

Dynamic Scheduling in Edge-Cloud Computing

Environments using metaheuristic techniques

MSc Research Project

Research in Computing CA2

Javed Abidali Shaikh

Student ID: 21171581

School of Computing

National College of Ireland

Supervisor: Sean Heeney

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Javed Abidali Shaikh

………………………………………………………………………………………..

Student ID:

21171581

…………………………………………………………………………………………….

Programme

:

MSc in Cloud Computing

………………………………………………

Year:

 2022-23

………………………….

.

Module:

Research in Computing

……………………………………………………………………………………………

Supervisor

 Sean Heeney

…………………………………………………………………………………………………

Submission

Due Date:

14th August 2023 at 2:00pm

………………………………………………………………………………………

Project

Title:

Dynamic Scheduling in Edge-Cloud Computing

Environments using Metaheuristic Techniques

………………………………………………………………………………………

Word

Count:

………………………………………

Page Count:

……………………………………..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

 Javed Abidali Shaikh

……………………………………………………………………………………………………

Date:

14th August 2023

……………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project

(including multiple copies)

□

Attach a Moodle submission receipt of the online

project submission, to each project (including multiple

copies).

□

You must ensure that you retain a HARD COPY of the

project, both for your own reference and in case a project

is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office

must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if

applicable):

1

Dynamic Scheduling in Edge-Cloud Computing

Environments using Metaheuristic Techniques

Javed Abidali Shaikh

21171581

Abstract

Cloud computing has been expanded by fog/edge computing to the network's edge,

where data sources and devices are located. For use cases like the Internet of Things (IoT)

and other time-sensitive tasks, it attempts to provide low-latency, real-time data analysis

and processing. In the fields of distributed computing and cloud computing, ideas like

scheduling jobs, makespan, and resource utilization are fundamental. They gain

considerably greater significance when used in a fog computing environment because of

the specific attributes of fog/edge computing devices. The capacity of metaheuristic

techniques to tackle dynamic, complicated, and frequently NP-hard optimization problems

makes them ideal for dynamic job scheduling in cloud systems. In this study, we propose

to apply particle swarm optimization (PSO) and artificial bee colony optimizer (ABC)

algorithms for the task scheduling problem. The key objective is to minimize the

makespan and thereby maximizing the usage of resources. The proposed work was

implemented on the CloudSim simulation framework configured to represent the edge

cloud infrastructure and the scheduling algorithms were trained on two workload datasets

for benchmarking. The study assesses the performance of these two metaheuristic

algorithms along with other baseline approaches and offers insights into how well they

can improve scheduling performance and cloud resource management through extensive

experiments and analysis.

1 Introduction

A strategy for providing on-demand computational resources and services, such as processing

speed and data storage, over the Internet is called cloud computing (Mouradian et al.; 2017).

The main restriction is the end devices' connectivity to the cloud as these connections are made

via the Internet, which makes them unsuitable for a variety of cloud-based applications,

including those that depend on latency. Additionally, cloud-based apps are frequently spread

and comprised of several parts. As a result, it is normal practice to deploy individual application

components across various clouds. Given that this new class of IoT applications requires a low

response latency, the emergent Edge-Cloud computing paradigm appears to be promising (Jiao

et al.; 2013).

Task scheduling and resource allocation are vital activities in contemporary dynamic cloud-

enabled systems. The process of scheduling tasks entails the allocation of these tasks to

processors that are both available and efficient. Furthermore, the process of resource allocation

includes the formulation of a policy that governs the distribution of resources across different

2

tasks, with the aim of optimizing resource use. Nevertheless, the task of scheduling in the edge

computational framework poses significant challenges as a result of various reasons. The key

factor contributing to the significant variations in compute server capacity, speed, response

time, and energy consumption between local nodes at the edge and remote cloud nodes is

heterogeneity. Additionally, it is worth noting that computers located in the cloud and edge

layers may exhibit various characteristics. Furthermore, the mobility aspect of the Edge

paradigm results in a constant fluctuation of bandwidth between the data source and

computation nodes. This necessitates the continuous implementation of dynamic optimization

strategies in order to effectively fulfil the requirements of various applications. The stochastic

nature of the Edge-Cloud environment manifests in various aspects, such as the rate at which

tasks arrive, the duration of labour, and the resource demands, hence exacerbating the

challenges associated with scheduling. In order to optimize resource utilization, save costs, and

improve the quality of service for applications, dynamic task scheduling becomes necessary in

stochastic environments (Tuli et al.; 2020).

1.1 Motivation

Fog computing utilizes edge devices and nodes in close proximity to the data source, hence

mitigating data transmission latency and enhancing response times. The implementation of

dynamic task scheduling aims to optimize the allocation of jobs to fog nodes in close proximity,

hence reducing communication delays and improving the real-time performance of

applications. Therefore, the waiting time for jobs, the length of the waiting queue and the time

taken to complete a job from its initiation (makespan) are significant metrics for evaluating the

quality of services provided by cloud providers (Ben Alla et al.; 2018). Consequently, it is

crucial to take these limits into account during the design of a scheduling algorithm.

1.2 Research Problem

The research problem involves the development of efficient and adaptable task-

scheduling algorithms for fog scenarios. These algorithms aim to optimize many conflicting

objectives, such as minimizing makespan, optimizing resource utilization, and enhancing

energy efficiency. This subject pertains to the resolution of challenges related to job allocation,

load balancing, and resource management inside a fog environment that is characterized by

dynamic changes and limited resources. The issue of scalability and heterogeneity in fog

environments is tackled through the development of metaheuristic algorithmic approaches

(Tawfeek and Elhady; 2016; Zhou et al.; 2018) that possess the capability to manage a

significant quantity of jobs and resources, all the while ensuring computational efficiency. The

proposed methods aim to improve the operational effectiveness, promptness, and optimal use

of resources in fog computing systems. This, in turn, facilitates the effective implementation

of time-critical applications in diverse fields.

1.3 Research Question

Q: Can metaheuristic approaches like PSO and ABC effectively address the task scheduling

challenges in fog environments by optimizing the makespan time to improve resource

utilization?

