~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Nikhil Mondhe
Student ID: x21174105

School of Computing
National College of Ireland

Supervisor: Rejwanul Haque

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nikhil Mondhe
Student ID: x21174105
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Rejwanul Haque
Submission Due Date: 14/08/2023
Project Title: Configuration Manual
Word Count: 356
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nikhil Mondhe

Date: 13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Nikhil Mondhe
x21174105

1 Introduction
This configuration manual provides in-depth, step-by-step instructions for installing, con-

figuring, and deploying all of the software, tools, and files that are necessary for the
implementation of the proposed system.

2 Prerequisites

’ AWS Kubernetes Cluster

EC2 Instance AWS t3.medium

oS Ubuntu Version (20.04)

Orchestration tool Kubernetes Version = 1.19

Container tool Docker Version = 18.01

Table 1: Cluster Configurations

Virtual Machine (VPC)

vCPU 8

Memory 32GiB
Network Performance 5 gbps upto
Cost of services $0.3741/ hr

Table 2: Virtual machine Configurations

3 Implementation

3.0.1 Install required tools
e Install the AWS Command Line Interface (CLI) and kubectl.

e Configure AWS CLI with your credentials using aws configure.

3.0.2 Create an Amazon EKS Cluster

Usign following commands:-

“aws eks create-cluster —name clustername —role-arn your-eks-role-arn —
resources-vpc-config subnetlds=subnet-1,subnet-2,securityGrouplds=sg-1”

3.0.3 Configure Kubectl to Use the Cluster

aws eks update-kubeconfig —name eks

3.0.4 Verify Cluster

get cluster

REGION EKSCTL CREATED
True
get nodes -o wide
STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL - IP 0S-IMAGE KERNEL -VERSION CONTAINER-RUNTIME
ip-192-168-36-136.ec2.internal Ready <none> 21h v1.26.6-eks-a5565ad 152.168.36.130 18.206.222.214 Amazon Linux 2 5.10.184-175.731.amzn2.x86_64 containerd://1.6.19

Figure 1: Verifying EKS Cluster

3.0.5 Create Kubernetes Deployment YAML

! eks-demo-deploymentyml X

Figure 2: Deployment YAML File

Run the following command to apply the deployment configuration:
kubectl apply -f eks.demo.deployment.yaml

To Verify the deployment commands :

get Deployment -A
NAME UP-TO-DATE AVAILABLE
grafana 1
myapp3-deployment
prometheus-operator

thompson-nikhil-deployment
thompson-scheduler

coredns
irometheus-deployﬂent

Figure 3: EKS Deployment

3.0.6 Expose the Service to the cluster
First, a Service YAML file must be created.

eks-demo-svcyml X

Figure 4: Service YAML file

Apply the service configuration using the kubectl apply command:
kubectl apply -f my-app-service.yaml

To Verify the service commands:

get svc -A

NAME TYPE CLUSTER-IP EXTERNAL-IP
deploynent-nodeport-service NodePort g <none>
deploynent-nodeport-service-deno NodePort

grafana-service LoadBalancer

kubernetes ClusterIP

prometheus-operated ClusterIP

ClusterIP < 8080/TCP

NodePort 5 2.1 <n 80:30333/TCP

LoadBalancer 9.1 i 80:31637/TCP

ClusterIP “ <none> 53/UDP,53/TCP
kubelet ClusterIp e 10250/TCP,10255/TCP,4194/TCP
node-exporter ClusterIpP 10.100.245.69 9108/TCP
prometheus-service NodePort 10.100.123.71 80:31571/TCP

Figure 5: Expose the Service

To get the pods following commands:

get pods -A -o wide
NAME STATUS RESTARTS AGE P NODE NOMINATED NODE READINESS GATES
grafana-567959f665-z6vzt Running] 3 192.168.39.3 1p-192-168-36-130.ec2.internal
myapp3-deployment-6d87df5694-cgdmn Running G 192.168.55.133 1p-192-168-36-130.ec2.internal
myapp3-deployment - 6d87dF5694 - rmmdm Running @ 192.168.33.76 ip-192-168-36-130.ec2.internal
prometheus-operator-98cb56dcs-dzhvi RuRNing 4 .168.43.17 1p-192-168-36-130.ec2.internal
thompson-nikhil-deployment-57fcfc79- lvckk Running .168.58.223 ip-192-168-36-130.ec2.internal

