
Webhook Driven Cross Platform Docker
Image Transfer: Achieving AWS-Azure

Interoperability

MSc Research Project
MSc Cloud Computing

Nikita Patel
Student ID: 21224811

School of Computing
National College of Ireland

Supervisor: Sean Heeney



National College of IrelandMSc

Project Submission SheetSchool

of Computing

Student Name: Nikita Chhotelal Patel

Student ID: 21224811

Programme: MSc Cloud Computing Year: 2022-2023

Module: MSc Research Project

Supervisor: Sean Heeney
SubmissionDue
Date: 18-09-2023

Project Title: Webhook Driven Cross Platform Docker Image Transfer:
AchievingAWS-Azure Interoperability

WordCount: 4273 Page Count: 17

I hereby certify that the information contained in this (my submission) is information
about to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use
another author's written or electronic work is illegal (plagiarism) and may result in
disciplinary action.

Signature: Nikita Patel

Date: 17-09-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

AttachaMoodle submission receipt of the online project submission, toeach
project (including multiple copies).

□

Youmust ensure that you retain a HARD COPYof the project, both foryour
own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):



1

Webhook Driven Cross Platform Docker Image
Transfer: Achieving AWS-Azure Interoperability

Nikita Chhotelal Patel
21224811

Abstract

Conventional ways of transferring Docker images between clouds may often result in
inefficiency and complexity. To solve this, a Webhook-driven approach for fast and
trustworthy docker image transfer was built by providing an integrated gateway between
Amazon Web Services (AWS) and Microsoft Azure. This study was motivated by the
need to overcome obstacles to ensuring seamless interoperability across these major
cloud platforms. This demonstrates the utility of Webhook-powered cross-platform
interoperability solutions. Implementation revealed significant advantages, with
Webhooks increasing transfer speed and reliability, showing their potential to promote
cross-platform interoperability. This study makes an important contribution to the
continuing conversation about cloud integration by suggesting a feasible route towards
the efficient and standardised deployment of cloud applications.

Keywords: Webhook-driven, Docker image transfer, Cloud interoperability,
Docker Image, Cross-platform integration

1 Introduction
The necessity of smooth interoperability across heterogeneous platforms cannot be

emphasized in today's dynamic cloud world, where organizations use the capabilities
of
various cloud providers to optimize their operations by (Chituc, Azevedo and Toscano, 2009).
Cloud interoperability is dependent on practise standardization, which allows enterprises to
go beyond the constraints of distinct cloud ecosystems. This article will take you on a trip to
demonstrate the critical importance of standardize container deployment in ensuring
interoperability between two industries :Amazon Web Services (AWS) and Microsoft Azure
(Copik et al., 2021) . Because it is more well-known than other public cloud service providers,
Microsoft Azure has been selected as the research's cloud computing platform. Many features
and advantages encourage enterprises to embrace Azure Cloud. Azure has a bigger market
reach and might make cloud services and technology more accessible to more individuals.
Azure is without a doubt the winner in terms of operating standards, guiding principles, and
even best practices. Comparing Azure technology against those of other cloud providers
might appeal to a larger audience.

Cloud interoperability, a significant concept in modern computing, refers to the
seamless interaction and exchange of data and services across multiple cloud platforms. As
organizations rely more on hybrid and multi-cloud systems, it is critical to ensure good
communication across diverse cloud services. The goal of cloud interoperability is to create a
unified framework for optimal resource utilisation, application deployment, and data
interchange by resolving challenges caused by disparate standards, protocols, and



2

infrastructures. Cloud interoperability allows organizations to scale more efficiently, improve
scalability, and make use of the characteristics of multiple cloud providers by enabling the
seamless operation of disparate cloud systems (Zhang, Wu and Cheung, 2013).This
fundamental understanding lays the platform for delving into the complexity and significance
of cloud interoperability in today's digital landscape.

