
Cloud based Smart Waste Management
System Using Internet of Things (IoT) and

Predictive Analysis.

MSc Research Project

Cloud Computing

Prakash Shankar Mishra
Student ID: 21172684

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Prakash Shankar Mishra

Student ID: 21172684

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 14/08/2023

Project Title: Cloud based Smart Waste Management System Using Internet
of Things (IoT) and Predictive Analysis.

Word Count: 7850

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Prakash Shankar Mishra

Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Cloud based Smart Waste Management System Using
Internet of Things (IoT) and Predictive Analysis.

Prakash Shankar Mishra
21172684

Abstract

One of the key elements that determines the health of an urban or rural area is
waste management. For the authorities, keeping the environment neat and orderly
in terms of waste management becomes a difficult effort. Intelligent monitoring of
solid waste dust bins is used right away to address this problem and create a safe
and secure environment. I have suggested a smart waste management system in
this paper. The proposed smart bin model forecasts the status of the waste bins
using the cloud, IoT, and machine learning. In this study, five machine learning
time series models have been used, and a comparison analysis has been conducted.
The best outcomes were obtained using the generalised additive model, which had
an MAE 0.2407 and MSE 1.9399 which shows the forecasting values have fewer
deviations when compared to the actual values. In this research, I was able to
Forecasting the waste bin fill level with a significant accuracy.

1 Introduction

The UN Sustainable Development Goal 11, ”Make cities and human settlements inclus-
ive, safe, and sustainable,” identifies waste management as a crucial factor in the creation
of sustainable cities as target 11.6.1 The population of the world is projected to grow
by 20% by 2025, peaking at 8 billion people, according to estimates from the UN. Due
to the accelerated population expansion, there will be a corresponding increase in con-
sumer demand, which will increase trash generation. Considering the present urban and
specially third world countries waste management practises, the technology in place to
handle this significant increase in waste are insufficient. The fast urbanisation of the
growing world population, economic growth, and increased consumption of food and con-
sumer goods are the main causes of the world’s annual production of more than 2 billion
tonnes of municipal solid waste (MSW). According to estimates, over 30% of all food
and its packaging produced globally end up in landfills and municipal trash bins as a
result of inadequate recycling and disjointed MSW operations. As per Leninpugalhanthi
et al. (2021), by 2050, it is anticipated that there will be an astounding 3.4 billion metric
tonnes of municipal waste generated worldwide, a 70% increase. In major institutions
or a city administered by a municipal corporation, where many trash cans are set up
and staff are recruited specifically for this duty, the conventional approach of physically
checking for filled garbage bins does not fit with the technological era we are in and is
wasteful. The regularly planned cleaning of the trash cans is rendered useless because a

1https://www.un.org/sustainabledevelopment/cities/

1

https://www.un.org/sustainabledevelopment/cities/

trash can suddenly fill up or become tampered with or because frequent inspections may
not be necessary for a long time. trash cans are kept at a number of sites by the city’s
administration. They are accountable for routinely checking and removing the garbage
that is stored in the dustbins. The garbage can could not have enough trash in it, thus
they frequently arrive late or empty-handed. There can be a chance that the rubbish
will deteriorate if they are late. It would lead to the growth of germs and viruses. As
a result of the waste that has been gathered, the resulting air pollution will cause res-
piratory illnesses like COPD, asthma, etc. According to estimates, 90% of instances of
chronic obstructive pulmonary disease are brought on by the unpleasant smell that trash
produces.

Using the Internet of Things (IoT) and machine learning, we can automate this pro-
cedure to save time and increase efficiency. The best approach to do this would be to
build smart trash cans and place them in public areas where a lot of trash is produced.
When the trash cans are filled enough for authorities to check and collect the trash, these
smart bins will be able to predict and forecast when that will happen. By minimising
the number of unnecessary trips the garbage truck makes to each trash bin, the overall
waste management operation would become much more cost-effective and efficient. In
this research paper, I have implemented and performed Comparative Analysis on various
machine learning models for predicting when the waste bin will be filled using IoT sensor
data retrieved from a smart bin.

1.1 Research Question

How to improve waste management system with the use of IoT, Cloud, Machine Learning
and Predictive Analysis?

1.2 Document Structure

This research report is divided into several sections. The review of prior research on
machine learning approaches, smart waste management systems, and their limitations
is provided in Section 3. The report explores deeply into the technique used in Section
3, detailing the implementation of data processing of the data set. We have critically
analysed the models we utilised in this research in section 5.

The method of implementation is thoroughly covered in Section 6. Section 7 discusses
the results of the developed models and includes the methodology used to assess each
model’s accuracy and performance.