3

1.4 Research Objective

The main objective of this study is to enhance task scheduling and allocation in real-time or

near-real-time situations in fog computing environments. This is achieved by taking into

account the dynamic nature of these environments, the diverse characteristics of tasks, and the

availability of resources. The proposed approaches, namely Particle Swarm Optimization

(PSO) and Artificial Bee Colony (ABC) metaheuristic algorithms, are utilized to minimize the

makespan and enhance resource allocation.

1.5 Research Contribution

The objective of this study is to enhance the allocation of tasks across fog nodes and cloud

resources in real-time, while taking into account dynamic changes in task arrivals, execution

times, and available resources. This optimization is conducted within the CloudSim simulation

framework.

1) This study makes a significant contribution by employing Particle Swarm Optimization

(PSO) and Artificial Bee Colony (ABC) techniques to address the work scheduling

challenges in stochastic and heterogeneous fog computing environments. This entails

modifying the exploration and exploitation processes of algorithms in order to successfully

manage varying job demands and resource availability.

2) This study aims to compare the PSO and ABC techniques with baseline scheduling

algorithms, namely Shortest Job First (SJF) and First-Come-First-Served (FCFS), in terms

of optimizing the makespan for both space-shared and time-shared scheduler

implementations.

1.6 Thesis structure

The present research report is structured into five distinct sections:

• Section 1 provides an introduction to the study background and outlines the factors that

inspired the decision to pursue additional investigation in this area. Additionally, it

elucidates the research topic and provides a response to the research question.

• Section 2 provides a comprehensive analysis of prior research conducted in the field,

organizing it into subcategories according to its breadth, methodology, and relevance to

the proposed strategy.

• Section 3 provides a comprehensive exposition of the research methodology in order to

enhance the understanding of the research topic.

• Section 4 of this paper presents the design specifications of the suggested technique,

accompanied by mathematical modeling and a theoretical foundation.

• Section 5 elucidates the implementation particulars of the proposed methodologies,

expounding upon the specific tools and data sources employed.

• Section 6 provides a thorough examination of the study's outcomes and primary

discoveries, along with an exploration of the implications derived from these findings.

4

• Section 7 provides a comprehensive summary of the research conducted and also

highlighting the potential avenues for future research scope.

2. Related Work

2.1 Task scheduling in cloud

In order to optimize task scheduling performance and reduce non-optimal task allocation in

cloud computing environments, (Zhang and Zhou; 2017) presented a two-stage strategy-based

approach. In the initial phase, a job classifier that is inspired by the design principle of a Bayes

classifier was developed. The utilization of past scheduling data is employed to categorize

activities deployed in a cloud computing environment. The setting up of VMs was carried out

in a manner to reduce the time required for the creation of VMs. (Hammoud et al.; 2019)

proposed an academic approach that utilizes genetic algorithms and evolutionary game theory

to investigate the challenge of establishing federated clouds with high profitability, while

accounting for dynamic strategies. The researchers address the issue of optimizing the

formation of federations to maximize overall profitability through the utilization of Genetic

Algorithms (GA), while also ensuring stability within the federations. The study revealed that

the utilization of the evolutionary game model yielded superior outcomes in terms of

profitability and quality of service (QoS) as a result of its inherent ability to attain a state of

stability.

In their study, (Luo et al.; 2018) proposed an improved iteration of the Particle Swarm

Optimization (PSO) algorithm with the aim of minimizing the makespan and enhancing

resource utilization within cloud computing systems. The authors suggest modifying the

particle weights to account for variations in the number of repetitions and introducing random

weights during the final stages of the Particle Swarm Optimization (PSO) approach. The

primary goal is to mitigate the generation of local optimum solutions in the concluding PSO

stages. Tawfeek and Elhady. (2016) presented the Ant Colony Optimization (ACO) algorithm

to determine the best resource distribution for tasks in a dynamic cloud-based architecture to

reduce the total system makespan. The scheduling approach was implemented through

simulation using the Cloudsim toolkit package. The experimental findings, when compared to

the First Come First Served (FCFS) and Round Robin (RR) algorithms, demonstrate that the

ACO algorithm successfully meets the expected outcomes. The study proposed by (Elhady and

Tawfeek; 2015) examined three potential methodologies suggested for the purpose of dynamic

task scheduling in the context of cloud computing. The three methodologies belong to the

domain of swarm intelligence was employed to address challenging or infeasible combinatorial

problems. These methodologies drew inspiration from the behavior exhibited by ant colonies,

particle swarms, and honeybees during foraging activities. The primary objective was to

conduct an evaluation and comparative analysis of the various ways employed to minimize the

makespan of a particular collection of jobs. The effectiveness of the algorithms is simulated

using the toolkit package of CloudSim.

The researchers proposed in (Reddy and Phanikumar; 2018), an enhanced version of the ACO

optimization algorithm with the objective of improving performance within the CloudSim

5

framework. This was accomplished by selecting several processors, minimizing the makespan,

and achieving a high convergence speed in the shortest possible time. The primary objective

of modified ACO (MACO) is the intentional allocation of pheromones to virtual machines,

taking into consideration their respective efficiency. Additionally, MACO also considers

factors such as processing speed, makespan, and bandwidth when allocating jobs.

2.2 Task scheduling in Fog/Edge Networks

In a First-Come-First-Serve (FCFS) scheduling system proposed by (Mathew et al.; 2014), a

new task upon arrival was appended to the tail of the queue and the initial task in the queue

was always executed first. This approach was characterized by its straightforward

implementation. The round-robin (RR) scheduling approach is derived from FCFS method,

which aims to allocate resources to tasks at predetermined time intervals. One of the benefits

of employing this particular method is the implementation of load-balancing. The priority

scheduling algorithm presented by (Wu et al.; 2013) categorizes jobs according to their priority

and the consideration of these priorities based on QoS factors where the tasks were given

resources that have the most efficient completion time. The scheduling algorithm known as

Multi-objective Heterogeneous Earliest Finish Time (MOHEFT) proposed by (Durillo and

Prodan; 2014) was based upon the concept of Pareto solutions. The optimization of makespan

and cost is rooted in the utilization of workflow apps within the context of the Amazon

commercial cloud. The multi-objective algorithm MOHEFT is highly appealing due to its

inherent versatility. Empirical evidence has demonstrated that in certain instances, a modest

5% improvement in makespan can result in a noteworthy reduction of expenses by half.

