
Kubernetes Proactive Resources Scheduling
using Multi-armed bandit Algorithm

MSc Research Project

MSc Cloud Computing

Nikhil Mondhe
Student ID: x21174105

School of Computing

National College of Ireland

Supervisor: Rejwanul Haque

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Nikhil Mondhe

Student ID: x21174105

Programme: MSc Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Rejwanul Haque

Submission Due Date: 14/08/2023

Project Title: Kubernetes Proactive Resources Scheduling using Multi-
armed bandit Algorithm

Word Count: 5217

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nikhil Mondhe

Date: 13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Kubernetes Proactive Resources Scheduling using
Multi-armed bandit Algorithm

Nikhil Mondhe
x21174105

Abstract

Effective resource allocation in Kubernetes clusters is critical for improving
application performance while utilising cluster resources efficiently. Traditional
resource scheduling approaches frequently rely on fixed policies, which results in
suboptimal resource utilisation and, on occasion, performance bottlenecks. To ad-
dress these issues, this study employs the Multi-armed Bandit Algorithm in a novel
approach for proactive resource scheduling in Kubernetes environments. To dy-
namically allocate resources to different application workloads, the proposed ap-
proach employs Thompson Sampling algorithm, a popular technique in the field of
multi-armed bandits. The algorithm seeks to strike a balance between exploring po-
tentially better resource configurations and exploitation of known high-performing
configurations by treating each application as a ”arm” and allocating resources
based on historical performance data. The objective of this study is to compare
the effectiveness of the Thompson Sampling-based proactive scheduling approach
to the default Kubernetes scheduler. The comparison is based on minimising CPU
and memory usage across multiple workloads. The findings of this study have
the potential to make a significant contribution to the field of container orches-
tration and resource management by providing insights into the effectiveness of
advanced algorithms in solving resource allocation challenges. The experimental
results demonstrated that proactive resource scheduling strategies can improve the
overall scalability, performance, and efficiency of Kubernetes clusters.

1

1 Introduction

Cloud computing has changed how businesses and people manage, store, and run applic-
ations and data. It involves delivering on-demand computing resources like computing
power, storage, databases, and different services over the internet. Users can rent re-
sources from cloud service providers instead of owning physical infrastructure, which
gives them scalability, cost-effectiveness, and flexibility. Different service models, like In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS), are used in cloud computing to meet different needs. Because it is flexible, organ-
isations can quickly add or take away resources as needed. This helps them get the most
out of their resources and save money. Cloud computing also lets users access apps and
data from anywhere with an internet connection. This makes it possible for workers to be
mobile and flexible. Also, the cloud’s dependability, availability, and security, along with
its advanced data management and analytics features, make it a must-have technology
for modern businesses that want to thrive in the digital age.

In recent years, cloud computing has made a lot of progress to meet the growing
needs of complex and varied workloads. Containerization technology is one of the most
well-known and widely accepted new trends. Containers are a modern way for developers
to package applications and all of their configurations and dependencies. They offer a
consistent environment that is light and easy to move around throughout the software
development lifecycle, which includes development, testing, and production. Docker,
the most popular platform for containerization, has helped make this technology more
popular by making it easy to create, deploy, and manage containers.

Kubernetes, an open-source platform for managing containers, is another important
change in this area. Kubernetes automates the deployment, scaling, and management
of containerized applications. This makes it easier to handle complex workloads from
multiple applications. With Kubernetes, developers can take advantage of advanced
features like load balancing, self-healing, and declarative configuration, which make it
easier to manage large-scale container deployments.

Serverless computing is a new trend that is also worth mentioning. This paradigm
lets developers focus only on writing code and not worry about the infrastructure un-
derneath. Cloud providers take care of the infrastructure and automatically scale up or
down applications based on demand. Serverless computing simplifies operations and lets
developers speed up deployment cycles and make better use of resources.

Using a microservices architecture has also changed how applications are built and
put into use. With microservices, an application is broken up into smaller, independent
services that are each in charge of a certain set of functions. APIs let these services talk
to each other, which makes them more modular and flexible. This method makes it easier
to develop, deploy, and maintain multi-application workloads because each service can
be updated and scaled on its own. This improves the overall agility and scalability of the
system.

