
Document Search Engine using Text
Analysis hosted over the cloud

MSc Research Project

Cloud Computing

Vishwas Mudalahippe Shankarappa
Student ID: 21205825

School of Computing

National College of Ireland

Supervisor: Rejwanul Haque

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Vishwas Mudalahippe Shankarappa

Student ID: 21205825

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Rejwanul Haque

Submission Due Date: 14/08/2023

Project Title: Document Search Engine using Text Analysis hosted over the
cloud

Word Count: 1243

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Document Search Engine using Text Analysis hosted
over the cloud

Vishwas Mudalahippe Shankarappa
21205825

1 Introduction

This document outlines the configuration management for deploying and managing the
Python Flask-based Web Application on an EC2 instance. The file serves as a blueprint
for deploying, maintaining, and scaling the Python Flask-based web application on an
EC2 instance. It encompasses various aspects, including server settings, database con-
nections, file system configurations, background processing optimization, and more. By
adhering to this configuration management, administrators can ensure consistent applic-
ation behavior, seamless updates, efficient resource allocation, and reliable performance.

2 Methodology

2.1 Data Acquisition

An integral part of the research is being represented by the code snippet presented below
Figure 1. At this point, we are concentrating on extracting and converting papers so
that we may incorporate them into our document search engine. The primary objective
of this stage is to process and convert documents from various forms into a structured
format appropriate for indexing and future search operations.

At this stage, the variable folder path will be set to indicate the location of the archive
containing the many papers to be studied. The iterative procedure’s third stage entails
searching for a file using its name within the folder’s list of contents. For each file, a
new DataFrame is built and given the notation df of file. To store the content of the
structured document, this DataFrame is used.

The process of identifying the file format begins with the detection of the file’s exten-
sion. This allows the system to correctly identify the document type, which is required for
triggering the appropriate conversion function. There are four distinct document types
that are differentiated by the sequential conditional checks: PDF, Markdown (MD), plain
text (TXT), and DOCX. Invoking the proper conversion functions enables processing of
each format and the effective completion of the transformation into a structure that is
compatible with DataFrame. DataFrame concatenation facilitates the systematic integ-
ration of transformed DataFrames, leading to the generation of a comprehensive final df
DataFrame containing the aggregated content of all treated documents.

Notably, print statements are included in the execution of the code to provide insight
into the running operation. The console updates with a report for each processed file,
allowing for easy monitoring and verification of results. The culmination of our document

1

Figure 1: Data Acquisition

extraction and transformation process is the final df DataFrame. This step is necessary
preparation for the subsequent indexing and searching processes.

2.2 PDF Extraction

The following Figure 2 code sample exemplifies a critical component of the research
platform that is developed. The fundamental goal of this method is to convert PDFs
into structured data frames that may be used in the indexing and retrieval of documents
later on. The three main functions contained in the wrapped code each make a distinct
contribution to the overall conversion procedure.

• Scaling and Image Processing (scale image): The’scale image’ function is respons-
ible for resizing images to enhance readability and facilitate precise text extraction.
The function takes an image and a scaling factor as input, calculates the new di-
mensions, and returns the image scaled to those dimensions.

• Text Extraction from PDF Pages (process page): The process page method oper-
ates on a tuple containing the page number and the page object corresponding to
it, both of which are extracted from the PDF file. After the pixmap representation
of the page has been extracted, it is converted into an RGB image. After that, the
scale image function is used to alter the size of the image. After that, the image will
be processed by Tesseract, a very effective Optical Character Recognition (OCR)
system, in order to extract textual information from it. The function returns the
page number and the extracted text.

2

Figure 2: PDF Extraction

3

3 Implementation

The models created for the document search engine are first tested on Google Colabor-
atory, and the best model is deployed to the cloud. As part of this research, five models
were created and tested, and one model is deployed on an EC2 instance.

