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Abstract 

 

Cloud computing has been expanded by fog/edge computing to the network's edge, 

where data sources and devices are located. For use cases like the Internet of Things (IoT) 

and other time-sensitive tasks, it attempts to provide low-latency, real-time data analysis 

and processing. In the fields of distributed computing and cloud computing, ideas like 

scheduling jobs, makespan, and resource utilization are fundamental. They gain 

considerably greater significance when used in a fog computing environment because of 

the specific attributes of fog/edge computing devices. The capacity of metaheuristic 

techniques to tackle dynamic, complicated, and frequently NP-hard optimization problems 

makes them ideal for dynamic job scheduling in cloud systems. In this study, we propose 

to apply particle swarm optimization (PSO) and artificial bee colony optimizer (ABC) 

algorithms for the task scheduling problem. The key objective is to minimize the 

makespan and thereby maximizing the usage of resources. The proposed work was 

implemented on the CloudSim simulation framework configured to represent the edge 

cloud infrastructure and the scheduling algorithms were trained on two workload datasets 

for benchmarking. The study assesses the performance of these two metaheuristic 

algorithms along with other baseline approaches and offers insights into how well they 

can improve scheduling performance and cloud resource management through extensive 

experiments and analysis.  

 

1 Introduction 
 

A strategy for providing on-demand computational resources and services, such as processing 

speed and data storage, over the Internet is called cloud computing (Mouradian et al.; 2017). 

The main restriction is the end devices' connectivity to the cloud as these connections are made 

via the Internet, which makes them unsuitable for a variety of cloud-based applications, 

including those that depend on latency. Additionally, cloud-based apps are frequently spread 

and comprised of several parts. As a result, it is normal practice to deploy individual application 

components across various clouds.  Given that this new class of IoT applications requires a low 

response latency, the emergent Edge-Cloud computing paradigm appears to be promising (Jiao 

et al.; 2013).  

Task scheduling and resource allocation are vital activities in contemporary dynamic cloud-

enabled systems. The process of scheduling tasks entails the allocation of these tasks to 

processors that are both available and efficient. Furthermore, the process of resource allocation 

includes the formulation of a policy that governs the distribution of resources across different 
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tasks, with the aim of optimizing resource use. Nevertheless, the task of scheduling in the edge 

computational framework poses significant challenges as a result of various reasons. The key 

factor contributing to the significant variations in compute server capacity, speed, response 

time, and energy consumption between local nodes at the edge and remote cloud nodes is 

heterogeneity. Additionally, it is worth noting that computers located in the cloud and edge 

layers may exhibit various characteristics. Furthermore, the mobility aspect of the Edge 

paradigm results in a constant fluctuation of bandwidth between the data source and 

computation nodes. This necessitates the continuous implementation of dynamic optimization 

strategies in order to effectively fulfil the requirements of various applications. The stochastic 

nature of the Edge-Cloud environment manifests in various aspects, such as the rate at which 

tasks arrive, the duration of labour, and the resource demands, hence exacerbating the 

challenges associated with scheduling. In order to optimize resource utilization, save costs, and 

improve the quality of service for applications, dynamic task scheduling becomes necessary in 

stochastic environments (Tuli et al.; 2020). 

1.1 Motivation 

Fog computing utilizes edge devices and nodes in close proximity to the data source, hence 

mitigating data transmission latency and enhancing response times. The implementation of 

dynamic task scheduling aims to optimize the allocation of jobs to fog nodes in close proximity, 

hence reducing communication delays and improving the real-time performance of 

applications. Therefore, the waiting time for jobs, the length of the waiting queue and the time 

taken to complete a job from its initiation (makespan) are significant metrics for evaluating the 

quality of services provided by cloud providers (Ben Alla et al.; 2018). Consequently, it is 

crucial to take these limits into account during the design of a scheduling algorithm. 

1.2 Research Problem 

The research problem involves the development of efficient and adaptable task-

scheduling algorithms for fog scenarios. These algorithms aim to optimize many conflicting 

objectives, such as minimizing makespan, optimizing resource utilization, and enhancing 

energy efficiency. This subject pertains to the resolution of challenges related to job allocation, 

load balancing, and resource management inside a fog environment that is characterized by 

dynamic changes and limited resources. The issue of scalability and heterogeneity in fog 

environments is tackled through the development of metaheuristic algorithmic approaches 

(Tawfeek and Elhady; 2016; Zhou et al.; 2018) that possess the capability to manage a 

significant quantity of jobs and resources, all the while ensuring computational efficiency. The 

proposed methods aim to improve the operational effectiveness, promptness, and optimal use 

of resources in fog computing systems. This, in turn, facilitates the effective implementation 

of time-critical applications in diverse fields. 

1.3 Research Question 

Q: Can metaheuristic approaches like PSO and ABC effectively address the task scheduling 

challenges in fog environments by optimizing the makespan time to improve resource 

utilization?  
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1.4 Research Objective 

The main objective of this study is to enhance task scheduling and allocation in real-time or 

near-real-time situations in fog computing environments. This is achieved by taking into 

account the dynamic nature of these environments, the diverse characteristics of tasks, and the 

availability of resources. The proposed approaches, namely Particle Swarm Optimization 

(PSO) and Artificial Bee Colony (ABC) metaheuristic algorithms, are utilized to minimize the 

makespan and enhance resource allocation. 