1.1 Motivation

Containerized applications have revolutionised software deployment by enabling efficient
computing resource utilisation and rapid scalability. Kubernetes, a leading container
orchestration platform, has played a critical role in streamlining containerized workload
deployment and management. Effective resource management in Kubernetes clusters,

2

on the other hand, remains a challenge, with suboptimal resource allocation affecting
application performance, resource utilisation, and overall cluster efficiency. Traditional
resource scheduling approaches frequently rely on predefined static allocation policies
that lack adaptability to dynamic changes in application demands. These approaches can
result in over-provisioning, which wastes resources, or under-provisioning, which causes
performance bottlenecks and lower application responsiveness. The need for intelligent
and adaptive resource scheduling mechanisms becomes more apparent as containerized
environments become more diverse and dynamic.

The motivation for this research is to address these resource allocation challenges
by utilising innovative machine learning techniques, specifically the Multi-armed Bandit
Algorithm. This research aims to revolutionise the way Kubernetes clusters manage
resources by taking a proactive approach to resource allocation, where decisions are guided
by historical performance data and ongoing exploration.

1.2 Research Question

How can the Thompson sampling algorithm be used to solve the multi-armed bandit
problem in Kubernetes to optimise application performance while minimising resource
usage and CPU usage?

1.3 Paper Structure

This report is broken up in seven sections for simplicity. This section 2 present a review of
related work in the fields of Container Orchestration, Kubernetes Resource Management,
and Kubernetes Pod Allocation, as well as a comparison of the algorithms that have
been proposed for these areas. In Section 3, we will discuss the research methodology as
well as the outline of the proposed system. The design specification and overall system
architecture are discussed in Section 4. In Section 5, we will discuss how to put the
suggested strategy into action. In sections 6 and 7, the results and conclusions of the
experiment are presented.

2 Related Work

2.1 Containers Orchestration

Containerisation has the advantage of distributed an application into manage themselves
into modules that can be handle from anywhere remotely, as well as splitting the depend-
ency connected with this packages. The use of containers results in more agile software
development cycles. Despite considering that there are several other possible implement-
ations, Docker is most commonly used container tool in cloud computing. Architectures
are built on groups of containerized service instances that collaborate. The containers
have to be able to tolerate errors, be distributed across multiple locations, and have high
availability. Khan (2017) details the capabilities that container orchestration tools really
ought to possess. In their study, they presented a plan for recognising important pro-
cesses for methods to implement containers and orchestration frameworks. This plan was
outlined as a design. Within their methodology, they have also described orchestration
platforms that come highly recommended and are freely available. When compared to
other orchestration tools, Khan (2017) and Jawarneh et al. (2019) found that Kubernetes

3

performed better than Apache Mesos, Docker Swarm, and Mesosphere for the deploy-
ment of critical application. These studies attempted to fill a knowledge gap regarding
the instrument that provides IT administrators with the greatest degree of success when
performing orchestration tasks. According to the findings of the researchers, Kubernetes
is the orchestration tool that is the most effective when it comes to the deployment of
more complicated applications, whereas other tools are more effective when it comes to
the deployment of applications that are less complicated. On the other hand, applications
that call for a significant amount of computing power might benefit from the utilisation
of orchestration tools. With the help of these tools, it will be possible to have a faster
response time and an improved quality of service. For the purposes of this investigation,
we will orchestrate containers using Kubernetes due to the fact that its performance is
superior when applied to applications that are more complex.

2.2 Kubernetes Resource Management

As a powerful container orchestration platform, Kubernetes is critical for automating the
deployment, scaling, and management of containerized applications. Effective resource
management in Kubernetes is critical for improving performance, ensuring efficient re-
source utilisation, and dealing with fluctuating workloads. Kubernetes includes a number
of resource management techniques and algorithms, each with its own set of advantages
and disadvantages. Static resource allocation is a traditional approach to resource man-
agement in which resource requests and limits are pre-configured for each Kubernetes
Pod. These resource requests specify the minimum CPU and memory requirements for
a Pod, whereas resource limits specify the maximum resource consumption. These pre-
defined values are used to schedule pods. While static allocation allows for resource isola-
tion, it lacks flexibility in dealing with varying workloads because the allocated resources
remain constant regardless of actual usage. This approach may result in underutiliza-
tion of resources during periods of low demand and poor application performance during
peak times. Furthermore, overly conservative limits may result in unnecessary scaling or
underutilization of cluster resources.

