
Ensemble Fault Tolerance Technique
Configuration Manual

MSc Research Project

Cloud Computing

Erel Ozturk
Student ID: 21245312

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Erel Ozturk

Student ID: 21245312

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 14/08/2023

Project Title: Ensemble Fault Tolerance Technique Configuration Manual

Word Count: 1644

Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Erel Ozturk

Date: 11th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Ensemble Fault Tolerance Technique Configuration
Manual

Erel Ozturk
21245312

1 Prequisites

This document provides the reader with the necessary setups to conduct the experiments
described in the thesis paper. The purpose of these experiments is to determine the
best one out of three techniques, checkpointing, replication, and a combination of check-
pointing and replication together. The manual will first walk the readers through the
necessary software setups and specifications of the instances that the experiments will
be conducted on as well as the necessary configurations on these instances. After that,
it will be discussed how to download and run the source code of the experiments. The
paper will finally provide how to run the experiments and capture the metrics.

To set up the client-side of the application, Android Studio is required. It will be
necessary to make use of two components of it, Android Virtual Device (AVD) and
Profiler. After installing Android Studio, using AVD, a new virtual device should be
created with the specifications given in Table 1.

Table 1: Virtual mobile device specification

Metric Value
OS Android 11.0
CPU ARM64 (4 cores)
RAM 1536 MB
Storage 800 MB
VM Heap 256 MB

To get the client application up and running, the Flutter framework with Dart pro-
gramming language is required. Please follow the installation instructions in Flutter’s
official website1 to install Flutter version 3.10.5.

To set up the server-side of the application, two identical t2-micro EC2 instances are
required. The specifications of the servers are given in Table 2.

2 Environment

The client application is run on the local machine. Specifications of the author’s local
machine are given in Fig 1.

1https://flutter.dev/

1



Table 2: EC2 instance specification

Region OS CPU RAM Storage
eu-west-1 Ubuntu 22.04.2 LTS Intel(R) Xeon(R) CPU E5-

2676 v3 @ 2.40GHz (single
core)

957 MB 7.6 GB

Figure 1: Specifications of the local machine

Server-side of the application is run on AWS EC2 instances as mentioned in the
previous section.

3 Installation

This section describes how to download the source code for the client and the servers. To
download the source code and ensure libraries are correctly installed, please follow the
instructions described below:

$ git clone https://github.com/erel98/NCI_thesisProject_client.git

$ cd NCI_thesisProject_client

$ flutter pub get

Note: The $ flutter pub get command will install the specified versions of the
libraries. A list of the versions of libraries that are used in this application can be found
in pubspec.yaml file.

2



For both of the servers, Python 3.7.5 and pip installations are required. The installa-
tion process is straightforward, therefore not described. After ssh’ing to the main server
installing Python 3.7.5 and pip, follow the instructions below to complete the necessary
installations.

$ sudo apt-get rsync

$ git clone https://github.com/erel98/NCI_thesisProject_mainServer.git

$ cd NCI_thesisProject_mainServer

$ chmod +x dataReplication.sh

$ python3 -m venv env

$ source env/bin/activate

$ pip install pip --upgrade

$ pip install -r requirements.txt

To enable service replication in background:

$ chmod +x serviceReplication.sh

$ nohup ./serviceReplication.sh &

Do the same for the backup server with the following instructions:

$ git clone https://github.com/erel98/NCI_thesisProject_backupServer.git

$ cd NCI_thesisProject_mainServer

$ python3 -m venv env

$ source env/bin/activate

$ pip install pip --upgrade

$ pip install -r requirements.txt

4 Configuration

Do the same for the backup server with the following instructions: This section instructs
readers on how to configure their EC2 instances to accept custom TCP connections on
8000 port. Please follow the step-by-step instructions below:

1. Login to your AWS account and go to the EC2 dashboard.

2. Make sure you are in Dublin (eu-west-1) region and locate your main server instance.
Click on the instance name.

3. Copy the public IP address of the instance and save it somewhere for future usage.

4. From the tabs below, switch to the Security tab.

5. Click on the security group name.

6. In the Inbound rules table, find and click the ”Edit inbound rules” button.

7. Add a new rule with the details given in Table 3 and save it.

8. Open the directory where you downloaded the Flutter app from your local machine.

3



9. Open consts.dart and paste the copied IP address from step 3 to mainServer con-
stant.

10. Repeat all the steps for the backup server as well and paste the public IP address
to the backupServer constant in consts.dart.

Table 3: Details of new inbound rule

Type Protocol Port range Source IP
Custom TCP TCP 8000 Custom 0.0.0.0/0

Please note that the public IP addresses of the EC2 instances are subject to change
if the instance is stopped or restarted. In case they change, make sure to update the
consts.dart with the latest IP addresses in order for the client to be able to connect to
the servers.