1.5 Research Contribution 

The objective of this study is to enhance the allocation of tasks across fog nodes and cloud 

resources in real-time, while taking into account dynamic changes in task arrivals, execution 

times, and available resources. This optimization is conducted within the CloudSim simulation 

framework.  

 

1) This study makes a significant contribution by employing Particle Swarm Optimization 

(PSO) and Artificial Bee Colony (ABC) techniques to address the work scheduling 

challenges in stochastic and heterogeneous fog computing environments. This entails 

modifying the exploration and exploitation processes of algorithms in order to successfully 

manage varying job demands and resource availability. 

 

2) This study aims to compare the PSO and ABC techniques with baseline scheduling 

algorithms, namely Shortest Job First (SJF) and First-Come-First-Served (FCFS), in terms 

of optimizing the makespan for both space-shared and time-shared scheduler 

implementations.  

1.6 Thesis structure 

The present research report is structured into five distinct sections:  

• Section 1 provides an introduction to the study background and outlines the factors that 

inspired the decision to pursue additional investigation in this area. Additionally, it 

elucidates the research topic and provides a response to the research question.  

• Section 2 provides a comprehensive analysis of prior research conducted in the field, 

organizing it into subcategories according to its breadth, methodology, and relevance to 

the proposed strategy.  

• Section 3 provides a comprehensive exposition of the research methodology in order to 

enhance the understanding of the research topic.  

• Section 4 of this paper presents the design specifications of the suggested technique, 

accompanied by mathematical modeling and a theoretical foundation. 

• Section 5 elucidates the implementation particulars of the proposed methodologies, 

expounding upon the specific tools and data sources employed.  

• Section 6 provides a thorough examination of the study's outcomes and primary 

discoveries, along with an exploration of the implications derived from these findings.  
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• Section 7 provides a comprehensive summary of the research conducted and also 

highlighting the potential avenues for future research scope.  

 

2. Related Work 

2.1 Task scheduling in cloud 

 

In order to optimize task scheduling performance and reduce non-optimal task allocation in 

cloud computing environments, (Zhang and Zhou; 2017) presented a two-stage strategy-based 

approach. In the initial phase, a job classifier that is inspired by the design principle of a Bayes 

classifier was developed. The utilization of past scheduling data is employed to categorize 

activities deployed in a cloud computing environment. The setting up of VMs was carried out 

in a manner to reduce the time required for the creation of VMs. (Hammoud et al.; 2019) 

proposed an academic approach that utilizes genetic algorithms and evolutionary game theory 

to investigate the challenge of establishing federated clouds with high profitability, while 

accounting for dynamic strategies. The researchers address the issue of optimizing the 

formation of federations to maximize overall profitability through the utilization of Genetic 

Algorithms (GA), while also ensuring stability within the federations. The study revealed that 

the utilization of the evolutionary game model yielded superior outcomes in terms of 

profitability and quality of service (QoS) as a result of its inherent ability to attain a state of 

stability.  

In their study, (Luo et al.; 2018) proposed an improved iteration of the Particle Swarm 

Optimization (PSO) algorithm with the aim of minimizing the makespan and enhancing 

resource utilization within cloud computing systems. The authors suggest modifying the 

particle weights to account for variations in the number of repetitions and introducing random 

weights during the final stages of the Particle Swarm Optimization (PSO) approach. The 

primary goal is to mitigate the generation of local optimum solutions in the concluding PSO 

stages. Tawfeek and Elhady. (2016) presented the Ant Colony Optimization (ACO) algorithm 

to determine the best resource distribution for tasks in a dynamic cloud-based architecture to 

reduce the total system makespan. The scheduling approach was implemented through 

simulation using the Cloudsim toolkit package. The experimental findings, when compared to 

the First Come First Served (FCFS) and Round Robin (RR) algorithms, demonstrate that the 

ACO algorithm successfully meets the expected outcomes. The study proposed by (Elhady and 

Tawfeek; 2015) examined three potential methodologies suggested for the purpose of dynamic 

task scheduling in the context of cloud computing. The three methodologies belong to the 

domain of swarm intelligence was employed to address challenging or infeasible combinatorial 

problems. These methodologies drew inspiration from the behavior exhibited by ant colonies, 

particle swarms, and honeybees during foraging activities. The primary objective was to 

conduct an evaluation and comparative analysis of the various ways employed to minimize the 

makespan of a particular collection of jobs. The effectiveness of the algorithms is simulated 

using the toolkit package of CloudSim.  

The researchers proposed in (Reddy and Phanikumar; 2018), an enhanced version of the ACO 

optimization algorithm with the objective of improving performance within the CloudSim 
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framework. This was accomplished by selecting several processors, minimizing the makespan, 

and achieving a high convergence speed in the shortest possible time. The primary objective 

of modified ACO (MACO) is the intentional allocation of pheromones to virtual machines, 

taking into consideration their respective efficiency. Additionally, MACO also considers 

factors such as processing speed, makespan, and bandwidth when allocating jobs.  