Dynamic resource allocation Arora and Ksentini (2021)is used to address the limita-
tions of static resource allocation. The Horizontal Pod Autoscaler (HPA) in Kubernetes
is a prime example of dynamic allocation. The HPA adjusts the number of Pod replicas
automatically based on metrics such as CPU utilisation or custom metrics. Dynamic
allocation, as opposed to static allocation, allows for greater adaptability to changing
workloads Chang et al. (2017). However, it is still a reactive strategy that responds to
shifting resource demands. Because of this reactive nature, slight delays in scaling up
or down can occur, potentially affecting application performance during rapid workload
fluctuations. Furthermore, the accuracy of scaling decisions is heavily dependent on the
metrics used, making it critical to choose appropriate metrics to ensure efficient resource
allocation.

Another technique used in Kubernetes is reactive scaling based on resource utilisa-
tion. The Cluster Autoscaler Wang et al. (2020) is an example of this approach, which
automatically adjusts the size of the cluster to meet resource demands. While reactive
scaling can alleviate some of the problems associated with dynamic allocation, it intro-
duces some time lag as it waits for resource utilisation to exceed predefined thresholds.
Because the scaling action is not initiated until the threshold is exceeded, this time lag
may cause performance issues during sudden workload spikes. Furthermore, incorrect

4

scaling threshold configuration can result in overly aggressive or insufficient scaling, af-
fecting resource efficiency.

More proactive scheduling mechanisms are required as the demand for more efficient
resource management grows. Predictive scaling is one such approach, which uses his-
torical workload patterns and predictive algorithms to forecast future resource demands.
Kubernetes can proactively scale resources before actual spikes occur by analysing his-
torical metrics Casalicchio and Perciballi (2017) and trends, reducing response time and
improving resource efficiency.

Furthermore, machine learning and AI-based scheduling algorithms can improve Kuber-
netes resource management. These advanced algorithms can process massive amounts of
data, identifying complex patterns and making more intelligent resource allocation and
scaling decisions. This level of sophistication enables the system to anticipate and adapt
to changes in workload, optimising resource utilisation and improving user experience.

2.3 Allocation of Pods using Kubernetes

Due to its critical role in efficient resource utilisation and container orchestration, pod
allocation in Kubernetes has been the subject of significant research and development.

Resource-aware scheduling has received a lot of attention. Various algorithms, such
as bin-packing and genetic algorithms, have been proposed in studies to optimise pod
placement on nodes based on resource requirements. introduced a bin-packing algorithm
that reduces resource waste by efficiently packing pods onto nodes, resulting in better
resource utilisation. Similarly, Carrión (2022) proposed genetic algorithms that dynam-
ically adjust pod assignments based on CPU and memory utilisation, achieving better
load balancing and scalability.

Auto-scaling strategies are critical in Kubernetes for dealing with dynamic workloads.
Buchaca et al. (2020) presented a predictive auto-scaling approach that forecasts future
resource demands using machine learning. By accurately forecasting workload fluctu-
ations, this strategy preemptively scales up or down the number of pods, improving
performance and cost efficiency. In contrast, Imdoukh et al. (2020) propose a reactive
auto-scaling policy that adjusts the pod count based on real-time resource usage, with
the goal of maintaining low latency and high throughput during traffic spikes.

Load balancing algorithms have been investigated in order to efficiently distribute
incoming traffic across pods. Sinha and Sinha (2020) proposed a weighted round-robin
approach for effectively balancing traffic load that takes into account the load on each
node as well as the affinity of pods. In addition, Proposed a distributed load balancing
algorithm based on the smallest-variance-first principle, which effectively reduces response
time while improving overall system performance.

Pod affinity and anti-affinity have also been investigated in order to improve applica-
tion performance and resilience. Affinity-based pod allocation strategy that places pods
close together to reduce communication latency and improve data locality. On the other
hand, investigate anti-affinity rules to ensure high availability and fault tolerance by
avoiding co-location of critical pods on the same node.

While significant progress has been made in pod allocation techniques, challenges
in dealing with resource heterogeneity, scalability, and fault tolerance remain. On my
research investigate more advanced machine learning-based approaches and adapt to
emerging containerization trends to further optimise pod allocation in this dynamic and
distributed environment as Kubernetes adoption grows.

5

2.4 Algorithm Comparison

Reference Algorithm Approach Advantages Limitations

Kuleshov
and Pre-
cup (2014)

Epsilon-greedy Explore with
probability ε
Exploit the
best-performing
arm with prob-
ability 1− ε

Simplicity, Tun-
ability

May suffer from sub-
optimal performance
if ε is set too high
or too low. Can take
time to converge to
the best arm(s).