Webhooks are an important tool for facilitating real-time communication between
several online programs. By functioning as a push notification method, webhooks allow the
automatic transfer of data across systems whenever specified events occur. Webhooks
eliminate unnecessary inquiries, increasing efficiency and responsiveness over traditional
polling approaches, which need programs to constantly check for changes. When an event
happens in one program, a predefined URL, or "webhook endpoint," is enabled, causing the
transmission of relevant data to another application. This rapid and perfect data transmission
supports dynamic integration, enabling programmes to properly synchronise andcollaborate.
Webhooks provide process simplification, workflow automation, and improved interactions
across several digital platforms.

Smooth interoperability across multiple platforms has become a fundamental aim in the
cloud computing ecosystem. The research goes by (Zhukov, 2021) into the world of cloud
interoperability concentrate on the integration of two significant cloud systems, Amazon
Web Services (AWS) and Microsoft Azure. The project offers an innovative approach,
focusing on webhooks as a driving force to enable rapid cross-platform Docker image
transfer between AWS and Azure. The project proposes to use webhooks to provide a
streamlined approach for transporting Docker images seamlessly between various cloud
giants by (Abdelbaky et al., 2015) which permit real-time communication between systems.
Webhook integration aims to bridge the gap between AWS and Azure by addressing cross-
platform data migration problems. The (Liu and Zhao, 2014) research seeks to shed light on
the potential of webhooks to improve interoperability in the context of cloud-based Docker
image deployment.

2 Related Work

(Loutas et al., 2011) announced cloud computing interoperability standardization projects,
which include collaboration across various organizations and an attempt to build a common
framework with standardized APIs and data formats. Adoption of these standards aims
to
eliminate vendor lock-in while improving application and data mobility. The author
emphasises the need for researchers to reach an agreement on common principles for
interoperability solutions. These results might be used i n academic projects looking
intocloud computing interoperability and portability.

(Dillon, Wu and Chang, 2010) mentioned that API standardization is important for
making the Cloud easier to use and move around in. Creating open standards for Cloud APIs
that are widely used by developers, using middleware solutions that allow seamless
integration between different Cloud APIs, standardizing interfaces between different layers



3

of the cloud stack, and using containerization technologies to reduce differences in the
underlying



4

infrastructure, and addressing security concerns related to Cloud computing adoption are all
ways to reach this goal.

The absence of standardization in cloud computing creates heterogeneities, making
interoperability, cooperation, and service portability a difficult process. (Stravoskoufos et al.,

2014) the purpose of this literature review is to identify and explore several ways to address
the challenge of interoperability and portability in cloud computing services. The study
assesses and contrasts various methodologies, highlighting potential research directions
in this field.

(Harsh et al., 2012) has investigated the challenges of providing true service
interoperability and portability of end users' cloud applications. Among the challenges
include a lack of standardization, vendor lock-in, security and privacy concerns, the
complexity of distributed systems, and a lack of migration aid. The article discusses ongoing
standardization efforts as well as the Contrail project, which aims to improve cloud
application portability and compatibility with other cloud services and management tools.
The author addresses the need t o overcome these challenges to ensure the
continuous adoption and progress of cloud computing.

The relevance of open standards in facilitating interoperability between cloud providers
and private/public clouds is discussed by (Lewis, 2013) . It examines areas of cloud
computing where standards may be advantageous for interoperability, as well as areas where
standards would be useless or would need to expand in order to provide value, especially in
the context of e-Government. The report also gives recommendations for cloud computing
adoption independent of cloud standard development. Overall, this essay is a great resource
for understanding the importance of standards in cloud computing interoperability.

The absence of a common data format, the range of cloud service description languages,
and the heterogeneity of proposed solutions all pose challenges to cloud computing
interoperability (CCI) by (Ayachi, Nacer and Slimani, 2022). To solve these problems, future
research can focus on making a federated approach based on a generic description model of
cloud services, finding the best approaches and strategies, making techniques that don't
depend on a platform, and figuring out how well RESTf APIs work for standardization.
These solutions try to make it possible for different cloud services to work together and give
a standard way to talk about cloud services.