2.2 Task scheduling in Fog/Edge Networks 

In a First-Come-First-Serve (FCFS) scheduling system proposed by (Mathew et al.; 2014), a 

new task upon arrival was appended to the tail of the queue and the initial task in the queue 

was always executed first. This approach was characterized by its straightforward 

implementation. The round-robin (RR) scheduling approach is derived from FCFS method, 

which aims to allocate resources to tasks at predetermined time intervals. One of the benefits 

of employing this particular method is the implementation of load-balancing. The priority 

scheduling algorithm presented by (Wu et al.; 2013) categorizes jobs according to their priority 

and the consideration of these priorities based on QoS factors where the tasks were given 

resources that have the most efficient completion time. The scheduling algorithm known as 

Multi-objective Heterogeneous Earliest Finish Time (MOHEFT) proposed by (Durillo and 

Prodan; 2014) was based upon the concept of Pareto solutions. The optimization of makespan 

and cost is rooted in the utilization of workflow apps within the context of the Amazon 

commercial cloud. The multi-objective algorithm MOHEFT is highly appealing due to its 

inherent versatility. Empirical evidence has demonstrated that in certain instances, a modest 

5% improvement in makespan can result in a noteworthy reduction of expenses by half. 

The Min-Min scheduling algorithm operates by selecting the smallest job from the pool of 

available tasks and assigning it to a resource. The selected job is then executed for the lowest 

amount of time required to complete it. This approach results in an increase in the makespan. 

The Max-Min approach is a strategy that involves selecting the task with the longest duration 

from a given set of tasks and assigning it to the machines with the highest processing speed for 

execution. This approach necessitates that smaller jobs endure longer waiting periods, resulting 

in an augmented makespan. Nevertheless, this approach demonstrates a superior makespan in 

comparison to the methods employed by other researchers (Gasmi et al.; 2022). The task 

scheduling in the iFogsim environment utilizes the FCFS, concurrent, and DP scheduling 

approaches, as discussed in (Bittencourt et al.; 2017). The researchers presented two case 

studies and conducted an analysis of the findings, focusing on variables such as delay, total 

network utilization, and the number of application modules. These variables were examined in 

relation to the number of users. The findings indicate that the delay-priority technique yields 

the lowest latency, while the concurrent method results in the least network use. 

In their study, (Wang et al.; 2017) employed ACO as a methodology for addressing the resource 

requirements of mobile cloud computing. The aforementioned approach involves the execution 

of offloaded tasks on fog devices (FDs) with the aim of achieving objectives related to delay, 

completion time, and energy consumption. The temporal sequencing of their simulation is 

contingent upon the quantity of cycles, tasks, and ants. Wang et al. (2014) employed a multi-

objective genetic algorithm (GA) to effectively minimize energy consumption and enhance 

profitability for the service provider. The Pareto principle was employed to determine the most 
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optimal selection among the available options, taking into consideration the prevailing needs 

at a given time. The simulation findings obtained from CloudSim demonstrate a reduction in 

energy consumption rates for the service provider by 44.46%.  

Yassa et al. (2013) introduced a methodology that combines PSO with HEFT. The primary 

objective of the algorithm is to maximize efficiency in terms of minimizing makespan, cost, 

and power usage. The algorithm commences by initializing the position and velocity of 

particles in the PSO technique. The HEFT algorithm is iteratively employed multiple times in 

order to identify an optimal solution that minimizes the makespan. The findings indicate that 

their methodology not only exhibits superior cost and power efficiency, but also enhances the 

makespan. The scheduling challenge in the fog computing environment was addressed by the 

authors (Bitam et al.; 2017) through the proposal of a bio-inspired solution that utilized the 

Bees Life algorithm. The proposed technique was predicated on the allocation of a collection 

of jobs among all functional dependencies (FDs). The examination of the CPU's execution time 

and allocated memory via FDs subsequent to simulation revealed that this approach exhibits 

superior performance compared to both PSO and GA. 

Zade et al. (2021) proposed a multi-objective approach that combines the Hitchcock bird 

algorithm and fuzzy signature to address the job scheduling problem in cloud computing. The 

authors saw enhancements in makespan and resource utilization when comparing their 

proposed approach to both the Moth Search Algorithm with Enhanced Multi-verse optimizer 

and the Fuzzy Modified PSO. The utilization of Opposition-based learning was also employed 

in the study (Agarwal and Srivastava.; 2021) to optimize PSO for the purpose of job scheduling 

within a cloud computing environment. The researchers enhanced the convergence of the 

conventional PSO algorithm, as well as addressed the issues of energy consumption and 

makespan. 