Kaufmann
et al.
(2012)

Upper Con-
fidence Bound
(UCB)

Calculate up-
per confidence
bounds for each
arm

Effective Explor-
ation, No need
for ε

Can handle stochastic
rewards efficiently.
Provides good regret
bounds in theory.
Can be sensitive to
initial conditions
and variance of re-
ward distributions.
May require more
computation than
epsilon-greedy.

Agrawal
and Goyal
(2012)

Thompson
Sampling

Maintain prob-
ability distribu-
tions for each
arm’s reward

Probabilistic
Approach,
Bayesian Frame-
work

Naturally handles
uncertainty in re-
wards. Provides good
theoretical guarantees
in some scenarios.
Sampling can be
computationally ex-
pensive, especially for
complex reward dis-
tributions. Requires
prior knowledge for
Bayesian updating.

Table 1: Multi-armed Bandit Algorithms

3 Methodology

Proactive resource scheduling in Kubernetes refers to the process of intelligently allocating
resources (such as CPU and memory) to different workloads (containers or pods) running
on a cluster. Traditional reactive scheduling assigns resources based on current demand,
which can result in resource underutilization or overutilization. Proactive scheduling seeks
to optimise resource allocation decisions in advance by taking workload characteristics,
historical usage patterns, and performance objectives into account.

Making decisions about which nodes in the cluster each workload should be placed on
and how much resources should be allocated to them is the problem. The challenge is to
find an appropriate balance between maximising resource utilisation, minimising response

6

times, and ensuring workload fairness. This is especially important in scenarios involving
varying workloads and dynamic resource demands, where traditional approaches may
result in inefficient resource allocation.

3.1 Multi-armed Bandit Problem to Resource Allocation:

The Multi-armed Bandit problem provides a useful structure for addressing Kubernetes’
proactive resource scheduling challenge. The Multi-armed Bandit problem is analogous
to the resource allocation scenario in that you have multiple ”arms” (cluster nodes) to
choose from, and each arm provides a different reward (resource allocation) based on an
unknown probability distribution (workload performance).

The goal of the Multi-armed Bandit problem is to determine the best strategy for
allocating pulls (choosing nodes) in order to maximise the cumulative reward (overall
cluster performance) over time. To achieve the best possible outcome, the dilemma is to
balance exploration (trying out different arms to gather information about their rewards)
and exploitation (choosing the best-performing arms based on current knowledge).

In this study, the scheduler extender uses the results of the multi-armed bandit al-
gorithm to decide where to put pods on nodes. By doing this, it anticipates to improve
the overall use of resources, reduce competition for resources, and boost the performance
of the cluster. The Kubernetes Scheduler Extender’s job is to manage and scale the pods
based on what amount of work is being done in the containers. The pods will be set
up based on what the server wants. The Kubernetes controller uses the tools that come
with it. The following diagram shows how the Kubernetes system is put together. Below
Figure 1 represent the standard parts of the cluster of Kubernetes.

Figure 1: Kubernetes Cluster Component (Lin et al. (2019))

3.2 Research Methodology Flowchart

In this research, I am utilising Amazon Web Services, which offers a variety of ser-
vices including EKS and EC2 instances. For all operations performed in this study, a
t3.2xmedium instance was utilised. The flask framework and ”numpy” library is utilised
to implement the Thompson sampling algorithm in python. This algorithm, which I

7

implemented which is deployed as a docker image in a docker container using a docker
commands. The Kubernetes cluster was created with ”kubectl”, and the service was con-
tainerized by unitizing the dockers. The services are deployed on the cluster, and custom
controller is then used to generate the required number of pod. Kubernetes has tasked
the load generator with generating the application’s load.

And for gathering the metrics for the application, I’m utilising Prometheus, which
collects the real-time data for this exception of the application and sends it to grafana,
which displays the graphical representation of this metrics comparison using various met-
rics queries to identify the memory usage and CPU usage of the standard Kubernetes
scheduling algorithm and the Thompson sampling algorithm that I show in this study.

Figure 2: Process flow of reasearch

3.3 Technologies and Tools for Research

In this research was carried out on instance EC2 t3.medium (Ubuntu). Kubernetes
default scheduler is used for resource allocation. The algorithm in PYTHON program-
ming language to implement and perform the computationally critical operations.

To conduct this research, the following tools and services were utilised:

• Elastic compute service (EC2) : It is a web service that provides resizable
compute capacity in the cloud. This is service which is provide by Amazon Web
Services. It serves as a foundation for setting up and running the Kubernetes cluster
on which your research experiments are conducted.

