sample outputs for few cycles the job executes as soon as it is
assigned to node. But for few some cycles, job is delayed for a while.

The visualizer component generates graphs and uploads the same to Amazon S3
bucket. Figure [22| shows the graphs generated and stored in AWS S3 accounts.

le CPU instructions in

Figure 16: CNN_LSTM Model Training
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B $ python3 Execute_moving_avg.py
Added job with load value: 1.038584475237713, Cycle: 1
Added job with load value: 1.1572847978126335, Cycle: 2
Added job with load wvalue: 1.1875535753966915, Cycle: 3
Added job with load wvalue: 1.2487194973869002, Cycle: 4
Added job with load wvalue: 1.37649170336611, Cycle: 5
Added job with load wvalue: 1.375301708226373, Cycle: 6
Added job with load wvalue: 1.4425436106910472, Cycle: 7
Added job with load value: 1.4325192683821664, Cycle: B
Added job with load value: 1.4769519461139733, Cycle: 9
Loader is executing
Added job with load value: 1.506946409983137, Cycle: 18
Executing scaler for job lead: 1.506946409983137
Predicted capacity: 1.3551458352621146
Mode capacity scaled to: 1.3551458352621146
Job with load factor 1.506946409983137 delayed due to resource underuse.
Job executed on node with load factor: 1.506946409983137
Scaler executed for job load: 1.506946409983137

Added job with load value: 1.479360659768233, Cycle: 11

Executing scaler for job load: 1.479360659768233

Predicted capacity: 1.39093204214607

Mode capacity scaled to: 1.390893204214607

Job with load factor 1.479360659768233 delayed due to resource underuse.
Job executed on node with load factor: 1.479360659768233

Scaler executed for job load: 1.479360659768233

Figure 17: Moving_avg Model Execution on dynamically generated task

B S python3 Execute_RF.py
Added job with load value: 1.0063207137354588, Cycle: 1
Added job with load value: 1.1459475064867468, Cycle: 2
Added job with load wvalue: 1.250955334288287, Cycle: 3
Added job with load value: 1.3187432441713167, Cycle: 4
Added job with load value: 1.304809387990353, Cycle: 5
Added job with load value: 1.335183161589374, Cycle: 6
Added job with load value: 1.413942472304122, Cycle: 7
Added job with load value: 1.4149798436068137, Cycle: 8
Added job with load value: 1.4369478250929877, Cycle: 9
Loader is executing
Added job with load value: 1.4173617469580866, Cycle: 10
Executing scaler for job load: 1.4173617469580866
Predicted capacity: 1.4235707680185639
Mode capacity scaled to: 1.4235707680185639
Job with load factor 1.4173617469580866 executed successfully.
Job executed on node with load factor: 1.4173617469580866
Scaler executed for job load: 1.4173617469580B66

Added job with load value: 1.449068323229044, Cycle: 11

Executing scaler for job load: 1.449068323229044

Predicted capacity: 1.4395852833986282

Mode capacity scaled to: 1.4395852833986282

Job with load factor 1.449068323229044 delayed due to resource underuse.
Job executed on node with load factor: 1.449068323229044

Scaler executed for job load: 1.449068323229044

Figure 18: RF Model Execution on dynamically generated task
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B S python3 Execute_ SVR.py
Added job with load value: 1.090641409527635, Cycle: 1
Added job with load value: 1.1564025346174727, Cycle: 2
Added job with load wvalue: 1.22439086297162588, Cycle:
Added job with load value: 1.2528731880256052, Cycle:
Added job with load value: 1.3305177336640515, Cycle:
Added job with load value: 1.3898710359210895, Cycle:
Added job with load value: 1.3756924374674924, Cycle:
Added job with load value: 1.3978521285231036, Cycle:
Added job with load value: 1.4090229685368048, Cycle:
Loader is executing
Added job with load value: 1.480489772010784, Cycle: 10
Executing scaler for job load: 1.480489772010784
Predicted capacity: 1.396000623703003
Node capacity scaled to: 1.396000623703003
Job with load factor 1.480489772010784 delayed due to resource underuse.
Job executed on node with load factor: 1.480489772010784
Scaler executed for job load: 1.480489772010784

R R e e e e e
OO0 = Shobn B W

Added job with load walue: 1.4672953648927152, Cycle: 11

Executing scaler for job load: 1.4672953648927152

Predicted capacity: 1.3965180465153284

Mode capacity scaled to: 1.3965180465153284

Job with load factor 1.4672953648927152 delayed due to resource underuse.
Job executed on node with load factor: 1.4672953648927152

Scaler executed for job load: 1.4672953648927152

Added job with load value: 1.4231265336625583, Cycle: 12

Executing scaler for job load: 1.4231265336625583

Predicted capacity: 1.39429800851840648

Node capacity scaled to: 1.3942980051040648

Job with load factor 1.4231265336625583 delayed due to resource underuse.
Job executed on node with load factor: 1.4231265336625583

Scaler executed for job load: 1.4231265336625583

Added job with load walue: 1.379312191179126, Cycle: 13
Executing scaler for job load: 1.379312191179126

Predicted capacity: 1.405503749847412

Node capacity scaled to: 1.405503749847412

Job with load factor 1.379312191179126 executed successfully.
Job executed on node with load factor: 1.379312191179126
Scaler executed for job load: 1.379312191179126