The Min-Min scheduling algorithm operates by selecting the smallest job from the pool of

available tasks and assigning it to a resource. The selected job is then executed for the lowest

amount of time required to complete it. This approach results in an increase in the makespan.

The Max-Min approach is a strategy that involves selecting the task with the longest duration

from a given set of tasks and assigning it to the machines with the highest processing speed for

execution. This approach necessitates that smaller jobs endure longer waiting periods, resulting

in an augmented makespan. Nevertheless, this approach demonstrates a superior makespan in

comparison to the methods employed by other researchers (Gasmi et al.; 2022). The task

scheduling in the iFogsim environment utilizes the FCFS, concurrent, and DP scheduling

approaches, as discussed in (Bittencourt et al.; 2017). The researchers presented two case

studies and conducted an analysis of the findings, focusing on variables such as delay, total

network utilization, and the number of application modules. These variables were examined in

relation to the number of users. The findings indicate that the delay-priority technique yields

the lowest latency, while the concurrent method results in the least network use.

In their study, (Wang et al.; 2017) employed ACO as a methodology for addressing the resource

requirements of mobile cloud computing. The aforementioned approach involves the execution

of offloaded tasks on fog devices (FDs) with the aim of achieving objectives related to delay,

completion time, and energy consumption. The temporal sequencing of their simulation is

contingent upon the quantity of cycles, tasks, and ants. Wang et al. (2014) employed a multi-

objective genetic algorithm (GA) to effectively minimize energy consumption and enhance

profitability for the service provider. The Pareto principle was employed to determine the most

6

optimal selection among the available options, taking into consideration the prevailing needs

at a given time. The simulation findings obtained from CloudSim demonstrate a reduction in

energy consumption rates for the service provider by 44.46%.

Yassa et al. (2013) introduced a methodology that combines PSO with HEFT. The primary

objective of the algorithm is to maximize efficiency in terms of minimizing makespan, cost,

and power usage. The algorithm commences by initializing the position and velocity of

particles in the PSO technique. The HEFT algorithm is iteratively employed multiple times in

order to identify an optimal solution that minimizes the makespan. The findings indicate that

their methodology not only exhibits superior cost and power efficiency, but also enhances the

makespan. The scheduling challenge in the fog computing environment was addressed by the

authors (Bitam et al.; 2017) through the proposal of a bio-inspired solution that utilized the

Bees Life algorithm. The proposed technique was predicated on the allocation of a collection

of jobs among all functional dependencies (FDs). The examination of the CPU's execution time

and allocated memory via FDs subsequent to simulation revealed that this approach exhibits

superior performance compared to both PSO and GA.

Zade et al. (2021) proposed a multi-objective approach that combines the Hitchcock bird

algorithm and fuzzy signature to address the job scheduling problem in cloud computing. The

authors saw enhancements in makespan and resource utilization when comparing their

proposed approach to both the Moth Search Algorithm with Enhanced Multi-verse optimizer

and the Fuzzy Modified PSO. The utilization of Opposition-based learning was also employed

in the study (Agarwal and Srivastava.; 2021) to optimize PSO for the purpose of job scheduling

within a cloud computing environment. The researchers enhanced the convergence of the

conventional PSO algorithm, as well as addressed the issues of energy consumption and

makespan.

2.3 Dynamic Task Scheduling Approaches

The primary aim of the study conducted by Dong et al. (2020) is to minimize expenses, with a

specific focus on addressing intricate scheduling challenges associated with several jobs. Given

the aforementioned circumstances, the authors proposed a technique rooted in a deep

reinforcement learning (DRL) framework. This approach aims to dynamically allocate tasks

with interdependencies to cloud servers, hence minimizing the overall execution time of

activities. Furthermore, to effectively tackle the challenge posed by the substantial

dimensionality and intricacy, the researchers employ a Deep Reinforcement Learning (DRL)

approach referred to as Deep Q-Network (DQN). Liu et al. (2017) put forth a proposition for a

two-phase framework that effectively tackles the challenges of resource allocation for virtual

machines (VMs) on servers and power consumption management on individual servers. The

authors commence their study by employing Deep Reinforcement Learning (DRL) as a means

to accomplish VM resource allocation on servers, constituting the preliminary phase of the

project. During the second phase, the Long Short-Term Memory (LSTM) model and shared

weights were employed to efficiently regulate the local power consumption of the servers.

Huang et al. (2022) proposed a PSO technique that relies on heuristics and is grounded in a

Lyapunov framework. The objective of this technique is to optimize energy usage in the context

of resource allocation inside a fog environment. The optimization of energy consumption in

7

IoT systems involves considering the energy utilized by IoT nodes, transmission power

utilization, and energy consumption while processing at the fog node. This balance enables the

scheduling of jobs with minimal energy consumption. In their study, Li et al. (2019b) employed

a hybrid genetic algorithm-particle swarm optimization (GA-PSO) approach to develop a load

balancing mechanism specifically tailored for molecular dynamics simulations conducted on

heterogeneous supercomputing systems. The results of their study exhibited a notable

enhancement in the efficacy of parallel computing. Long et al. (2022) presented a novel

approach for addressing the challenge of integrating new jobs into flexible job-shops.

Specifically, the proposed solution involves the utilization of a dynamic self-learning artificial

bee colony optimization algorithm, which aims to effectively solve the dynamic flexible job-

shop scheduling problem (DFJSP). By strategically organizing the processing sequence of jobs

and establishing appropriate relationships between operations and machines, it is possible to

reduce the makespan, enhance the economic benefits of the job-shop, and raise the utilization

rate of processing equipment.

The literature review conducted on task scheduling in Fog networks highlights the dynamic

and ever-changing characteristics of Fog computing systems. The paper provides a

comprehensive perspective on the difficulties and potential advantages related to enhancing

job allocation in such settings, establishing a basis for future scholarly investigation and

advancement in this domain. The selection of PSO and ABC metaheuristic techniques for real-

time job scheduling, with the objective of minimizing the makespan and enhancing resource

usage, was informed by prior research.