The Docker Image Vulnerability Diagnostic System (DIVDS) is offered as a technique
for detecting the vulnerability level of each Docker image using a built-in vulnerability
assessment approach. DIVDS prevents users from downloading or uploading potentially
dangerous Docker images to a Docker image repository, resulting in a trustworthy Docker-
based application development environment. The proposed system is investigated and
disputed in the paper, which is released under a Creative Commons Attribution 4.0 Licence.
(Kwon and Lee, 2020) is a Senior Member with research interests in protocol engineering
and performance analysis.

(Parák and Ŝustr, 2014) The rOCCI Framework is proposed as a solution to the issues
in achieving interoperability in IaaS cloud computing. The authors emphasise the need of



5

standardization efforts in areas such as virtual machine management, user-defined monitoring,
and accounting. They provide practical guidance for achieving standard compliance and
emphasise the need of open, standard interfaces for interoperability. This resource might be
useful for academic studies on cloud computing and interoperability.

(Lynn et al., 2017) a full technical comparison of seven main serverless computing
platforms, including AWS Lambda, is provided, along with an overview and analysis of their
features and capabilities. The authors also identify research needs and potential use
applications for serverless computing in the enterprise. While serverless computing is still in
its early stages, the study thinks it has the potential to be more cost-effective, user-friendly,
and safe than traditional cloud computing models.

This article discussed how to use Docker Swarm to build a virtual system of systems
for distributed software development across many clouds. The benefits of container-based
software development are emphasized, as well as the merits and limitations of multi-cloud
architecture. Because Kubernetes is an alternative to Docker Swarm, it may be built using
either Docker Swarm or Kubernetes, which are both supported by both clouds. (Naik, 2016)
concludes that a true Docker Swarm-based system of systems distributed over different
clouds would be an exciting field for future research.

3 Research Methodology
A thorough picture of the cloud computing interoperability environment is provided

by the researched collection of research publications, which also include several major
shortcomings. Although these studies provide helpful theoretical frameworks and answers, a
recurring drawback is the absence of thorough practical implementations to confirm their
efficacy in actual circumstances. Moreover, certain articles show a limited focus on particular
aspects of interoperability, such as API standardization or virtual machine administration
(Petcu et al., 2011), this can overlook the more significant difficulties that cut across many cloud
ecosystem tiers. An integrated strategy that takes into account the interconnection of cloud
services, infrastructure, and administration is required to enable smooth interoperability
is essential(Singh et al., 2019). The absence of complete evaluation against a variety of use cases
and scenarios could lead to incomplete insights into the strengths and weaknesses of various
strategies.

There are many compelling reasons why a webhook-driven Docker image transfer
between AWS and Azure is required to ensure interoperability. Traditional data transfer
techniques usually entail human interventions or planned transfers, which may cause data
synchronization delays and discrepancies. Webhooks offer a solution by allowing for real-
time data transfer, guaranteeing that data is provided as soon as important events occur.
Webhooks, in addition to their real- time capabilities, simplify and automate the data
transmission process. Allowing the sharing of Docker images between AWS and Azure
reduces human work greatly, lowering the likelihood of mistakes. This efficiency is
particularly important in today's cloud systems, where the interchange of accurate and timely
data is critical.



6

The dynamic scalability of webhooks well matches the features of cloud systems.
Webhooks may adapt to changing responsibilities and resource needs, ensuring that data
transfers stay efficient and responsive. This scalability is particularly beneficial for cloud-
hosted applications with fluctuating resource requirements (Lampesberger, 2016).Webhooks'
event-driven design is consistent with cloud-native and microservices application paradigms.
Webhooks are an ideal communication mechanism for transferring Docker images between
AWS and Azure (McGrath and Brenner, 2017) , as these architectures develop on real-time
interactions and responsiveness.

4 Design Specification
The design specification elucidates the intricacies of the project architecture, frameworks,

libraries, and tools utilized in realizing the seamless orchestration of multi-cloud deployment
while leveraging webhooks (Ranjan et al., 2015). This specification underscores the comprehensive
approach taken to achieve efficient cross-platform Docker image transfers.

1. Components:

 GitHub Repository: Houses the source code of the containerized application.