2.3 Dynamic Task Scheduling Approaches 

The primary aim of the study conducted by Dong et al. (2020) is to minimize expenses, with a 

specific focus on addressing intricate scheduling challenges associated with several jobs. Given 

the aforementioned circumstances, the authors proposed a technique rooted in a deep 

reinforcement learning (DRL) framework. This approach aims to dynamically allocate tasks 

with interdependencies to cloud servers, hence minimizing the overall execution time of 

activities. Furthermore, to effectively tackle the challenge posed by the substantial 

dimensionality and intricacy, the researchers employ a Deep Reinforcement Learning (DRL) 

approach referred to as Deep Q-Network (DQN). Liu et al. (2017) put forth a proposition for a 

two-phase framework that effectively tackles the challenges of resource allocation for virtual 

machines (VMs) on servers and power consumption management on individual servers. The 

authors commence their study by employing Deep Reinforcement Learning (DRL) as a means 

to accomplish VM resource allocation on servers, constituting the preliminary phase of the 

project. During the second phase, the Long Short-Term Memory (LSTM) model and shared 

weights were employed to efficiently regulate the local power consumption of the servers. 

Huang et al. (2022) proposed a PSO technique that relies on heuristics and is grounded in a 

Lyapunov framework. The objective of this technique is to optimize energy usage in the context 

of resource allocation inside a fog environment. The optimization of energy consumption in 
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IoT systems involves considering the energy utilized by IoT nodes, transmission power 

utilization, and energy consumption while processing at the fog node. This balance enables the 

scheduling of jobs with minimal energy consumption. In their study, Li et al. (2019b) employed 

a hybrid genetic algorithm-particle swarm optimization (GA-PSO) approach to develop a load 

balancing mechanism specifically tailored for molecular dynamics simulations conducted on 

heterogeneous supercomputing systems. The results of their study exhibited a notable 

enhancement in the efficacy of parallel computing. Long et al. (2022) presented a novel 

approach for addressing the challenge of integrating new jobs into flexible job-shops. 

Specifically, the proposed solution involves the utilization of a dynamic self-learning artificial 

bee colony optimization algorithm, which aims to effectively solve the dynamic flexible job-

shop scheduling problem (DFJSP). By strategically organizing the processing sequence of jobs 

and establishing appropriate relationships between operations and machines, it is possible to 

reduce the makespan, enhance the economic benefits of the job-shop, and raise the utilization 

rate of processing equipment.  

The literature review conducted on task scheduling in Fog networks highlights the dynamic 

and ever-changing characteristics of Fog computing systems. The paper provides a 

comprehensive perspective on the difficulties and potential advantages related to enhancing 

job allocation in such settings, establishing a basis for future scholarly investigation and 

advancement in this domain. The selection of PSO and ABC metaheuristic techniques for real-

time job scheduling, with the objective of minimizing the makespan and enhancing resource 

usage, was informed by prior research. 
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Table-I: Comparison of previous literature on task scheduling based on metaheuristic and deep 

learning approaches 

 

 

3. Research Methodology 
 

3.1 Scheduling process in Fog/Edge Clouds 

Resources are allocated not solely according to standard procedures, but rather based on the 

existing workload, observable applications, and requests for virtual machines (VMs). The 

fundamental objective of cloud service providers is to leverage the cloud infrastructure in order 

to minimize execution time and costs, while also optimizing resource utilization. A cloud 

scheduler employs several ways to enhance resource utilization and minimize both processing 

expenses and time requirements during the allocation of jobs to virtual machines (VMs). The 

concept of fog extends cloud services to the edge of the network. The allocation of application 

execution in fog computing is contingent upon the utilization of an efficient task-

scheduling mechanism. 

Figure 1 illustrates the hierarchical structure of the network, showcasing the location of various 

components such as devices, fog layer, cloud layer, and scheduler. Customers at the device 

layer have the ability to utilize fog/cloud resources in order to access and utilize various 

services. This is made possible due to the presence of storage, compute, and networking  

Research Technique Merits Shortcomings Test Environment 

Mandal and 

Acharyya. 

(2015) 

Meta-heuristic 

swarm optimization  

Low makespan Low reliability GCC Compiler 

Ramezani et al. 

(2013)   

MOPSO Improved 

PSO 

Low execution time High energy 

consumption 

CloudSim 

He et al. 

(2016) 

PSO Low makespan, low   

energy consumption 

Low scalability CloudSim 

Madni et al. 

(2019) 

CSA Cuckoo Search Low makespan, 

high resource 

utilization 

Low reliability CloudSim 

Raju et al. 

(2013) 

Hybrid ACO, CSA Low makespan, 

High throughput 

Low resource 

utilization  

Real test environment 

Sharma and 

Garg (2019) 

Hybrid GA with HS Low makespan, low   

energy consumption 

Low reliability CloudSim 

Gabi et al. 

(2019) 

CSO & PSO Low makespan, 

high resource 

utilization 

High computational 

cost 

CloudSim 

Chaudhary et 

al. (2017) 

NPSO Low monetary cost Low reliability CloudSim 

Yuan and Bi. 

(2019) 

Hybrid PSO with 

GA 

High throughput, 

low energy 

consumption 

High makespan Real Test 

environment 

N.R. 