8

Table-I: Comparison of previous literature on task scheduling based on metaheuristic and deep

learning approaches

3. Research Methodology

3.1 Scheduling process in Fog/Edge Clouds

Resources are allocated not solely according to standard procedures, but rather based on the

existing workload, observable applications, and requests for virtual machines (VMs). The

fundamental objective of cloud service providers is to leverage the cloud infrastructure in order

to minimize execution time and costs, while also optimizing resource utilization. A cloud

scheduler employs several ways to enhance resource utilization and minimize both processing

expenses and time requirements during the allocation of jobs to virtual machines (VMs). The

concept of fog extends cloud services to the edge of the network. The allocation of application

execution in fog computing is contingent upon the utilization of an efficient task-

scheduling mechanism.

Figure 1 illustrates the hierarchical structure of the network, showcasing the location of various

components such as devices, fog layer, cloud layer, and scheduler. Customers at the device

layer have the ability to utilize fog/cloud resources in order to access and utilize various

services. This is made possible due to the presence of storage, compute, and networking

Research Technique Merits Shortcomings Test Environment

Mandal and

Acharyya.

(2015)

Meta-heuristic

swarm optimization

Low makespan Low reliability GCC Compiler

Ramezani et al.

(2013)

MOPSO Improved

PSO

Low execution time High energy

consumption

CloudSim

He et al.

(2016)

PSO Low makespan, low

energy consumption

Low scalability CloudSim

Madni et al.

(2019)

CSA Cuckoo Search Low makespan,

high resource

utilization

Low reliability CloudSim

Raju et al.

(2013)

Hybrid ACO, CSA Low makespan,

High throughput

Low resource

utilization

Real test environment

Sharma and

Garg (2019)

Hybrid GA with HS Low makespan, low

energy consumption

Low reliability CloudSim

Gabi et al.

(2019)

CSO & PSO Low makespan,

high resource

utilization

High computational

cost

CloudSim

Chaudhary et

al. (2017)

NPSO Low monetary cost Low reliability CloudSim

Yuan and Bi.

(2019)

Hybrid PSO with

GA

High throughput,

low energy

consumption

High makespan Real Test

environment

N.R.

Rajalakshmi et

al. (2019)

Deep Reinforcement

Learning (DRL)

VM consolidation

for energy

efficiency

Total hosts restricted Workload Dataset

El-Boghdadi et

al. (2019)

Deep Reinforcement

Learning (DRL)

Offline cloud

resource scheduling

No complex

scheduling problems

Workload Dataset

9

Figure 1: Scheduling process in a fog/edge cloud network

capabilities within these devices. In addition, a scheduler has the ability to guarantee static

resource allocation for new requests, as well as the option to optimize and realign both static

and dynamic resource allocation (Rahimikhanghah et al.; 2022).

In fog computing, task scheduling refers to allocating the proper resources to a task. The

utilization of appropriate resources in this context serves to reduce the overall completion time

of tasks (makespan), enhance the quality of service (QoS) provided to consumers, and optimize

efficiency. Virtualization plays a crucial role in the realm of cloud computing as it facilitates

the sharing of virtual resources and services that are distinct from the physical hardware on

which they are built. Alternatively, the application of dynamic allocation of virtual machines

(VMs) to servers can be employed as a means to decrease server demand and mitigate the

energy consumption of data centers. In a cloud computing context, scheduling can be

categorized into two distinct tiers. Initially, it is advisable to allocate virtual machines (VMs)

to hosts that are currently unoccupied. By implementing a methodical scheduling approach, it

becomes possible to achieve equilibrium in terms of system load distribution and energy

utilization. The allocation of virtual machines (VMs) onto physical computers can be

categorized as either dynamic or static, and several methods of VM migration can be employed.

The scheduling of arrival tasks should be done in such a way that they are allocated to a virtual

machine (VM) with adequate resources to meet the task requirements. Certain scheduling

approaches are designed to deactivate idle virtual machines (VMs) in order to optimize

resource use, conserve energy, and thereby improve resource utilization.

3.2 Proposed Scheduler architecture

Figure 2 depicts the system architecture for task scheduling based on the Particle Swarm

Optimization (PSO) algorithm. Customers who are interested in using cloud computing

services shall approach the cloud provider with their service requests. Subsequently, the cloud

10

Figure 2: PSO-Scheduler architecture

provider is required to identify an efficient scheduling solution for the workflow application

request that has been provided. The proposed scheduling solution represents the most efficient

task execution nodes (VMs) to minimize the overall makespan of the system. The same

scheduling architecture is applicable to artificial bee colony scheduler also.

4. Design Specifications

4.1 Problem Formulation

In every swarm intelligence algorithm that operates on a population-based approach, the

optimization process is comprised of two distinct phases: global search and local search.

Achieving a suitable equilibrium between the two stages enables the algorithm to effectively

converge towards the optimal global position within a reasonable timeframe. In order to

optimize the search method, it is recommended that algorithms prioritize the utilization of the

global search operator over the local search operator during the initial stages. This enables the

algorithm to effectively traverse a wider range of regions inside the search space, necessitating

a meticulous search approach in order to attain the global optimum (Huang et al.; 2020). In this

work, obtaining the global optimum involves the makespan minimization based on certain real-

time constraints. A fitness function is defined that asserts the quality of the swarm optimization

algorithm’s solution. The optimization problem can be phrased as an aim to minimize the

makespan in task scheduling. The term "makespan" refers to the duration required for all tasks

to finish their execution. The objective is to identify a task-to-resource assignment i.e cloudlet

to VMs that minimizes this duration. The following is the standard formula for minimizing the

makespan in a task scheduling problem:

𝑀 = 𝑚𝑎𝑥
𝑖=1

𝑛
 𝑚𝑎𝑥
𝑗=1

𝑚
 𝐶𝑖𝑗

where,

𝑛 - number of tasks

𝑚 - number of resources like fog nodes or edge devices

11

𝐶𝑖𝑗 - the completion time of task 𝑖 on resource 𝑗

𝑝𝑖𝑗 - the processing time of task 𝑖 on resource 𝑗

This research presents the implementation of two popular meta-heuristic algorithms, PSO and

ABC for achieving the objective of minimizing the makespan. The next sub-section discusses

in details the algorithm design and its mathematical modeling in sufficient detail. Finally,

CloudSim, the simulation environment used in this research for modeling the fog networks is

introduced.