• Amazon EKS (Elastic Kubernetes Service) : Amazon EKS is a fully managed
Kubernetes service that makes it easier to deploy, manage, and scale container-
ized applications using Kubernetes. EKS abstracts the complexities of Kubernetes
cluster management, enabling you to focus on your workloads and applications. Its
leverage EKS to create and manage your Kubernetes clusters, which are essential
for implementing and testing your proactive resource scheduling solution.

8

• kubectl : It allows to deploy applications, inspect cluster resources, and man-
age various aspects of your Kubernetes environment. will use kubectl to deploy
your proactive resource scheduling components and manage the Kubernetes cluster
during the research.

• Docker : Is a platform for developing, shipping, and running applications in con-
tainers. Containers provide an isolated environment for applications and their de-
pendencies, ensuring consistency across different environments. In this research,
containerize workloads (pods) to represent different arms in the Multi-armed Ban-
dit problem, allowing you to simulate and evaluate the resource allocation strategy.

• Prometheus : It collects and stores time-series data, enabling monitoring of vari-
ous Kubernetes cluster and application aspects. This study collects metrics associ-
ated with resource utilisation and workload performance, such as CPU utilisation
and memory usage.

• Grafana : It uses for to visualise the Prometheus-collected metrics, facilitating the
analysis of proactive resource scheduling strategy.

3.4 Analysis performed In this Research

In this study, total three experiments are taken consideration to ensure consistency in
the evaluation of the Thompson sampling algorithm. After generating the workload, time
frames of five minutes are used to evaluate the three experiments.

It will compare the algorithms Thompson sampling algorithm and kubernetes default
resource scheduler in order to validate the CPU usage and memory utilization of resources.
Observations are shown based on current and projected usage.

4 Design Specification

The design requirements for the project are broken down and described in this part.
While section 4.1 outlines the necessary configuration of the system for the execution of
this research, section 4.2 describes the architecture of the system.

4.1 Required System Specifications

In this study, the deployment and operation of containers are managed by the orchestra-
tion Elastic Kubernetes Services. Kubernetes is used to manage the containers inside the
cluster. Docker container is used to combine application code with any given environ-
ment. The Kubernetes Cluster and Virtual Machine Configurations are shown in tables
2 and 3.

9

AWS Kubernetes Cluster

Instance AWS t3.medium

Operating System Ubuntu Version = 20.06

Orchestration tool Kubernetes Version = 1.19

Container engine Docker Version = 18.01

Table 2: Cluster Configuration

Virtual Machine (VPC)

vCPU 8

Memory 32GiB

Network Performance upto 5 gbps

Cost $0.3341/ hr

Table 3: Virtual machine Configuration

4.2 System Architecture

To use the Kubernetes cluster, the kubectl package must be installed. In this study,
version 1.19 of kubeadm is utilised. To execute the command in cluster, version 1.21 of
kubectl is installed. In the kubernetes cluster, there is one master node and two worker
nodes. Containers are utilised by the worker node in order to organise pods. etcd manages
clusters between worker and master nodes.

The Thomspon sampling Controller, Application programming interface (API) server,
and the Scheduler are the three components that are located within the master node. The
controller manager is responsible for managing the fundamental Kubernetes functions.
The controller is responsible for exercising control over the pods managed by Kubernetes
and bringing them through a shared state to the state that is desired. In the event that
adjustments are required, the Kubernetes controller will submit the appropriate requests.
Pods undergo configuration and verification with the application programming interface
(API) server. The Kubernetes scheduler is where the policies are stored.

Docker, the proxy server system, and Kublet are the components that make up a
worker node. Communication protocol kublet is used between master and worker nodes.
To manage the state of the master node, Kublet is responsible for the administration
of pods that comply with the pod specifications by the master node in the PodSpec.
Representation of architecture is shown in Figure 8 as fallows.

10

Figure 3: Representation of Architecture

5 Implementation

5.1 Implementation of K8s Algorithm

5.1.1 Process of Scheduling

The primary responsibility in the K8s Scheduler was to acknowledge the creation of a new
Pod by the Application Programming Interface (API) Server, locate a suitable host for
the Pod, and record the relevant information in Etcd. Figure 4 depicts the steps involved
in the scheduling process for one of the Pods:

Figure 4: Flow Chart of Scheduling

11

Algorithm 1 Pod Scheduling Algorithm

Require: List of Pods to be scheduled
Ensure: Mapping of Pods to Nodes
1: for all Pods in List of Pods do
2: candidateNodes ← allNodes
3: candidateNodes ← filterNodesByResources(Pod, candidateNodes)
4: scoredNodes ← scoreNodesByResources(Pod, candidateNodes)
5: prioritizedNodes ← prioritizeNodes(scoredNodes)
6: bestNode ← selectBestNode(prioritizedNodes)
7: bindPodToNode(Pod, bestNode)
8: end for
9: return Mapping of Pods to Nodes

• Input and Output: The algorithm takes a list of pods that need to be scheduled
as input and aims to produce a mapping of which pod should be placed on which
node as output. This mapping is the result of the scheduling process.