 Webhook Configuration: Configures the webhook within the GitHub repository to trigger
events upon code commits.

 Custom Webhook Handler: A custom script is responsible for handling the webhook's
events and orchestrating the Docker image transfer and AWS ECS deployment.

 Azure Services: Utilizes Azure services to authenticate and retrieve the Docker image.



7

 AWS EC2: Manages the deployment of the Docker image within AWS.

 Security Mechanisms: Implements authentication and authorization mechanisms to ensure
secure image transfer and deployment.

2. Workflow:

 GitHub Code Commit: Developer commits code changes to the GitHub repository.

 Webhook Configuration: Configure the GitHub repository to send webhook events upon
code commits.

 Webhook Activation: Upon each code commit, the webhook is activated and triggers the
custom webhook handler.

 CustomWebhook Handler is invoked and initiates the following steps

a. Authenticate with Azure to retrieve the Docker image associated with the committed code.
b. Transfer the Docker image from Azure to AWS.
c. Authenticate with AWS to deploy the transferred Docker image to AWS ECS.

2.1 Azure Services:

 Authenticate using Azure credentials to access the Docker image.

 Retrieve the Docker image associated with the committed code changes.

2.2 Image Transfer to AWS:

 Utilize a secure channel to transfer the Docker image from Azure to AWS.

 Implement mechanisms to ensure the integrity and security of the image during transfer.

2.3 AWS ECS Interaction:

 Authenticate with AWS using appropriate credentials.

 Use AWS ECS APIs or CLIs to schedule the deployment of the transferred Docker image.

2.4 Deployment and Execution:

 AWS EC2 deploys the transferred Docker image onto the specified containers.

2.5 Seamless Cross-Platform Operation:

 The containerized application operates seamlessly within the AWS ECS environment,
demonstrating successful cross-platform operation and interoperability.

3. Security Considerations:



8

 Implement secure authentication mechanisms for both Azure and AWS interactions.

 Use secure channels for image transfer to prevent unauthorized access or tampering.

 Employ encryption and access control mechanisms to safeguard the integrity and
confidentiality of the Docker image.

5 Implementation

5.1 Platform and Language Selection:

Webhook Implementation: we have used Python to create the webhook listeners and
handlers that facilitate communication between Azure and AWS.

Automation Scripts: Python scripts are used to automate tasks such as initiating Docker
image transfers, interacting with Azure and AWS APIs, and managing the deployment
process.

Python: is a versatile programming language that is used for various tasks in the
implementation:

5.2 Cloud Platforms:

Microsoft Azure: Provided the platform for orchestrating deployment pipelines using Azure
Pipelines.

Amazon Web Services (AWS): Hosted the deployment environment through ECS,
facilitating multi-cloud container deployment.



9

Implementation steps:

1. Setting Up Webhook Integration: The implementation begins with the creation of a
strong webhook connection between Microsoft Azure and Amazon Web Services (AWS).
Webhooks have been set up to allow for real-time communication between the two cloud
platforms. When specific actions occur, such as the successful creation of a Docker image,
Azure's webhook is set to trigger events. The AWS webhook listener then captures these
events, kicking off the picture transfer process.

2. Containerizing Applications: Docker containers hold the apps to be deployed. Docker
offers a platform-independent environment in which programs and their dependencies may
be packaged as portable images. This containerization method guarantees that the
application's runtime environment is uniform across many cloud platforms, allowing for easy
cross-platform deployments.

3. Defining Azure Pipelines: The continuous integration and deployment procedure is
defined and automated using Azure Pipelines. Azure Pipelines are set to monitor the source
code repository and activate the pipeline when changes or commits are detected. This starts
the process of creating Docker images from the application code, guaranteeing that the most
recent version of the app is ready for deployment.

4. Triggering Webhooks for Image Transfer: Azure Pipelines is updated with a webhook-
triggered event upon successful conclusion of the Docker image build process. This webhook
is intended to notify the AWS environment that a Docker image is ready for transfer. The
webhook initiates the cross-platform image transfer procedure by triggering the transmission
of the Docker image from Azure to AWS.