4.1 PSO-based Task Scheduler

The evaluation of a particle's performance is quantified by a fitness value, which may be

determined by defining a fitness function that measures the effectiveness of the particle's

position.

𝑓 = Min (
𝑉𝑡𝑖𝑚𝑒

 𝑉𝑅𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
)

The variable 𝑉𝑡𝑖𝑚𝑒 is used to represent the execution time of virtual machines (VMs) for the

completion of all tasks. On the other hand, 𝑉𝑅𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is employed to indicate the resource

utilization of VMs while the tasks are being executed. Particles in the search process maintain

self-updating capabilities through the monitoring and recording of their two most optimal

places. The most widely recognized position, referred to as the local best position, is the

individual position that has achieved the highest fitness value thus far for the particle itself.

One well recognized position, referred to as the global best position, is the optimal location

within the entire population. The pseudo-code for the implementation is presented in

Algorithm-1.

 Algorithm-1: PSO Task Scheduler pseudocode.

 Input: Task, Particles

 Output: gBest

 for each 𝑃𝑖 do

 𝑝𝐵𝑒𝑠𝑡 = Generate_initial_position (𝑃𝑖)

 foreach 𝑝 Best of particle 𝑃𝑖 do

 gBest = Max (pBest 𝑡1, pBest 𝑡2, … .)

 repeat

 j1

 while 𝑗 ≤ 𝑚 do

 Select the task 𝑡𝑗

 Calculate_est (𝑡𝑗)

 Allocate_task (𝑡𝑗)

 j++

 foreach particle 𝑃𝑖 do

 Calculate cur_particle_fit: (current particle)

 if cur_particle_fit i pBest 𝑖−fit then

 Update(𝑝𝐵𝑒𝑠𝑡𝑖)

 if cur_particle_fit < 𝑔 Best 𝑖_fit then

 Update (gBest 𝑖)

12

 if the termination condition is met then

 Output 4𝑔 Best 𝑖; Break

 else

 foreach particle 𝑃𝑖 do

 Update(𝑃𝑖_velocity);

 Update(𝑃𝑖 position);

 until the termination condition is met.

4.2 ABC-based Task Scheduler

The method operates on a comparable notion of workload balancing for virtual machines

(VMs). The ABC method is utilized to assess the workload of a virtual machine and then

determine whether it is experiencing overload, is underutilized, or is operating at an optimal

level of balance. The task's high priority is not aligned with the overload virtual machine,

resulting in jobs being queued for the lightweight virtual machine. The subsequent stage

involves referring to these assignments as scout bees. The Load Balancing technique inspired

by ABC has been shown to effectively decrease the response time of VMs and minimize the

waiting time of tasks. The probability of calculating a new solution surrounding a food source

is calculated by onlooker bees using the following equation:

𝑝𝑖(𝑡) =
𝑓𝑖(𝑡)

∑  𝑇𝑆
𝑖=1 𝑓𝑖𝑡𝑖(𝑡)

𝑓𝑖𝑡𝑖(𝑡) – fitness value of task source i

TS – Total number of task sources

The pseudo-code for the implementation is presented in Algorithm-1.

Algorithm-2: ABC Task Scheduler pseudocode.

Require: Cloudlet list , VM list , Datacenter list, fac 𝐿𝐵

Groups(𝑞) ⟵ divide(Cloudlet list)

for i = 1 to q do

 length 𝑖 ⟵ lengthofgroupk (Groups 𝑖)

 end for

for k = 1 to q do

 Cloudlet 𝐿 ⟵max(Groups 𝑘)

 while Group 𝑘 ≥ Groups 𝑖 ∣ 𝑖 = 1… qand 𝑖 ≠ 𝑘 do

 for s = 1 to n do

 Datacenter 𝑠 ⟵ select (Datacenter list)

 if 𝑓𝑎𝑐𝐿𝐵 ≤ 𝑉𝑀𝑆 Assigned (Datacenter) then

 assign(𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿, Datacenter 𝑖≠𝑠(VM leastLoad))

 else

 Decrement (𝑙𝑒𝑛𝑔𝑡ℎ𝑘)

 end if

 end for

 end while

end for

13

4.3 CloudSim Architecture

CloudSim, an open-source platform, is employed for the purpose of simulating cloud

computing services and infrastructure. The software application is developed by the CLOUDS

Labs and is implemented entirely using the Java programming language. Simulating and

modeling a cloud computing environment is commonly employed to duplicate tests and

outcomes, serving as a means to evaluate a hypothesis prior to software development.The

CloudSim toolkit facilitates the modeling of both system and behavior aspects of Cloud system

components, including data centers, virtual machines (VMs), and resource provisioning

policies. The system has generic methods for provisioning applications that can be easily

expanded and require minimal effort. At present, the software facilitates the representation and

emulation of Cloud computing environments that encompass both individual clouds and

interconnected clouds.

Figure 3: CloudSim architecture

Figure 3 depicts the intricate design of the CloudSim software framework, showcasing its

various architectural components. The CloudSim simulation layer offers assistance in the

modeling and simulation of virtualized Cloud-based data center infrastructures. This includes

specific management interfaces for virtual machines (VMs), memory, storage, and bandwidth.

This layer is responsible for addressing fundamental concerns, including the allocation of hosts

to virtual machines. In order to investigate the effectiveness of various policies in allocating

hosts to virtual machines (VMs), a Cloud provider must execute their techniques at the VM

14

provisioning layer, where the proposed PSO and ABC in addition to other baselines algorithms

discussed earlier were written in this work.

The datacenter serves as the fundamental hardware component of a cloud system, and its

modeling is of utmost importance. This course provides methodologies for determining the

allocation rules for virtual machines (VMs), as well as addressing the functional requirements

of the datacenter and other relevant considerations.

The cloudlet class represents any task that is performed on a VM, including processing tasks,

memory access tasks, file update tasks, and so on. The class possesses methods that exhibit

similarity to those found in the VM class. It also retains parameters that describe many aspects

of a job, including its length, size, execution time, status, cost, and history.