Rajalakshmi et 

al. (2019) 

Deep Reinforcement 

Learning (DRL) 

VM consolidation 

for energy 

efficiency 

Total hosts restricted Workload Dataset 

El-Boghdadi et 

al. (2019) 

Deep Reinforcement 

Learning (DRL) 

Offline cloud 

resource scheduling 

No complex 

scheduling problems 

Workload Dataset 
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Figure 1: Scheduling process in a fog/edge cloud network 

 

capabilities within these devices. In addition, a scheduler has the ability to guarantee static 

resource allocation for new requests, as well as the option to optimize and realign both static 

and dynamic resource allocation (Rahimikhanghah et al.; 2022). 

In fog computing, task scheduling refers to allocating the proper resources to a task. The 

utilization of appropriate resources in this context serves to reduce the overall completion time 

of tasks (makespan), enhance the quality of service (QoS) provided to consumers, and optimize 

efficiency. Virtualization plays a crucial role in the realm of cloud computing as it facilitates 

the sharing of virtual resources and services that are distinct from the physical hardware on 

which they are built. Alternatively, the application of dynamic allocation of virtual machines 

(VMs) to servers can be employed as a means to decrease server demand and mitigate the 

energy consumption of data centers. In a cloud computing context, scheduling can be 

categorized into two distinct tiers. Initially, it is advisable to allocate virtual machines (VMs) 

to hosts that are currently unoccupied. By implementing a methodical scheduling approach, it 

becomes possible to achieve equilibrium in terms of system load distribution and energy 

utilization. The allocation of virtual machines (VMs) onto physical computers can be 

categorized as either dynamic or static, and several methods of VM migration can be employed. 

The scheduling of arrival tasks should be done in such a way that they are allocated to a virtual 

machine (VM) with adequate resources to meet the task requirements. Certain scheduling 

approaches are designed to deactivate idle virtual machines (VMs) in order to optimize 

resource use, conserve energy, and thereby improve resource utilization.  

3.2 Proposed Scheduler architecture 

Figure 2 depicts the system architecture for task scheduling based on the Particle Swarm 

Optimization (PSO) algorithm. Customers who are interested in using cloud computing 

services shall approach the cloud provider with their service requests. Subsequently, the cloud  
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Figure 2: PSO-Scheduler architecture 

 

provider is required to identify an efficient scheduling solution for the workflow application 

request that has been provided. The proposed scheduling solution represents the most efficient  

task execution nodes (VMs) to minimize the overall makespan of the system. The same 

scheduling architecture is applicable to artificial bee colony scheduler also. 

 

4. Design Specifications 
 

4.1 Problem Formulation 

In every swarm intelligence algorithm that operates on a population-based approach, the 

optimization process is comprised of two distinct phases: global search and local search. 

Achieving a suitable equilibrium between the two stages enables the algorithm to effectively 

converge towards the optimal global position within a reasonable timeframe. In order to 

optimize the search method, it is recommended that algorithms prioritize the utilization of the 

global search operator over the local search operator during the initial stages. This enables the 

algorithm to effectively traverse a wider range of regions inside the search space, necessitating 

a meticulous search approach in order to attain the global optimum (Huang et al.; 2020). In this 

work, obtaining the global optimum involves the makespan minimization based on certain real-

time constraints. A fitness function is defined that asserts the quality of the swarm optimization 

algorithm’s solution. The optimization problem can be phrased as an aim to minimize the 

makespan in task scheduling. The term "makespan" refers to the duration required for all tasks 

to finish their execution. The objective is to identify a task-to-resource assignment i.e cloudlet 

to VMs that minimizes this duration. The following is the standard formula for minimizing the 

makespan in a task scheduling problem:  

𝑀 = 𝑚𝑎𝑥
𝑖=1

𝑛
 𝑚𝑎𝑥
𝑗=1

𝑚
 𝐶𝑖𝑗 

where, 

𝑛 - number of tasks 

𝑚 - number of resources like fog nodes or edge devices 
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𝐶𝑖𝑗 - the completion time of task 𝑖 on resource 𝑗 

𝑝𝑖𝑗 - the processing time of task 𝑖 on resource 𝑗 

This research presents the implementation of two popular meta-heuristic algorithms, PSO and 

ABC for achieving the objective of minimizing the makespan. The next sub-section discusses 

in details the algorithm design and its mathematical modeling in sufficient detail. Finally, 

CloudSim, the simulation environment used in this research for modeling the fog networks is 

introduced.  

4.1 PSO-based Task Scheduler 

The evaluation of a particle's performance is quantified by a fitness value, which may be 

determined by defining a fitness function that measures the effectiveness of the particle's 

position.   

𝑓 = Min (
𝑉𝑡𝑖𝑚𝑒

 𝑉𝑅𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
) 

The variable 𝑉𝑡𝑖𝑚𝑒 is used to represent the execution time of virtual machines (VMs) for the 

completion of all tasks. On the other hand, 𝑉𝑅𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is employed to indicate the resource 

utilization of VMs while the tasks are being executed. Particles in the search process maintain 

self-updating capabilities through the monitoring and recording of their two most optimal 

places. The most widely recognized position, referred to as the local best position, is the 

individual position that has achieved the highest fitness value thus far for the particle itself. 