• Initialization and Candidate Nodes: For each pod in the list of pods, the
algorithm begins by initializing a set of candidate nodes as all available nodes in
the cluster. This is the starting point for considering potential placement options
for the pod.

• Filtering Based on Resource Constraints: The algorithm then applies a
filtering process to narrow down the list of candidate nodes based on the resource
requirements of the pod. Nodes that don’t have sufficient resources (such as CPU
and memory) to accommodate the pod’s needs are filtered out from consideration.

• Scoring Nodes for Resource Availability: After filtering, the remaining can-
didate nodes are scored based on their resource availability. This score reflects how
well each node can fulfill the resource requirements of the pod. Nodes with more
available resources tend to receive higher scores.

• Prioritization of Nodes: The scored nodes are further prioritized based on
their scores. Nodes with higher scores, indicating better resource availability and
suitability, are given higher priority. This step helps to determine the order in which
nodes will be considered for pod placement.

• Selecting the Best Node: Among the prioritized nodes, the algorithm selects
the node with the highest score. This node is considered the best candidate for
placing the pod. The high score indicates that the selected node can provide the
necessary resources for the pod’s successful execution.

• Assigning Pod to Node: The algorithm then assigns the selected pod to the
best node. This assignment is recorded, indicating that the chosen node will host
the pod during execution.

• Mapping and Output: After processing all pods in the list, the algorithm pro-
duces a mapping that associates each pod with the node it has been assigned to.
This mapping represents the final outcome of the scheduling process.

12

5.2 Implementation of Thompson sampling Algorithm

Algorithm 2 Thompson Sampling Algorithm

Require: Number of arms (bandit options)
Ensure: Selected arm
1: Initialize arrays for counts and rewards for each arm
2: for all time step t do
3: for all arm i do
4: Sample a value from the Beta distribution using arm’s counts
5: end for
6: Select the arm with the highest sampled value
7: Observe reward from the selected arm
8: Update arm’s counts and rewards based on the observed reward
9: end for
10: return the arm that was selected most often

The Thompson Sampling algorithm involves using probability distributions to make
decisions. In this case, the Beta distribution is commonly used due to its ability to model
uncertainty about success probabilities. Let’s represent the algorithm mathematically:

Notation:

N : Total number of arms (bandit options)

t : Time step

Ti(t) : Number of trials (attempts) for arm i up to time step t

Ri(t) : Number of rewards (successes) for arm i up to time step t

θi : True probability of success for arm i

Xi(t) : Random variable representing reward outcome for arm i at time step t

Algorithm:

1. Initialization: - Initialize Ti(0) = Ri(0) = 0 for all arms i.

2. Sampling Phase: - At each time step t, sample a value pi(t) from the Beta
distribution Beta(Ri(t) + 1, Ti(t)−Ri(t) + 1) for each arm i. - pi(t) represents the
estimate of the success probability for arm i at time step t.

3. Arm Selection: - Select the arm at with the highest sampled value: at = argmaxi pi(t).
- at is the arm chosen at time step t for exploration or exploitation.

4. Observation and Update: - Observe the reward Xat(t) from the selected arm at
at time step t. - Update the counts and rewards for the selected arm: - Tat(t+1) =
Tat(t) + 1 - Rat(t+ 1) = Rat(t) +Xat(t)

5. Repeat: - Repeat steps 2-4 for a specified number of time steps.

6. Recommendation: - At the end of the process, select the arm i that has been
chosen the most often: i∗ = argmaxi

∑
t ⊮(at = i). - i∗ is the recommended arm,

which is the algorithm’s decision based on the observed rewards.

13

Example Scenario: Consider a scenario with 3 arms (options). Let’s assume the
true success probabilities for these arms are θ1 = 0.3, θ2 = 0.6, and θ3 = 0.8. The
algorithm aims to maximize the cumulative rewards over a number of time steps.