A datacenter broker is a service that acts as a representative for the user or consumer. The

responsibility of managing the functioning of VMs, encompassing their creation, management,

termination, and the allocation of cloudlets to them, lies within its purview.

The implementation of the proposed scheduling policies on CloudSim and the execution of

those under real-time workload datasets on the cloud with the set parameters will be the

discussion of the next section.

5. Implementation

The whole code implementation of the scheduling algorithms, the datacenter creation, creating

the edge simulation environment are all done at the structured directories of the CloudSim

simulation engine. Task scheduling in CloudSim involves setting up a simulation environment

to model and evaluate different task scheduling algorithms in a cloud computing context.

A. DEFINE CLOUDSIM ENTITIES:

 Create classes to represent different CloudSim entities, such as Datacenter, Host, VM

(Virtual Machine), and Cloudlet (Task). In this work, Simulation.java code is used to create

the simulation environment with cloudlet scheduler type, broker type, number of cloudlets,

number of VMs etc., (see Figure 4).

Figure 4: Simulation.java Class

B. SET UP CLOUD RESOURCES:

• Create Datacenter entities representing cloud data centers.

• Define Hosts with their processing capacities, storage, and bandwidth.

• Create VMs with specific characteristics (e.g., MIPS, RAM, storage).

C. GENERATE CLOUDLETS (TASKS):

• Create Cloudlet objects to represent the tasks that need to be scheduled.

15

• Specify Cloudlet characteristics like length (execution time), input and output file

sizes, and utilization of CPU and bandwidth.

D. IMPLEMENT TASK SCHEDULING ALGORITHM:

• Choose the scheduling algorithm (test.java), that initiates the running of the

proposed algorithms, ABC and PSO. In addition, the proposed methods compared

with the baseline algorithms included with CloudSim, namely FCFS and SJF.

• Implement the scheduling logic in Java code, considering task-to-VM allocation

based on the chosen algorithm.

E. RUN THE SIMULATION:

• Configure simulation parameters such as simulation duration and scheduling

interval.

• Instantiate CloudSim objects, including the CloudSim class itself, Broker, and

DatacenterBroker.

• Add VMs and Cloudlets to the broker.

• Two workload files were considered in this simulation run: High-Performance

Computing Center North (HPC2N) workload log consisting of simulations for

running simulations, computational modeling, and other data-intensive tasks.

NASA-iPSC-19923 workload is a historical benchmark dataset that includes

information about parallel programs, their execution times, and various

performance metrics.

• Start the simulation using CloudSim's startSimulation() method.

F. COLLECT AND ANALYZE RESULTS:

• Monitor the simulation progress using CloudSim's simulation events and log

outputs.

• Capture relevant performance metrics such as makespan, response time, etc.

• Analyze the simulation results to evaluate the effectiveness of your task scheduling

algorithm. calculateStatistics() was used to compute the min, max, average and

standard deviation values of makespan for all the algorithms simulated under

different parameter settings. The VMs, VM speed, cloudlet assignments and broker

operations were logged into a text file for further analysis.

16

6. Evaluation

The evaluation of the results for the proposed PSO and ABC scheduling algorithms along with

the FCFS scheduler, SJF scheduler are considered for the NASA workload scenarios, different

number of cloudlets with both low and high heterogeneity for both space-shared and time-

shared schedulers. The results are populated below for each experimental case.

6.1 Case Study-1: On NASA workload for space-shared scheduling policy

Experiment-1: Scenario 0 - low number of cloudlets, high heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 90.9607 89.0959 27.6844 26.9257

Minimum 55.9489 51.9007 23.1852 23.0019

Maximum 129.2697 133.4309 33.6020 32.7110

Std 24.7958 27.7556 3.0812 2.8419

Experiment-2: Scenario 1 - low number of cloudlets, low heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 30.7524 29.9404 28.8337 28.2485

Minimum 29.5088 28.2969 27.7181 26.6902

Maximum 32.7854 31.2136 30.1401 29.3722

Std 1.1249 0.8109 0.8733 0.9255

Experiment-3: Scenario 2 - medium number of cloudlets, high heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 892.4073 894.4111 369.5945 264.4073

Minimum 531.3036 519.1664 240.4661 231.1631

Maximum 1310.1034 1306.1075 551.2373 317.2269

Std 268.5950 272.6343 90.7772 28.4100

17

Experiment-4: Scenario 3 – medium number of cloudlets, low heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 300.2538 299.1365 278.4629 276.7469

Minimum 290.9952 294.6626 269.4633 268.6151

Maximum 317.1105 304.3433 286.3509 282.5472

Std 7.2863 3.2480 5.2394 4.5820

6.2 Case Study-1: On NASA workload for time-shared scheduling policy

Experiment-1: Scenario 0 - low number of cloudlets, high heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 90.8936 88.9932 27.5614 26.7912

Minimum 55.9340 51.7404 23.0434 22.7143

Maximum 129.2260 133.3391 33.5249 32.6801

Std 24.8114 27.7485 3.1092 2.9149

Experiment-2: Scenario 1 - low number of cloudlets, low heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 30.6656 29.8221 28.7758 28.1126

Minimum 29.3949 28.1642 27.6744 26.5919

Maximum 32.8773 31.2141 30.1486 29.2759

Std 1.2054 0.8452 0.8761 0.9522

18

Experiment-3: Scenario 2 - medium number of cloudlets, high heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 891.6590 893.4330 368.2089 261.8907

Minimum 530.4117 517.7579 238.7128 228.0479

Maximum 1309.5995 1305.2913 550.3147 315.4462

Std 268.6124 272.6698 91.1793 28.7227

Experiment-4: Scenario 3 - medium number of cloudlets, low heterogeneity

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC

Average 298.6425 297.4734 276.7122 274.8653

Minimum 289.2978 292.9940 267.5950 266.7206

Maximum 315.5544 302.7690 284.3548 280.7276

Std 7.2698 3.3196 5.2271 4.5936

6.3 Discussions

The experiments were conducted on both the case studies on the NASA workload file for the

two cloudlet scheduler policies provided by CloudSim, namely space-spared and time-shared.