One well recognized position, referred to as the global best position, is the optimal location 

within the entire population. The pseudo-code for the implementation is presented in 

Algorithm-1.  

 Algorithm-1: PSO Task Scheduler pseudocode. 

 Input: Task, Particles 

 Output: gBest 

 for each 𝑃𝑖 do 

       𝑝𝐵𝑒𝑠𝑡 = Generate_initial_position (𝑃𝑖) 

 foreach 𝑝 Best of particle 𝑃𝑖 do 

      gBest = Max (pBest 𝑡1, pBest 𝑡2, … . ) 

 repeat 

       j1 

       while 𝑗 ≤ 𝑚 do 

            Select the task 𝑡𝑗 

            Calculate_est (𝑡𝑗) 

            Allocate_task (𝑡𝑗) 

            j++ 

       foreach particle 𝑃𝑖 do 

           Calculate cur_particle_fit: (current particle) 

           if cur_particle_fit i  pBest 𝑖−fit then 

              Update(𝑝𝐵𝑒𝑠𝑡𝑖) 

           if cur_particle_fit < 𝑔 Best 𝑖_fit then 

              Update (gBest 𝑖 ) 
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       if the termination condition is met then 

            Output 4𝑔 Best 𝑖; Break 

       else 

           foreach particle 𝑃𝑖 do 

               Update( 𝑃𝑖_velocity);  

               Update( 𝑃𝑖 position);  

 until the termination condition is met. 

4.2 ABC-based Task Scheduler 

The method operates on a comparable notion of workload balancing for virtual machines 

(VMs). The ABC method is utilized to assess the workload of a virtual machine and then 

determine whether it is experiencing overload, is underutilized, or is operating at an optimal 

level of balance. The task's high priority is not aligned with the overload virtual machine, 

resulting in jobs being queued for the lightweight virtual machine. The subsequent stage 

involves referring to these assignments as scout bees. The Load Balancing technique inspired 

by ABC has been shown to effectively decrease the response time of VMs and minimize the 

waiting time of tasks. The probability of calculating a new solution surrounding a food source 

is calculated by onlooker bees using the following equation: 

𝑝𝑖(𝑡) =
𝑓𝑖(𝑡)

∑  𝑇𝑆
𝑖=1 𝑓𝑖𝑡𝑖(𝑡)

 

 

𝑓𝑖𝑡𝑖(𝑡) – fitness value of task source i 

TS – Total number of task sources 

The pseudo-code for the implementation is presented in Algorithm-1.  

Algorithm-2: ABC Task Scheduler pseudocode. 

Require: Cloudlet list , VM list , Datacenter list, fac 𝐿𝐵 

Groups(𝑞) ⟵ divide(Cloudlet list )  

for i = 1 to q do 

      length 𝑖 ⟵ lengthofgroupk (Groups 𝑖) 

 end for 

for k = 1 to q do 

      Cloudlet 𝐿 ⟵max(Groups 𝑘) 

      while Group 𝑘 ≥ Groups 𝑖 ∣ 𝑖 = 1… qand 𝑖 ≠ 𝑘 do 

            for s = 1 to n do 

               Datacenter 𝑠 ⟵ select ( Datacenter list ) 

               if 𝑓𝑎𝑐𝐿𝐵 ≤ 𝑉𝑀𝑆 Assigned (Datacenter) then 

                   assign( 𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿, Datacenter 𝑖≠𝑠(VM leastLoad )) 

                   else 

                   Decrement (𝑙𝑒𝑛𝑔𝑡ℎ𝑘) 

               end if  

          end for 

     end while 

end for 
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4.3 CloudSim Architecture 

CloudSim, an open-source platform, is employed for the purpose of simulating cloud 

computing services and infrastructure. The software application is developed by the CLOUDS 

Labs and is implemented entirely using the Java programming language. Simulating and  

modeling a cloud computing environment is commonly employed to duplicate tests and 

outcomes, serving as a means to evaluate a hypothesis prior to software development.The 

CloudSim toolkit facilitates the modeling of both system and behavior aspects of Cloud system 

components, including data centers, virtual machines (VMs), and resource provisioning 

policies. The system has generic methods for provisioning applications that can be easily 

expanded and require minimal effort. At present, the software facilitates the representation and 

emulation of Cloud computing environments that encompass both individual clouds and 

interconnected clouds. 

Figure 3: CloudSim architecture 

 

Figure 3 depicts the intricate design of the CloudSim software framework, showcasing its 

various architectural components. The CloudSim simulation layer offers assistance in the 

modeling and simulation of virtualized Cloud-based data center infrastructures. This includes 

specific management interfaces for virtual machines (VMs), memory, storage, and bandwidth. 