5 Running the experiments

This section contains information about how to execute experiments and monitor the
metrics of the client. As a first step, it should be decided which scenario is wished to be
executed. Based on the choice, in the main server, the helper.py file must be edited to
let the system know what is being simulated. After ssh’ing to the main server, do the
following to edit the file.

$ cd fastapi

$ nano helper.py

edit the scenario variable

• For checkpointing: Set the scenario variables to checkpoint.

• For replication: Set the scenario variables to replication.

• For combined: Set the scenario variables to combined.

Similarly, in the Flutter app, navigate to consts.dart file and locate the isCombined
constant. Set it to true only if the ensemble scenario is being simulated.

After letting the main server know the scenario, the servers should be started with
the following command:

$ uvicorn main:app --host 0.0.0.0 --port 8000 --reload

It’s worth noting that the main server will raise an intentional exception at 5th iter-
ation while executing replication and combined scenarios. If desired, it can be adjusted
from the source code of main.py, line: 58.

Now that the servers are up and running, the client application should be started.
Before starting the emulator, make sure to locate the Profiler button in Android Studio as
shown in Fig 2. From Android Studio, start the AVD that was configured in the previous
sections. Now, it should be possible to see the emulator when clicked on the plus button
in Profiler tab. From Android Studio, run main.dart to start the application. Once the

4



application is up and running in the emulator, in Profiler tab, it should be possible to
see the application with a name like com.example.faulttolerance under the emulator when
clicked on the plus button. Locate and click it to monitor the metrics of the emulator
during the experiments. It can be clicked on the desired metric to have a closer look (i.e.
network).

Figure 2: Profiler button in Android Studio

By default, when the application is started, the client will establish a connection with
the main server initially. There are two buttons at the screen:

• Start simulation: Emits the message to the server and initiates execution.

• Connect: Connects to the server manually if the connection is closed (when execu-
tion is completed, the connection between the server and the client is automatically
closed).

To proceed with the rest of the experiment, please see the relevant section from below
according to the choice in helper.py file in the main server.

5.1 Checkpointing

This scenario involves a network disconnectivity to see how the system recovers from the
disconnectivity state. To be able to simulate this scenario, the scenario variable should
have been set to checkpoint in helper.py. After starting the application, click the Start
simulation button on the screen. In the console, some outputs will be seen that count
from 0. By default, the client application is configured to send 15 to the server, which
means there will be 15 iterations in total. If desired, this value can be changed by editing
the messageToBeEmitted variable in MainScreen.dart.

When the emulator is wanted to be disconnected from the internet to simulate network
disconnectivity, swipe down from the top of the screen to open the notification panel.
Scroll again to expand the menu. Swipe left to switch to the second screen from the
menu and locate Airplane mode. When the Airplane button is clicked, the emulator will
lose network connection and the execution will pause. When desired, it can be clicked
again on the same button to restore the network connection of the emulator. It will be
seen that the execution will continue from the last iteration after the emulator restores
its network connection. It’s possible to follow the process from the console in Android
Studio. When the execution is completed, the total execution time will be prompted in
the console.

5



While the application is running, metrics of the emulator (such as network data usage,
memory utilization, etc.) can be tracked from the Profiler tab. To be able to see both
console outputs and the Profiler activity, it is recommended to change the view mode of
the Profiler tab (i.e., windowed) from the setting button at the top right-hand side of the
Profiler tab.

5.2 Replication

This scenario involves an intentional server-side failure at 5th iteration of the execution.
To be able to simulate this scenario, scenario variable should have been set to replica-
tion in helper.py. Unlike checkpointing scenario, this scenario does not involve any user
interaction other than clicking on the ”Start simulation” button. Once the simulation is
started, in the console, some outputs counting from 0 will be seen again. Once it reaches
the 5th iteration, the main server will raise an exception and connection to the main
server will be closed. The client will then automatically connect to the backup server and
emit the same message. Thus, the execution will be initiated from the start.

5.3 Combined

This scenario involves an intentional server-side failure at 5th iteration of the execution
similar to the replication scenario. To be able to simulate this scenario, the scenario
variable should have been set to combined in helper.py. The procedure is exactly the same
until the execution reaches to 5th iteration. After the main server raises an intentional
exception on the 5th iteration, the main server will synchronize the checkpoint.json file
with the backup server using the dataReplication.sh script. After that, the client will
close the connection with the main server and connect to the backup server. However,
instead of starting from the start, the execution will continue from the 5th iteration.
Therefore, the latest snapshot of the system is synchronized to the backup server so that
when the client connects to the backup server, the execution can continue from where it
was left at.

6


	Prequisites
	Environment
	Installation
	Configuration
	Running the experiments
	Checkpointing
	Replication
	Combined