The CloudletSchedulerSpaceShared class implements a scheduling strategy for virtual

machines to execute their Cloudlets. It is assumed that there will be only one Cloudlet assigned

to each VM. Additional Cloudlets will be placed on a queue for future utilization. Additionally,

it takes into account the fact that the transfer of Cloudlets to the Virtual Machine (VM) occurs

prior to the execution of the Cloudlet. That is to say, while Cloudlets have a waiting period for

CPU allocation, data transfer occurs promptly upon the submission of Cloudlets. The scheduler

does not take into account the priorities of Cloudlets when determining the order of execution.

When Cloudlets have stated priorities, the scheduler disregards them. The

CloudletSchedulerTimeShared class defines a policy for executing Cloudlets in a time-shared

manner within a VM. In order to ensure proper functioning, it is necessary for each VM to

possess an individual instance of a CloudletScheduler. Four different scenarios with different

cloudlet numbers and low/high heterogeneity are considered.

From the results of the experiments, it was observed that ABC based scheduler outperformed

all the other scheduling policies considered in this research, inclusive of PSO. It had better min,

max and avg makespan values for both the case studies evaluated in this study. Both PSO and

ABC performed better than the baseline algorithms, FCFS and SJF, that supports the use of

these scheduling mechanisms unsuitable in a fog cloud scenario. The other issue that came to

light was the poor performance of PSO under scenario 2 in both the case studies. The max

execution time of 550.3147 was 40% more than other policies and the standard deviation values

19

was 91.1793 for this scenario. This clearly outlines the incapacity of the PSO to minimize the

makespan or manage resources efficiently when the heterogeneity of the network increases,

making it unsuitable for a complex mix of edge/fog nodes, cloud devices etc. The proposed

ABC clearly performed better and is more suitable to be deployed in fog/cloud scenarios.

7. Conclusion
In conclusion, the research topic on task scheduling in fog computing using PSO and ABC

algorithms, simulated on CloudSim, addresses a critical challenge in the emerging field of fog

computing. This research aimed to optimize task scheduling in dynamic fog environments to

enhance resource utilization and minimize the makespan. The research technique included a

systematic approach encompassing many stages, such as problem definition, algorithm

adaption, simulation design, experimentation, and performance evaluation. The utilization of

CloudSim allowed for the creation of a realistic fog computing environment, enabling the

assessment of scheduling strategies under varying workloads, resource constraints, and

dynamic conditions. The obtained results and performance evaluations provided valuable

insights into the effectiveness of PSO and ABC for task scheduling in fog computing where it

was realized that ABC based optimizer performed better under all considered scenarios. Future

research scope may include hybridizing the metaheuristic approaches, to include to other

objectives like cost minimization and energy efficiency or exploring the integration of machine

learning for better adaptive and efficient dynamic scheduling solutions in fog computing.

References

Agarwal, M. and Srivastava, G.M.S., 2021. Opposition-based learning inspired particle swarm

optimization (OPSO) scheme for task scheduling problem in cloud computing. Journal of

Ambient Intelligence and Humanized Computing, 12(10), pp.9855-9875.

Ben Alla, H., Ben Alla, S., Touhafi, A. and Ezzati, A., 2018. A novel task scheduling approach

based on dynamic queues and hybrid meta-heuristic algorithms for cloud computing

environment. Cluster Computing, 21(4), pp.1797-1820.

Bitam, S., Zeadally, S. and Mellouk, A., 2018. Fog computing job scheduling optimization

based on bees swarm. Enterprise Information Systems, 12(4), pp.373-397.

Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F. and Parashar, M., 2017. Mobility-

aware application scheduling in fog computing. IEEE Cloud Computing, 4(2), pp.26-35.

Chaudhary, D., Kumar, B. and Khanna, R., 2017. NPSO based cost optimization for load

scheduling in cloud computing. In Security in Computing and Communications: 5th

International Symposium, SSCC 2017, Manipal, India, September 13–16, 2017, Proceedings

5 (pp. 109-121). Springer Singapore.

20

Dong, T., Xue, F., Xiao, C. and Li, J., 2020. Task scheduling based on deep reinforcement

learning in a cloud manufacturing environment. Concurrency and Computation: Practice and

Experience, 32(11), p.e5654.

Durillo, J.J. and Prodan, R., 2014. Multi-objective workflow scheduling in Amazon

EC2. Cluster computing, 17, pp.169-189.

El-Boghdadi, H. and Rabie, A., 2019. Resource scheduling for offline cloud computing using

deep reinforcement learning. Int. J. Comput. Sci. Netw, 19, pp.342-356.

Elhady, G.F. and Tawfeek, M.A., 2015, December. A comparative study into swarm

intelligence algorithms for dynamic tasks scheduling in cloud computing. In 2015 IEEE

Seventh international conference on intelligent computing and information systems

(ICICIS) (pp. 362-369). IEEE.

Gabi, D., Ismail, A.S. and Dankolo, N.M., 2019, June. Minimized makespan based improved

cat swarm optimization for efficient task scheduling in cloud datacenter. In Proceedings of the

2019 3rd High Performance Computing and Cluster Technologies Conference (pp. 16-20).

Gasmi, K., Dilek, S., Tosun, S. and Ozdemir, S., 2022. A survey on computation offloading

and service placement in fog computing-based IoT. The Journal of Supercomputing, 78(2),

pp.1983-2014.

Hammoud, A., Mourad, A., Otrok, H., Wahab, O.A. and Harmanani, H., 2020. Cloud

federation formation using genetic and evolutionary game theoretical models. future

generation computer systems, 104, pp.92-104.

He, H., Xu, G., Pang, S. and Zhao, Z., 2016. AMTS: Adaptive multi-objective task scheduling

strategy in cloud computing. China Communications, 13(4), pp.162-171.

Huang, X., Li, C., Chen, H. and An, D., 2020. Task scheduling in cloud computing using

particle swarm optimization with time varying inertia weight strategies. Cluster

Computing, 23, pp.1137-1147.

Jiao, L., Friedman, R., Fu, X., Secci, S., Smoreda, Z. and Tschofenig, H., 2013. Cloud-based

computation offloading for mobile devices: State of the art, challenges and opportunities. 2013

Future Network & Mobile Summit, pp.1-11.