This layer is responsible for addressing fundamental concerns, including the allocation of hosts 

to virtual machines. In order to investigate the effectiveness of various policies in allocating 

hosts to virtual machines (VMs), a Cloud provider must execute their techniques at the VM 
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provisioning layer, where the proposed PSO and ABC in addition to other baselines algorithms 

discussed earlier were written in this work.  

The datacenter serves as the fundamental hardware component of a cloud system, and its 

modeling is of utmost importance. This course provides methodologies for determining the 

allocation rules for virtual machines (VMs), as well as addressing the functional requirements 

of the datacenter and other relevant considerations. 

The cloudlet class represents any task that is performed on a VM, including processing tasks, 

memory access tasks, file update tasks, and so on. The class possesses methods that exhibit 

similarity to those found in the VM class. It also retains parameters that describe many aspects 

of a job, including its length, size, execution time, status, cost, and history. 

A datacenter broker is a service that acts as a representative for the user or consumer. The 

responsibility of managing the functioning of VMs, encompassing their creation, management, 

termination, and the allocation of cloudlets to them, lies within its purview. 

The implementation of the proposed scheduling policies on CloudSim and the execution of 

those under real-time workload datasets on the cloud with the set parameters will be the 

discussion of the next section.  

 

5. Implementation 
 

The whole code implementation of the scheduling algorithms, the datacenter creation, creating 

the edge simulation environment are all done at the structured directories of the CloudSim 

simulation engine. Task scheduling in CloudSim involves setting up a simulation environment 

to model and evaluate different task scheduling algorithms in a cloud computing context. 

 

A. DEFINE CLOUDSIM ENTITIES: 

 Create classes to represent different CloudSim entities, such as Datacenter, Host, VM 

(Virtual Machine), and Cloudlet (Task). In this work, Simulation.java code is used to create 

the simulation environment with cloudlet scheduler type, broker type, number of cloudlets, 

number of VMs etc., (see Figure 4). 

Figure 4: Simulation.java Class 

B. SET UP CLOUD RESOURCES: 

• Create Datacenter entities representing cloud data centers.  

• Define Hosts with their processing capacities, storage, and bandwidth. 

• Create VMs with specific characteristics (e.g., MIPS, RAM, storage). 

C. GENERATE CLOUDLETS (TASKS): 

• Create Cloudlet objects to represent the tasks that need to be scheduled. 
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• Specify Cloudlet characteristics like length (execution time), input and output file 

sizes, and utilization of CPU and bandwidth. 

D. IMPLEMENT TASK SCHEDULING ALGORITHM: 

• Choose the scheduling algorithm (test.java), that initiates the running of the 

proposed algorithms, ABC and PSO. In addition, the proposed methods compared 

with the baseline algorithms included with CloudSim, namely FCFS and SJF.  

• Implement the scheduling logic in Java code, considering task-to-VM allocation 

based on the chosen algorithm. 

E. RUN THE SIMULATION: 

• Configure simulation parameters such as simulation duration and scheduling 

interval. 

• Instantiate CloudSim objects, including the CloudSim class itself, Broker, and 

DatacenterBroker. 

• Add VMs and Cloudlets to the broker. 

• Two workload files were considered in this simulation run: High-Performance 

Computing Center North (HPC2N) workload log consisting of simulations for 

running simulations, computational modeling, and other data-intensive tasks. 

NASA-iPSC-19923 workload is a historical benchmark dataset that includes 

information about parallel programs, their execution times, and various 

performance metrics. 

• Start the simulation using CloudSim's startSimulation() method. 

F. COLLECT AND ANALYZE RESULTS: 

• Monitor the simulation progress using CloudSim's simulation events and log 

outputs. 

• Capture relevant performance metrics such as makespan, response time, etc. 

• Analyze the simulation results to evaluate the effectiveness of your task scheduling 

algorithm. calculateStatistics() was used to compute the min, max, average and 

standard deviation values of makespan for all the algorithms simulated under 

different parameter settings. The VMs, VM speed, cloudlet assignments and broker 

operations were logged into a text file for further analysis.  
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6. Evaluation 
 

The evaluation of the results for the proposed PSO and ABC scheduling algorithms along with 

the FCFS scheduler, SJF scheduler are considered for the NASA workload scenarios, different 

number of cloudlets with both low and high heterogeneity for both space-shared and time-

shared schedulers. The results are populated below for each experimental case.  

 

6.1 Case Study-1: On NASA workload for space-shared scheduling policy 

Experiment-1: Scenario 0 - low number of cloudlets, high heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 90.9607 89.0959 27.6844 26.9257 

Minimum 55.9489 51.9007 23.1852 23.0019 

Maximum 129.2697 133.4309 33.6020 32.7110 

Std 24.7958 27.7556 3.0812 2.8419 

Experiment-2: Scenario 1 - low number of cloudlets, low heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 30.7524 29.9404 28.8337 28.2485 

Minimum 29.5088 28.2969 27.7181 26.6902 

Maximum 32.7854 31.2136 30.1401 29.3722 

Std 1.1249 0.8109 0.8733 0.9255 

Experiment-3: Scenario 2 - medium number of cloudlets, high heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 892.4073 894.4111 369.5945 264.4073 