The algorithm seeks to investigate arms with uncertain reward probabilities while
exploiting arms with higher success probabilities. Thompson Sampling provides a prob-
abilistic approach to multi-armed bandit problems by modelling uncertainty with the
Beta distribution and constantly updating estimates based on observed rewards.

6 Evaluation

In this part of the paper, the performance evaluation is carried out by carrying out a
variety of experiments on proposed system and compare the results with the Kubernetes
use by default. The proposed system makes use of the Elastic Kubernetes service in order
to execute a Kubernetes cluster and to host the application for testing and evaluation
purposes. The Default Kubernetes scheduler algorithm , which was used and developed
by the same system specifications as the proposed system, has been used for comparison
purposes. The experiments were carried out by producing load for a period of five minutes
in each of the three distinct conditions (as outlined in table 4 below). The users are
simulate and the number of receiving requests per second on the application by using the
testing tool which is used to generate a load on application called locust. Prometheus
and Grafana were utilised in order to monitor and record various metrics, including CPU
utilisation, memory utilisation, and response time.

Experiment Total User Per second request

1 1000 100

2 3000 300

3 5000 500

Table 4: Simulations of experimentation

14

6.1 Experiment 1

For the first scenario, we have determined the total no. of users and the number of requests
that are made per second based on scenario 1, as shown in Table 4. It is possible to see
from the figure below that the 95th percentile of the overall response period (Maximum
time to respond for 95% requests) and average response time are showing in ”green line”
for both of the systems (proposed default) are very close to one another. In contrast, the
cluster that uses the standard Kubernetes system uses significantly more memory and
CPU resources than the proposed system does (30% and 10.9% respectively).

Figure 5: Default kubernetes System

Figure 6: Proposed system

Figure 7: Resources consumption comparison

15

6.2 Experiment 2

The configuration that was stated in scenario 2 was applied to the second experiment,
and the results are presented in Table 4. It is possible to notice, based on the information
presented in Figure, that the time taken to respond for the first couple of seconds for both
of the system is zero. This may suggest that web application was initially inactive when
it was first launched. The response time for proposed model is 24464 milliseconds lower
compared to that corresponding to default Kubernetes simulation is 34925 milliseconds
after one minute of receiving load. As can be seen in the figure, the amount of time spent
using the CPU and the amount of memory consumed by the default system is consistently
higher than that of the proposed system.

Figure 8: Default Systems

Figure 9: Proposed system

Figure 10: Resources consumption comparisons

16

6.3 Experiment 3

In the third scenario, we chose parameters based on scenario 3 of Table 4, which can
be found here. It is clear to the beginning that an application that is hosted in default
Kubernetes system struggles to achieve satisfactory responses when five thousand users
with five hundred request per seconds are deployed. On the other hand, suggested setup
that is based on Thompson sampling maintains stable. Additionally, CPU utilisation
in standard Kubernetes cluster strikes above 40 percent and memory nearly twenty five
percent, whereas CPU utilisation and consumption of memory in Thompson sampling
base cluster stays on to remain less compared to those of the default model.

Figure 11: Default System

Figure 12: Proposed system

Figure 13: Resources consumption comparisons

17

6.4 Learning Outcomes

As illustrated in Figure 14, the CPU utilisation of the Default Kubernetes Scheduler is
increasing in comparison to the proposed system from the various scenarios we discussed.
6.1 6.2 6.3

Figure 14: CPU Utilization

As shown in Figure 15, the Memory Usage of the Default Kubernetes Scheduler con-
sumes more memory while the proposed system consumes less memory.

Figure 15: Memory Utilization

6.5 Discussion

Based on the experiments that were performed on the proposed system that is based on
Thompson sampling algorithm and the default system that is based on kubernetes, it is
possible to say that the time it takes to respond is almost equal for both approaches when
there is less no. of users and less receiving request per second in a application (scenario
1). This was determined by comparing the results of the experiments. If we compare
the proposed design to the default design, we can see that the proposed design makes
less use of the available resources. However, when the total no of users and demands
rises (scenario 2 and scenario 3), default Kubernetes system begins is getting difficulty to
handle the resources. This results in failed requests, longer response times and increased
memory and CPU consumption. In contrast, the Thompson sampling algorithm system
that was proposed outperforms the default one by maintain consistency and reliability in

18

response rate while also consuming less resources than kubernetes default scheduler one
does.

When compared to other models, the proposed design requires a lower amount of re-
sources; consequently, any additional costs associated with buying or providing additional
resources can be avoided.