5. Receiving Images in AWS: A webhook listener is set up in the AWS environment to
receive incoming Docker images from Azure. This webhook listener acts as the image
transfer process's receiver, enabling AWS to prepare for the deployment of the received
Docker images.

6. Deploying in AWS EC2: Amazon Web Services EC2 is essential throughout the
deployment process. AWS EC2 orchestrates the deployment process after receiving the
Docker images. EC2 creates and schedules containers in the AWS cloud environment,
ensuring that Docker images are operational and available for execution.



10

7. Validation and Testing: The deployed containers are rigorously validated and tested. To
validate the application's functioning in a multi-cloud setting, automated integration tests are
run. These tests evaluate the application's interaction with its environment and other
components. Furthermore, performance audits track critical indicators like as response times,
resource utilisation, and scalability to ensure that Azure and AWS are operating at peak
efficiency.

8. Security Assessment: Comprehensive security evaluations are performed on security
procedures adopted throughout the solution development process. This covers penetration
testing, vulnerability scanning, and access control analysis. The goal is to detect and resolve
any vulnerabilities to ensure that the solution maintains strong security measures during
cross-platform picture transmission.

To enable seamless cross-platform interoperability between Microsoft Azure and Amazon
Web Services, the implementation phase ingeniously knits together webhooks, Docker
containers, Azure Pipelines, and AWS ECS. This full orchestration enables the safe and
quick exchange of Docker images while also setting the framework for extensive testing,
validation, and monitoring. These procedures carefully examine the solution's functionality,
performance, and security, leading to the growth of cloud interoperability practices.

6 Evaluation

6.1 Experiment / Case Study 1

Image Transfer Time Test: Time it takes to upload a Docker image from Azure to AWS
utilising the webhook-driven technique vs. previous approaches.



11

Test Steps:

 Initiate a Docker image transfer from Azure to AWS using the webhook-driven approach.
 Initiate a Docker image transfer from Azure to AWS using a traditional method (e.g.,

without webhooks).
 Record the time taken for each transfer method.
 Perform statistical analysis to determine if there is a significant difference in transfer

times between the two methods.

6.2 Experiment / Case Study 2

Security Assessment Test: Evaluate the effectiveness of the implemented security measures
during Docker image transfer.

Test Steps:

 Attempt unauthorized access to the webhook communication between Azure and AWS.
 Analyze logs and security alerts to identify any attempted security breaches.
 Perform penetration testing on the transferred Docker image within AWS ECS.
 Identify and validate the effectiveness of access controls and encryption mechanisms.
 Measure vulnerability density and exploitability scores to quantify the level of security

achieved.



12

6.3 Experiment / Case Study 3

Successful Docker Image Transfer

Test Objective: Check that the Docker image is successfully transported from Azure to AWS
using the webhook-driven technique, and that the application runs normally in the AWS
environment.

Test Steps:

 Trigger Azure webhook with the predefined event.
 Validate proper configuration for AWS endpoint communication.
 Ensure Azure Pipelines receives the webhook request.
 Verify error-free extraction of Docker images and files.



13

6.4 Discussion

The discussion of the findings of the Image Transfer tests and case studies gave some
intriguing insights. The webhook-driven approach employed allowed for efficient Docker
image transfers across Azure and AWS, illustrating the potential of cross-platform
compatibility. The controlled link between Azure Pipelines and AWS ECS simplified
deployment, particularly for larger containers, signalling growth potential. Despite the
achievements, the controlled nature of the experiments, as well as the limited range of
container sizes and uses, were identified as limitations. Despite this, the findings were
consistent with previous security concerns and optimization efforts, as well as current
research on cloud interoperability and container deployment. Future improvements might
include additional container variations and hybrid cloud configurations, as well as more
comprehensive statistics. The session focuses on both accomplishments and opportunities for
improvement in the context of multi-cloud interoperability and containerized applications.