‘thompson-scheduler-6bbc7b6df -k4j6s Running @ 192,168.54.36 ip-192-168-36-130.ec2.internal
aws- ggb Running 192.168.36.130 1p-192-168-36-130.ec2.internal
coredns-55fb5d545d-khksz Running 6 192.168.55.10 ip-192-168-36-130.ec2

coredns-55fb5d545d-trros Running 192.168.56.237 ip-192-168-36-130.ec2.internal
kube-proxy-1gv74 Running 192.168.36.130 1p-192-168-36-130.ec2.internal
node-exporter-2tw7s Running © 192.168.57.192 ip-192-168-36-130.ec2.internal
prometheus-deployment-5c5fff48b7-5snmf Running 192.168.32.227 1p-192-168-36-130.ec2.internal

Figure 6: Worker Pods

4 Algorithm Implementation

np
as np
(__name__)

ThompsonSampling:
__init (self, counm values):
f.counts = counts
f.values = values

initialize(self, n_arms):
f.counts = np.zeros(n_arms})
-values = np.zeros{n_arms)

select_arm(self
arms = len(self.counts)
theta_samples = np.random.beta(l +
u np.argmax(theta_samples)

update(self, chosen_arm, reward)
self.counts[chosen_arm] += 1
1f.counts[chosen_arm]
self.values[chosen_arm]
f.values[chosen_arm] () / float(n)) * value + (1 / float(n)) * reward

app.route(”/")

ief home()
ts = ThompsonSampling(
ts.initialize

range (18

chosen_arm =
reward = np.random.binomial(1, il n_arm)
update(chosen_arm, reward)

jsonify(ts.values.tolist()

f __name_ ==

app.run(hos

Figure 7: Thompson sampling Algorithm in Python

5 Deployment of Algorithm

e Install Docker using commands

5.0.1 Create a docker file to deployed in Container

Dockerfile X

python:3.7-s51im

R /app
D . [app

N pip install --trusted-host pypi.python.org -r requirements.txt

Figure 8: Docker file

5.0.2 Deployment on the Cluster using YAML file

! thompson-nikhilym{ X

Archi

Figure 9: Deployment Algorithm Yaml file

6 Installation of Monitoring and Visualisation Tools

Created a kubernetes service of Grafana and Prometheus using YAML file.

grafana-svcymi X

Archive

Figure 10: Garfana Service Yaml File

prometheus-sveyml X

Archive

Figure 11: Prometheus Service Yaml File

Deploy this service using create a deployment yaml file and deployed using kubectl
commands as shown below:

kubectl apply -f filename.yaml

Below are the yaml files for deployment this tools :

grafanayml X

Figure 12: Garfana Deployment Yaml File

prometheusyml X

Figure 13: Prometheus Deployment Yaml File

7 Generate Load on Application

We need to install the Locust tool to generate the application load for testing the system.
Refer to the official Locust documentation for installation and configuration.

After we setup the locust tool we need to mention the users for generating the load
and requests per second for 5 minutes.

8 Observations

Grafana Dashboard is used to display comprehensive insights regarding memory perform-
ance and CPU utilisation as shown in Figure 14

Parfoemnance Dashboard Notes

« NCPU Usage

Figure 14: CPU Memory Utilization

	Introduction
	Prerequisites
	Implementation
	Install required tools
	Create an Amazon EKS Cluster
	Configure Kubectl to Use the Cluster
	Verify Cluster
	Create Kubernetes Deployment YAML
	Expose the Service to the cluster

	Algorithm Implementation
	Deployment of Algorithm
	Create a docker file to deployed in Container
	Deployment on the Cluster using YAML file

	Installation of Monitoring and Visualisation Tools
	Generate Load on Application
	Observations