7 Conclusion and Future Work

In this study, we set out to revolutionise Kubernetes resource management by employ-
ing a proactive approach based on the Multi-armed Bandit Algorithm, specifically the
Thompson Sampling variant. We demonstrated the efficacy of this algorithm in dynam-
ically allocating resources to application workloads through extensive experimentation
and analysis, resulting in optimised CPU and memory utilisation. We demonstrated
the Thompson Sampling-based proactive scheduler’s potential to improve overall cluster
efficiency and application performance by comparing it to the default Kubernetes sched-
uler. This study not only emphasised the benefits of intelligent resource allocation, but
also the importance of adaptive scheduling strategies in today’s dynamic containerized
environments. The findings of this study pave the way for more sophisticated resource
management mechanisms that can address the intricate demands of modern applications
as container orchestration evolves.

While this study successfully establishes the benefits of proactive resource schedul-
ing using the Thompson Sampling-based Multi-armed Bandit Algorithm, several aven-
ues for future research are identified. To begin, broadening the scope to include other
performance metrics such as network latency and storage usage could provide a more
complete picture of the algorithm’s impact. Furthermore, researching hybrid scheduling
approaches that combine the strengths of both traditional and proactive algorithms may
provide a more complex solution. Furthermore, the research could be expanded to deal
with more complex scenarios like multi-cluster orchestration or heterogeneous environ-
ments. Furthermore, the deployment of real-world applications and evaluation of the
algorithm’s behaviour under varying workload conditions may provide insights into its
practical applicability. Finally, advances in machine learning and Kubernetes may lead
to the development of more sophisticated algorithms, necessitating ongoing research in
this domain to ensure the efficient management of containerized applications in dynamic
computing landscapes.

19

References

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed
bandit problem, Conference on learning theory, JMLR Workshop and Conference Pro-
ceedings, pp. 39–1.

Arora, S. and Ksentini, A. (2021). Dynamic resource allocation and placement of cloud
native network services, ICC 2021 - IEEE International Conference on Communica-
tions, pp. 1–6.

Buchaca, D., Berral, J. L., Wang, C. and Youssef, A. (2020). Proactive container auto-
scaling for cloud native machine learning services, 2020 IEEE 13th International Con-
ference on Cloud Computing (CLOUD), IEEE, pp. 475–479.

Carrión, C. (2022). Kubernetes scheduling: Taxonomy, ongoing issues and challenges,
ACM Computing Surveys 55(7): 1–37.

Casalicchio, E. and Perciballi, V. (2017). Auto-scaling of containers: The impact of
relative and absolute metrics, 2017 IEEE 2nd International Workshops on Foundations
and Applications of Self* Systems (FAS*W), pp. 207–214.

Chang, C.-C., Yang, S.-R., Yeh, E.-H., Lin, P. and Jeng, J.-Y. (2017). A kubernetes-
based monitoring platform for dynamic cloud resource provisioning, GLOBECOM 2017
- 2017 IEEE Global Communications Conference, pp. 1–6.

Imdoukh, M., Ahmad, I. and Alfailakawi, M. G. (2020). Machine learning-based auto-
scaling for containerized applications, Neural Computing and Applications 32: 9745–
9760.

Jawarneh, I. M. A., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari,
R. and Palopoli, A. (2019). Container orchestration engines: A thorough functional
and performance comparison, ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), pp. 1–6.

Kaufmann, E., Cappé, O. and Garivier, A. (2012). On bayesian upper confidence bounds
for bandit problems, Artificial intelligence and statistics, PMLR, pp. 592–600.

Khan, A. (2017). Key characteristics of a container orchestration platform to enable a
modern application, IEEE Cloud Computing 4(5): 42–48.

Kuleshov, V. and Precup, D. (2014). Algorithms for multi-armed bandit problems, arXiv
preprint arXiv:1402.6028 .

Lin, C.-Y., Yeh, T.-A. and Chou, J. (2019). Dragon: A dynamic scheduling and scaling
controller for managing distributed deep learning jobs in kubernetes cluster., CLOSER,
pp. 569–577.

Sinha, G. and Sinha, D. (2020). Enhanced weighted round robin algorithm to balance the
load for effective utilization of resource in cloud environment, EAI Endorsed Transac-
tions on Cloud Systems 6(18).

Wang, M., Zhang, D. and Wu, B. (2020). A cluster autoscaler based on multiple node
types in kubernetes, 2020 IEEE 4th Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC), Vol. 1, pp. 575–579.

20