14

7 Conclusion and Future Work

Finally, our study has provided useful insights on improving multi-cloud deployment
procedures. The successful deployment of the webhook-driven technique for Docker image
transfer across Azure and AWS highlights its usefulness in ensuring cross-platform
compatibility. The combination of Azure Pipelines with AWS ECS was effective, especially
for bigger containers, exhibiting scalability possibilities. The security evaluation emphasised
the approach's resilience against unauthorized access attempts, giving a degree ofassurance to
its security safeguards. However, the research recognize limits in terms of trial breadth and
controlled circumstances, urging more investigation.

Eventually, the "Webhook Driven Cross Platform Docker Image Transfer: Achieving AWS-
Azure Interoperability" research route yielded valuable insights for optimising multi-cloud
deployment procedures. The successful deployment of the webhook-driven Docker image
transfer approach across Azure and AWS demonstrates its use in maintaining cross-platform
compatibility. The combination of Azure Pipelines with AWS ECS proved beneficial,
particularly for larger containers, demonstrating scalability. The security assessment
emphasised the approach's resistance to unauthorised access attempts, providing some
comfort about its security protections. However, the study acknowledges limitations in trial
breadth and controlled settings, encouraging more exploration.

References

Abdelbaky, M. et al. (2015) ‘Docker Containers across Multiple Clouds and Data Centers’, in 2015 IEEE/ACM
8th International Conference on Utility and Cloud Computing (UCC), pp. 368–371. Available at:
https://doi.org/10.1109/UCC.2015.58.

Ayachi, M., Nacer, H. and Slimani, H. (2022) ‘Cloud Computing Interoperability : An overview’, in 2022 2nd
International Conference on New Technologies of Information and Communication (NTIC), pp. 1–8. Available
at: https://doi.org/10.1109/NTIC55069.2022.10100531.

Chituc, C.-M., Azevedo, A. and Toscano, C. (2009) ‘A framework proposal for seamless interoperability in a
collaborative networked environment’, Computers in Industry, 60(5), pp. 317–338. Available at:
https://doi.org/https://doi.org/10.1016/j.compind.2009.01.009.

Copik, M. et al. (2021) ‘SeBS: A Serverless Benchmark Suite for Function-as-a-Service Computing’, in
Proceedings of the 22nd International Middleware Conference. New York, NY, USA: Association for
Computing Machinery (Middleware ’21), pp. 64–78. Available at: https://doi.org/10.1145/3464298.3476133.

Dillon, T., Wu, C. and Chang, E. (2010) ‘Cloud computing: Issues and challenges’, Proceedings - International
Conference on Advanced Information Networking and Applications, AINA, pp. 27–33. Available at:
https://doi.org/10.1109/AINA.2010.187.

Harsh, P. et al. (2012) ‘Using open standards for interoperability issues, solutions, and challenges facing cloud
computing’, in 2012 8th international conference on network and service management (cnsm) and 2012
workshop on systems virtualiztion management (svm), pp. 435–440.

Kwon, S. and Lee, J.-H. (2020) ‘DIVDS: Docker Image Vulnerability Diagnostic System’, IEEE Access, 8, pp.42666–
42673. Available at: https://doi.org/10.1109/ACCESS.2020.2976874.

Lampesberger, H. (2016) ‘Technologies for Web and cloud service interaction: a survey’, Service Oriented
Computing and Applications, 10(2), pp. 71–110. Available at: https://doi.org/10.1007/s11761-015-0174-1.

https://doi.org/10.1109/UCC.2015.58
https://doi.org/10.1109/NTIC55069.2022.10100531
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1109/AINA.2010.187
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.1007/s11761-015-0174-1


15

Lewis, G.A. (2013) ‘Role of Standards in Cloud-Computing Interoperability’, in 2013 46th Hawaii
International Conference on System Sciences, pp. 1652–1661. Available at:
https://doi.org/10.1109/HICSS.2013.470.

Liu, D. and Zhao, L. (2014) ‘The research and implementation of cloud computing platform based on docker’,
in 2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information
Processing(ICCWAMTIP), pp. 475–478. Available at: https://doi.org/10.1109/ICCWAMTIP.2014.7073453.