3.1 Google Colaboratory

All five models were created and tested on Google Colaboratory Figure 3, and the dataset
is stored in Google Drive. These models can be run anywhere by uploading the models
and dataset to Google Colaboratory.

3.2 Cloud Deployment

The TF-IDF model is deployed on an EC2 instance as a Python Flask-based Web Ap-
plication. The application offers three APIs where users can upload the PDFs, extract
the content, and ask queries. The APIs can be accessed through Postman. The below-
mentioned steps were followed for the deployment:

• The AWS Cloud9 IDE Figure 4 is used as a workspace for the development of code
and testing.

• An AWS EC2 instance is launched with ubuntu/images/hvm-ssd/ubuntu-jammy-
22.04-amd64-server-20230516 AMI for deployment of the application.

• An elastic IP (18.200.13.52) is created and attached to the EC2 instance to retain
the same IP even after restarting the instance and for dynamic computing.

• sudo apt update : Updates the local package repository cache on a Debian-based
system.

• git clone https ://github.com/vishwasms121/document-search.git: Clones a Git re-
pository from the specified URL.

• cd document-search/ : Changes the current directory to the ”document-search”
directory.

• sudo apt install mysql-server : Installs the MySQL database server.

• sudo systemctl start mysql.service : Starts the MySQL service using systemd.

• sudo mysql : Opens the MySQL command-line client.

• mysql -u root -p : Opens the MySQL command-line client as the ”root” user with
password authentication.

• CREATE DATABASE search; Creates a new database named ”search”

• USE search; Sets the current session to use the ”search” database for subsequent
queries.

4

Figure 3: Sentence Encoder on Google Colaboratory

5

Figure 4: AWS Cloud9 environment

• CREATE TABLE ‘all files‘ (‘id‘ int NOT NULL AUTO INCREMENT, ‘filename‘
varchar(500) DEFAULT NULL, ‘created date‘ datetime DEFAULT NULL, PRIMARY
KEY (‘id‘)); Creates a table named ”all files” with columns for file metadata in-
cluding an auto-incrementing ID, filename, and creation date.

• CREATE TABLE ‘master extraction‘ (‘id‘ int NOT NULL AUTO INCREMENT,
‘file id‘ int DEFAULT NULL, ‘page num‘ int DEFAULT NULL, ‘para num‘ int
DEFAULT NULL, ‘extracted text‘ varchar(5000) DEFAULT NULL, ‘created date‘
datetime DEFAULT NULL, PRIMARY KEY (‘id‘)); Creates a table named ”mas-
ter extraction” to store extracted data, including an auto-incrementing ID, file ID
reference, page number, paragraph number, extracted text, and creation date.

• python3 : Opens the Python 3 interpreter.

• sudo apt install python3-pip : Installs the Python 3 package manager (pip).

• pip install -r requirements.txt : Installs Python package dependencies listed in
”requirements.txt”.

• mkdir -p public/docs : Creates a directory named ”public/docs” and any necessary
parent directories.

• sudo apt install nodejs : Installs the Node.js JavaScript runtime.

• node -v: Displays the version of Node.js installed.

• sudo apt install npm : Installs the Node.js package manager (npm).

• sudo npm install pm2 -g : Installs the pm2 process manager globally using npm.

• pm2 start ”python3 main.py” –name documentSearch : Starts a Python script
named ”main.py” using pm2 and assigns it the name ”documentSearch” Figure 5

• pm2 logs : Displays the logs of running pm2 processes.

• pm2 status : Displays the status of pm2-managed processes.

6

Figure 5: pm2 process manager

Figure 6: POST endpoint to upload the PDFs

4 Results

The application creates three APIs that can be accessed and tested through Postman.

7

Figure 7: GET endpoint to extract the PDFs

Figure 8: POST endpoint to ask the queries

8

	Introduction
	Methodology
	Data Acquisition
	PDF Extraction

	Implementation
	Google Colaboratory
	Cloud Deployment

	Results

