~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Cloud Computing

Pushkar Rahane
Student ID: X21177279

School of Computing
National College of Ireland

Supervisor: Dr. Aqeel Kazmi




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Pushkar Rahane

Student ID: X21177279

Programme: MSc in Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Dr. Aqeel Kazmi

Submission Due Date: 18/09/2023

Project Title: Enhancing Cloud Efficiency using Intelligent Autoscaling Al-
gorithms

Word Count: 650

Page Count: Bl

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Pushkar Rahane

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Pushkar Rahane
x21177279

1 Objective

The Long Short-Term Memory (LSTM) algorithm came out on top in our study across
all criteria. Its capacity to identify complex patterns, reduce lags, mistakes, and waste
flops demonstrated its flexibility and efficiency in the auto-scaling scenario. This assess-
ment emphasises the need of choosing an effective algorithm for auto-scaling, with LSTM
proving to be a trustworthy option for responding quickly and minimising errors, delays,
and resource waste flops in the context of workload prediction and resource provisioning.

2 Tools and Technologies Required:

Python is the programming language used for the project because of its adaptability and
extensive library ecosystem. Python can be downloaded and installed from the official
website at (https://www.python.org/downloads/).

Importantly, the system runs without issue on Windows, macOS, and Linux (Ubuntu
22.04 or later is preferred). It is not dependent on the operating system. Additionally,
the project can be hosted and carried out on AWS (Amazon Web Services) EC2 utilizing
Cloud9, improving accessibility and cooperation.

2.1 Required Packages:

Tensorflow
Scikit-learn
Numpy
Matplotlib
Flask
Requests

Seaborn

Figure 1: Packages

The system’s structural support is provided by a significant group of software elements
that collectively make up the auto-scaling project. These components include TensorFlow
for deep learning models, scikit-learn for traditional models, NumPy for data manipula-
tion, seaborn for data visualization, and HTTP Requests for seamless communication.
The project uses Python as its flexible programming language, which supports strong
development.



2.2 Code Editor or Integrated Development Environment (IDE):

e VS Code
e Jupyter Notebook
e AWS Cloud9

3 Implementation

To successfully implement the auto-scaling mechanism, follow these steps:
Install Dependencies: Execute the following command to install required Python libraries

pip install -r requirements-txt
or
pip3 install -U tensorflow scikit-learn numpy matplotlib flask requests seaborn

Run the Program (Algorithm-specific Process): Navigate to the project directory us-
ing the terminal and execute the following commands:

For Parallel Processor:- python parallel_processor.py
For Serial Processor:- python serial_processor.py
For Server:- python server.py

For Client:- python client.py

Plot the Graph: After running the necessary components for each algorithm, generate
graphs to visualize the results. Execute the following command:

python graph.py

These instructions will enable you to successfully install the necessary dependencies,
execute the necessary code for each algorithm, and provide useful graphs to illustrate the
operation of the auto-scaling mechanism.

4 FEvaluation

We conducted a thorough analysis of various algorithms in the context of the auto-scaling
mechanism to evaluate their performance in terms of important metrics including response
time, total delay, total error, and total wasted flops. Three algorithms were compared:
Long Short-Term Memory (LSTM), Random Forest (RF), and Decision Tree (DT).

Response time is the time it takes for a system to manage a workload and respond to
a client, affecting user satisfaction. Total delay accounts for cumulative time lag. A lower
error rate indicates accurate resource allocation and prediction, promoting dependabil-
ity. Reducing Total Floating-Point Operations (FLOPs) waste improves resource usage,
supporting cost effectiveness and environmental sustainability.



Response Time (LSTM)

20

Time in Sec
> @
Time in Sec

05 ° "% 4 e % e 0% e

T e et A 0

0 20 £y 60 80 100
Responses

Total Delay: Comparative Analysis

Total Delay (Sec)
8 8
8 8

3
8

3
8

5 Results

at
ot
Istm
0 -
dt * Istm

Response Time (Decision Tree)

® WP we®s 0% Pee® %0 o% *00 0 o %5 e

fer

0 20 40 60 80
Responses

Figure 2:

Total Error Analysis (Real Conditions)

Total Error

Figure 3:

® e ® & o e* oo oo

100

N a >

Time in Sec
w

Total Delay (Sec)
8 8
8 H

3
8

3
8

Response Time (Decision Tree)

*e LY e® o ° © o e® oo g0
® W e®s 6% P e %0 e% * P50 Wf %% e '

0 2 0 60 80 100
Responses

Total Delay: Comparative Analysis

Istm

The study found that LSTM demonstrated exceptional efficiency in response time, al-
lowing quick prediction and resource allocation decisions. RF had moderate response
times due to ensemble-based approaches, while DT had slower response times due to
oversimplified designs. LSTM had the lowest overall error but struggled with handling
complex workload patterns. LSTM excelled in resource allocation, minimizing waste in
total waste flops.

References
python Installation
URL: https://www.python.org/downloads/
Packages installation using pip
URL: https://packaging.python.org/en/latest/guides/installing-using-p
ip-and-virtual-environments/


https://www.python.org/downloads/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

	Objective
	Tools and Technologies Required: 
	Required Packages:
	Code Editor or Integrated Development Environment (IDE):

	Implementation 
	Evaluation
	Results