Minimum 531.3036 519.1664 240.4661 231.1631 

Maximum 1310.1034 1306.1075 551.2373 317.2269 

Std 268.5950 272.6343 90.7772 28.4100 
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Experiment-4: Scenario 3 – medium number of cloudlets, low heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 300.2538 299.1365 278.4629 276.7469 

Minimum 290.9952 294.6626 269.4633 268.6151 

Maximum 317.1105 304.3433 286.3509 282.5472 

Std 7.2863 3.2480 5.2394 4.5820 

 

6.2 Case Study-1: On NASA workload for time-shared scheduling policy 
 

Experiment-1: Scenario 0 - low number of cloudlets, high heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 90.8936 88.9932 27.5614 26.7912 

Minimum 55.9340 51.7404 23.0434 22.7143 

Maximum 129.2260 133.3391 33.5249 32.6801 

Std 24.8114 27.7485 3.1092 2.9149 

 

Experiment-2: Scenario 1 - low number of cloudlets, low heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 30.6656 29.8221 28.7758 28.1126 

Minimum 29.3949 28.1642 27.6744 26.5919 

Maximum 32.8773 31.2141 30.1486 29.2759 

Std 1.2054 0.8452 0.8761 0.9522 
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Experiment-3: Scenario 2 - medium number of cloudlets, high heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 891.6590 893.4330 368.2089 261.8907 

Minimum 530.4117 517.7579 238.7128 228.0479 

Maximum 1309.5995 1305.2913 550.3147 315.4462 

Std 268.6124 272.6698 91.1793 28.7227 

Experiment-4: Scenario 3 - medium number of cloudlets, low heterogeneity 

Scheduler/MakeSpan Metrics FCFS SJF PSO ABC 

Average 298.6425 297.4734 276.7122 274.8653 

Minimum 289.2978 292.9940 267.5950 266.7206 

Maximum 315.5544 302.7690 284.3548 280.7276 

Std 7.2698 3.3196 5.2271 4.5936 

6.3 Discussions 

The experiments were conducted on both the case studies on the NASA workload file for the 

two cloudlet scheduler policies provided by CloudSim, namely space-spared and time-shared. 

The CloudletSchedulerSpaceShared class implements a scheduling strategy for virtual 

machines to execute their Cloudlets. It is assumed that there will be only one Cloudlet assigned 

to each VM. Additional Cloudlets will be placed on a queue for future utilization. Additionally, 

it takes into account the fact that the transfer of Cloudlets to the Virtual Machine (VM) occurs 

prior to the execution of the Cloudlet. That is to say, while Cloudlets have a waiting period for 

CPU allocation, data transfer occurs promptly upon the submission of Cloudlets. The scheduler 

does not take into account the priorities of Cloudlets when determining the order of execution. 

When Cloudlets have stated priorities, the scheduler disregards them. The 

CloudletSchedulerTimeShared class defines a policy for executing Cloudlets in a time-shared 

manner within a VM. In order to ensure proper functioning, it is necessary for each VM to 

possess an individual instance of a CloudletScheduler. Four different scenarios with different 

cloudlet numbers and low/high heterogeneity are considered.  

From the results of the experiments, it was observed that ABC based scheduler outperformed 

all the other scheduling policies considered in this research, inclusive of PSO. It had better min, 

max and avg makespan values for both the case studies evaluated in this study. Both PSO and 

ABC performed better than the baseline algorithms, FCFS and SJF, that supports the use of 

these scheduling mechanisms unsuitable in a fog cloud scenario. The other issue that came to 

light was the poor performance of PSO under scenario 2 in both the case studies. The max 

execution time of 550.3147 was 40% more than other policies and the standard deviation values 
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was 91.1793 for this scenario. This clearly outlines the incapacity of the PSO to minimize the 

makespan or manage resources efficiently when the heterogeneity of the network increases, 

making it unsuitable for a complex mix of edge/fog nodes, cloud devices etc. The proposed 

ABC clearly performed better and is more suitable to be deployed in fog/cloud scenarios.  

7. Conclusion 
In conclusion, the research topic on task scheduling in fog computing using PSO and ABC 

algorithms, simulated on CloudSim, addresses a critical challenge in the emerging field of fog 

computing. This research aimed to optimize task scheduling in dynamic fog environments to 

enhance resource utilization and minimize the makespan. The research technique included a 

systematic approach encompassing many stages, such as problem definition, algorithm 

adaption, simulation design, experimentation, and performance evaluation. The utilization of 

CloudSim allowed for the creation of a realistic fog computing environment, enabling the 

assessment of scheduling strategies under varying workloads, resource constraints, and 

dynamic conditions. The obtained results and performance evaluations provided valuable 

insights into the effectiveness of PSO and ABC for task scheduling in fog computing where it 

was realized that ABC based optimizer performed better under all considered scenarios.  Future 

research scope may include hybridizing the metaheuristic approaches, to include to other 

objectives like cost minimization and energy efficiency or exploring the integration of machine 

learning for better adaptive and efficient dynamic scheduling solutions in fog computing. 
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