Figure 19: SVR Model Execution on dynamically generated task
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8 S python3 Execute_G
2023-08-13 15:05:56.892496: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-08-13 15:05:56.935511: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-88-13 15:05:57.591989: W tensorflow/conpiler/tf2tensorrt/utils/py utils.cc:38] TF-TRT Warning: Could not find TensorRT
Added job with load value: 1.824985917656756,
Added job with load .1018388620205226,
Added job with load
Added job with load 1.2664077542063412,
Added job with load 1.359787691068134,
Added job with load 1.4192783214611135,
job with load 1.4277463833176602,
with load 1.4682001105016225, Cycle: 8
with load 1.4295642162978848, Cycl
xecuting

with load value: 1.4466094958162445, Cycl
Executing scaler for job load: 1.4466694958162445
1/1 [ ] - s 268ms/step
Predicted capact 1.2998627424240112

i 1.2998627424240112
Job with load factor 1.4466094958102445 delayed due to resource underuse.
Job executed on node with load factor: 1.4466094958102445
Scaler executed for job load: 1.4466094958102445

Added job with load value: 1.4586248409831564, Cycle: 11

Executing scaler for job load: 1.4586248409831564

1/1 [ - 8s 1dns/step

Predicted capacit

Node capacity scaled to: 1.3109042644500732

Job with load factor 1.4586248489831564 delayed due to resource underuse.
Job executed on node with load factor: 1.4586248489831564

Scaler executed for job load: 1.4586248409831564

Figure 20: GRU Model Execution on dynamically generated task

$ python3 Execute_CNN_LSTM.py

2023-08-13 15:06:52.575837: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used
2023-08-13 15:06:52.618903: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used
2023-08-13 15:06:52.619414: I tensorflow/core/platforn/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-08-13 15:06:53.270231: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
Added job with load e: 1.0186749131633979, Cycle
Added job with load e: 1.1762775880978076, Cycle

job with load e: 1.2492608814842479, Cycle:

job with load e: 1.3076602905588963, Cycle

job with load e: 1.3446671679225919, Cycle:

job with load e: 1.408660429343624, Cycl

job with load e: 1.428285878248388, Cycle:

job with load e: 1.4913838254389118, Cycle

job with load e: 1.4232525626095347, Cycle:
Loader is executing
Added job with load 1.4662550623645054, Cycle:
Executing scaler for job load: 1.4662550623645054
1/1 1 - ©s 336nms/step
Predicted capacity: 1.3218523263931274
Node capacity scaled to: 1.3218523263931274
Job with load factor 1.4662550623645054 delayed due to resource underuse.
Job executed on node with load factor: 1.4662550623645054
Scaler executed for job load: 1.4662550623645054

Added job with load value: 1.4165249216023488, Cycle: 11

Executing scaler for job load: 1.41652492160234088

1/1 ] - 0s 13ns/step

Predicted capacity: 1.3456840515136719

Node capacity scaled to 1.3456840515136719

Job with load factor 1.4165249216023408 delayed due to resource underuse.
Job executed on node with load factor: 1.4165249216023408

Scaler executed for job load: 1.4165249216023408

Figure 21: CNN_LSTM Model Execution on dynamically generated task

Amazons3 ) Buckets » x21230064

x21230064 .

Objects Properties Permissions Metrics Management Access Points

Objects (12)

re the fundamental entities stored in Amaz se Amazon 53 Inventory [ all objects in your bucket. your abjects, youl need to explicitly grant them permissions. Learn more [
s by prefix 1 (o]

[} Name a | Type v | Lastmodified v | size v | storageclass v
a O delay_bar_chartpng png August 13, 2023, 15:45:36 (UTC+01:00) 28.9KB Standard
a [ error_bar_chartpng png ‘August 13, 2023, 15:45:36 (UTC+01:00) 29.0KB Standard
a @ Load_vs_capacityCNN_LSTM.png png August 13, 2023, 16:08:26 (UTC+01:00) 45.6 KB Standard
a O Load_vs_CapacityGRU.png png August 13, 2023, 16:09:12 (UTC+01:00) 45.1 KB Standard
a O Load_vs_Capacitymoving avg.png png ‘August 13, 2023, 16:07:37 (UTC+01:00) 44.7 KB Standard
(] B toad_vs_capaciyrandom forest png August 13, 2023, 16:11:14 (UTC+01:00) as.1ke standard

ensemble.png
a [ Load_vs_CapacitySVR.png png August 13, 2023, 14:48:52 (UTC+01:00) 48.6 KB Standard
a [ overused_vs_Underused_CNN_LSTM.png png August 13, 2023, 16:08:27 (UTC+01:00) 38.7 KB Standard
[m) @ overused_vs_underused_GRU.png png August 13, 2023, 16:09:13 (UTC+01:00) 42.0KB standard
a [ overused_vs_Underused_moving avg.png png August 13, 2023, 16:07:38 (UTC+01:00) 38.9KB Standard
] D Overused_vi_Underused random forest png August 13, 2023, 16:11:14 (UTC+01:00) 45.1KB standard

ensemble.png
a @ overused_vs_Underused_SVR.png png August 13, 2023, 14:48:53 (UTC+01:00) 40.0 KB Standard

Figure 22: Graphs stored in AWS S3 bucket
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5.1 Evaluation Metrics

We have used the following evaluation metrics to compare models performance in pre-
dicting auto-scaling;:

e Overused_vs_Underused: this graph represents whether the predicted capacity for
executing the job resulted in over usage or an under utilization of resource.

e Combined error: this is a bar chart representation showing the combined error for
different models. Error history from different model instances are retrieved and
sum of absolute error values are then plotted.

e Delayed_tasks: This is a graph showing the number of delayed tasks for different
models. It retrieves the error history from different model instances and counts the
number of delayed tasks (where error ; 0) for each model. The number of delayed
tasks for different models is then plotted using matplotlib as a bar chart.

e Load vs Capacity: This graph represents the actual load versus predicted load
required for executing the task for each model.
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