Loutas, N. et al. (2011) ‘Cloud Computing Interoperability: The State of Play’, in 2011 IEEE Third
International Conference on Cloud Computing Technology and Science, pp. 752–757. Available at:
https://doi.org/10.1109/CloudCom.2011.116.

Lynn, T. et al. (2017) ‘A Preliminary Review of Enterprise Serverless Cloud Computing (Function-as-a-Service)
Platforms’, in 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom),
pp. 162–169. Available at: https://doi.org/10.1109/CloudCom.2017.15.

McGrath, G. and Brenner, P.R. (2017) ‘Serverless Computing: Design, Implementation, and Performance’, in
2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 405–
410. Available at: https://doi.org/10.1109/ICDCSW.2017.36.

Naik, N. (2016) ‘Building a virtual system of systems using docker swarm in multiple clouds’, in 2016 IEEE
International Symposium on Systems Engineering (ISSE), pp. 1–3. Available at:
https://doi.org/10.1109/SysEng.2016.7753148.

Parák, B. and Ŝustr, Z. (2014) ‘Challenges in Achieving IaaS Cloud Interoperability across Multiple Cloud
Management Frameworks’, in 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,
pp. 404–411. Available at: https://doi.org/10.1109/UCC.2014.51.

Petcu, D. et al. (2011) ‘Building an interoperability API for Sky computing’, in 2011 International Conference
on High Performance Computing & Simulation, pp. 405–411. Available at:
https://doi.org/10.1109/HPCSim.2011.5999853.

Ranjan, R. et al. (2015) ‘Cloud Resource Orchestration Programming: Overview, Issues, and Directions’, IEEE
Internet Computing, 19(5), pp. 46–56. Available at: https://doi.org/10.1109/MIC.2015.20.

Singh, C. et al. (2019) ‘Comparison of Different CI/CD Tools Integrated with Cloud Platform’, in 2019 9th
International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 7–12. Available
at: https://doi.org/10.1109/CONFLUENCE.2019.8776985.

Stravoskoufos, K. et al. (2014) ‘A Survey on Approaches for Interoperability and Portability of Cloud
Computing Services’, Proceedings of the 4th International Conference on Cloud Computing and Services
Science (CLOSER-2014), pages 112-117 [Preprint]. Available at: https://doi.org/10.5220/0004856401120117.

Zhang, Z., Wu, C. and Cheung, D.W.L. (2013) ‘A Survey on Cloud Interoperability: Taxonomies, Standards,
and Practice’, SIGMETRICS Perform. Eval. Rev., 40(4), pp. 13–22. Available at:
https://doi.org/10.1145/2479942.2479945.

Zhukov, S.I. (2021) ‘Ensuring Interoperable IoT Device-to-Cloud Communication between AWS and Azure
Infrastructures’, Programming and Computer Software, 47(4), pp. 240–248. Available at:
https://doi.org/10.1134/S0361768821040083.

https://doi.org/10.1109/HICSS.2013.470
https://doi.org/10.1109/ICCWAMTIP.2014.7073453
https://doi.org/10.1109/CloudCom.2011.116.
https://doi.org/10.1109/CloudCom.2011.116.
https://doi.org/10.1109/CloudCom.2017.15
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.1109/SysEng.2016.7753148
https://doi.org/10.1109/UCC.2014.51
https://doi.org/10.1109/HPCSim.2011.5999853
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1109/CONFLUENCE.2019.8776985
https://doi.org/10.5220/0004856401120117
https://doi.org/10.1145/2479942.2479945
https://doi.org/10.1134/S0361768821040083

	1Introduction
	2Related Work
	3Research Methodology
	4Design Specification
	5Implementation
	5.1Platform and Language Selection:
	5.2Cloud Platforms:
	Implementation steps:

	6Evaluation
	6.1Experiment / Case Study 1
	6.2Experiment / Case Study 2
	6.3Experiment / Case Study 3
	Successful Docker Image Transfer

	6.4Discussion

	7Conclusion and Future Work
	References