Kaur, N., Kumar, A. and Kumar, R., 2021. A systematic review on task scheduling in Fog

computing: Taxonomy, tools, challenges, and future directions. Concurrency and

Computation: Practice and Experience, 33(21), p.e6432.

21

Li, D., Li, K., Liang, J. and Ouyang, A., 2019. A hybrid particle swarm optimization algorithm

for load balancing of MDS on heterogeneous computing systems. Neurocomputing, 330,

pp.380-393.

Liu, N., Li, Z., Xu, J., Xu, Z., Lin, S., Qiu, Q., Tang, J. and Wang, Y., 2017, June. A hierarchical

framework of cloud resource allocation and power management using deep reinforcement

learning. In 2017 IEEE 37th international conference on distributed computing systems

(ICDCS) (pp. 372-382). IEEE.

Long, X., Zhang, J., Zhou, K. and Jin, T., 2022. Dynamic self-learning artificial bee colony

optimization algorithm for flexible job-shop scheduling problem with job

insertion. Processes, 10(3), p.571.

Luo, F., Yuan, Y., Ding, W. and Lu, H., 2018, October. An improved particle swarm

optimization algorithm based on adaptive weight for task scheduling in cloud computing.

In Proceedings of the 2nd International Conference on Computer Science and Application

Engineering (pp. 1-5).

Madni, S.H.H., Latiff, M.S.A., Ali, J. and Abdulhamid, S.I.M., 2019. Multi-objective-oriented

cuckoo search optimization-based resource scheduling algorithm for clouds. Arabian Journal

for Science and Engineering, 44, pp.3585-3602.

Mandal, T. and Acharyya, S., 2015, December. Optimal task scheduling in cloud computing

environment: meta heuristic approaches. In 2015 2nd International Conference on Electrical

Information and Communication Technologies (EICT) (pp. 24-28). IEEE.

Mathew, T., Sekaran, K.C. and Jose, J., 2014, September. Study and analysis of various task

scheduling algorithms in the cloud computing environment. In 2014 International conference

on advances in computing, communications and informatics (ICACCI) (pp. 658-664). IEEE.

Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J. and Polakos, P.A., 2017.

A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE

communications surveys & tutorials, 20(1), pp.416-464.

Rahimikhanghah, A., Tajkey, M., Rezazadeh, B. and Rahmani, A.M., 2022. Resource

scheduling methods in cloud and fog computing environments: a systematic literature

review. Cluster Computing, pp.1-35.

Rajalakshmi, N.R., Arulkumaran, G. and Santhosh, J., 2019. Virtual Machine Consolidation

for Performance and Energy Efficient Cloud Data Centre using Reinforcement Learning. Int.

J. Eng. Adv. Technol, 8, pp.78-85.

22

Raju, R., Babukarthik, R.G., Chandramohan, D., Dhavachelvan, P. and Vengattaraman, T.,

2013, February. Minimizing the makespan using Hybrid algorithm for cloud computing.

In 2013 3rd IEEE International Advance Computing Conference (IACC) (pp. 957-962). IEEE.

Ramezani, F., Lu, J. and Hussain, F., 2013. Task scheduling optimization in cloud computing

applying multi-objective particle swarm optimization. In Service-Oriented Computing: 11th

International Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013, Proceedings

11 (pp. 237-251). Springer Berlin Heidelberg.

Reddy, G.R.N. and Phanikumar, S., 2018. Multi Objective Task Scheduling Using Modified

Ant Colony Optimization in Cloud Computing. International Journal of Intelligent

Engineering & Systems, 11(3).

Sharma, M. and Garg, R., 2020. HIGA: Harmony-inspired genetic algorithm for rack-aware

energy-efficient task scheduling in cloud data centers. Engineering Science and Technology,

an International Journal, 23(1), pp.211-224.

Tawfeek, M.A. and Elhady, G.F., 2016. Hybrid algorithm based on swarm intelligence

techniques for dynamic tasks scheduling in cloud computing. International Journal of

Intelligent Systems and Applications, 8(11), pp.61-69.

Tuli, S., Ilager, S., Ramamohanarao, K. and Buyya, R., 2020. Dynamic scheduling for

stochastic edge-cloud computing environments using a3c learning and residual recurrent neural

networks. IEEE transactions on mobile computing, 21(3), pp.940-954.

Wang, T., Liu, Z., Chen, Y., Xu, Y. and Dai, X., 2014, August. Load balancing task scheduling

based on genetic algorithm in cloud computing. In 2014 IEEE 12th international conference

on dependable, autonomic and secure computing (pp. 146-152). IEEE.

Wang, T., Wei, X., Tang, C. and Fan, J., 2018. Efficient multi-tasks scheduling algorithm in

mobile cloud computing with time constraints. Peer-to-Peer Networking and Applications, 11,

pp.793-807.

Wu, X., Deng, M., Zhang, R., Zeng, B. and Zhou, S., 2013. A task scheduling algorithm based

on QoS-driven in cloud computing. Procedia Computer Science, 17, pp.1162-1169.

Yassa, S., Chelouah, R., Kadima, H. and Granado, B., 2013. Multi-objective approach for

energy-aware workflow scheduling in cloud computing environments. The Scientific World

Journal, 2013.

Yuan, H. and Bi, J., 2019, October. Profit-Aware Spatial Task Scheduling in Distributed Green

Clouds. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) (pp.

421-426). IEEE.

23

Zade, B.M.H., Mansouri, N. and Javidi, M.M., 2021. Multi-objective scheduling technique

based on hybrid hitchcock bird algorithm and fuzzy signature in cloud computing. Engineering

Applications of Artificial Intelligence, 104, p.104372.

Zhang, P. and Zhou, M., 2017. Dynamic cloud task scheduling based on a two-stage

strategy. IEEE Transactions on Automation Science and Engineering, 15(2), pp.772-783.

Zhou, Z., Chang, J., Hu, Z., Yu, J. and Li, F., 2018. A modified PSO algorithm for task

scheduling optimization in cloud computing. Concurrency and Computation: Practice and

Experience, 30(24), p.e4970.