The paper’s conclusion, Section 8, provides a thorough assessment of the study’s
findings and the conclusions taken from the model results.

2 Related Work

This section will critically evaluate and discuss the significant previous research on smart
waste management system implementation using cloud, machine learning and IoT. Un-
derstanding these issues and gaps in the earlier research efforts and how our method will
fix them is helpful.

2

2.1 Cloud Computing Implementation

In the proposed smart waste bin named Recycle.io, Al-Masri et al. (2018) combined cloud
technologies and an IOT enabled framework. IOT devices are used in each of these bins
in the smart trash management system Recycle.io. For this purpose, Recycle.io attaches
a Raspberry Pi to each of these containers. Each cutting-edge device is equipped with
an ultrasonic sensor and an infrared camera. An ultrasonic sensor was used to find the
location of waste dumping. The ultrasonic sensor informs the camera module to begin
capturing pictures when a disposal is discovered. Following that, the edge device (in this
case, a Raspberry Pi) processes these images locally for violation detection. In the event
of a violation, a snapshot of the image is sent to our IoT-based cloud platform recycle.io.
When a violation is discovered, the IoT edge device sends a photo of the infraction and
additional information to the Microsoft Azure IoT platform. This information includes,
among other things, the component that was the cause of the infringement, the time
stamp, and the location of the bin. The data obtained by the camera module and sensors
in the smart bins is sent to an analytic unit. In order to seek for any infractions, the
analytic unit processes and evaluates the captured images of disposed materials. Although
it is a scalable system, there is no emphasis on the effective collection of the waste detected
in the bins, therefore it will require labour to examine the data given by the smart bins.
My proposed system will predict the waste level in the bin by forecasting it in advance
which will help in planning an effective collection of the waste in timely manner.

Aazam et al. (2016) has proposed the concept of a Cloud-based Smart Waste Manage-
ment (CloudSWAM) system, where each bin is outfitted with sensors that can determine
how much waste is there within. Each form of waste, including biological waste, objects
made of plastic, and scrap metal, will have its own bin. This division of each sort of
garbage allows for knowledge of the quantity and type of garbage that is gathered. A
warning message will be sent to the cloud if the volume of trash reaches the threshold
where garbage haulers need to schedule pickup. This informs users and waste collectors
as to which bins still have space for trash. As a result, garbage collectors are able to
schedule their trips according to the amount of rubbish present in distinct metro areas.
This study article does not make any concrete recommendations for future work in any
one topic. From there, we will examine prior waste data collected from bins, and will
forecast the prediction of waste level in each bin, making our system more efficient

2.2 Machine Learning Implementation

For the recognition of garbage images and content, N. et al. (2019) used the machine
learning algorithms KNN and SURF. In past studies, wastes were simply observed and
notifications were provided, however, with this system, wastes are recorded and addition-
ally classified into metallic, biodegradable, and non-biodegradable wastes. To make it
easy to dispose of each type of garbage, the trash is categorised into categories. A cloud
database is also used to transmit the waste facts in real-time.

Likotiko et al. (2021) use all the features mentioned in the aforementioned researches
and use various machine learning algorithms to predict the waste level in the bin, but it
is based on a small residential area data set. The previous researches proposed solutions
for real-time waste monitoring, informing the concerned authorities about the bin status
and segregation among the wastes. In our proposed research, we will implement it on a
larger level by predicting the waste bins behavior in advance and forecast it

3

Bharathiraja et al. (2022) developed an efficient trash bin management framework in
their paper to constantly monitor solid waste. IoT is the foundation of the architecture,
with the goal of improvising waste management systems. Their suggested methodology
used the SARIMAX model for forecasting and predictive modelling and communicated
through cloud implementation. In my research, I have implemented five different time
series machine learning models to for forecasting and predictive analysis and after eval-
uation through different methods the best models are proposed.

3 Methodology

After carefully reviewing the study conducted by the researchers in the preceding section,
the methodology and analysis offered in this section were selected. The methodology is
divided into four steps: data gathering, pre-processing, transformation, analysis, and
model selection. Data collection is the first step. Data from IoT sensors is gathered and
given a thorough analysis like mentioned in Medehal et al. (2020). After the data has
been thoroughly analysed, it is pre-processed. Next, we analyse how long it takes to fill
the dustbin before choosing the model. Different models are applied, evaluated using
the proper metrics, and after deploying different machine learning models, we performed
comparative Analysis on the basis of matrices and result.

3.1 Data Collection:

The COMPOSITION EU Project served as the source of the sensor data data set.The
sensor readings from the deployed bin fill level bins are included in the deployed data
sets. The public can access these data sets. Data has been made available on the internet
with the declaration of public access and use.2 Monitoring of indoor bin fill levels is the
subject of the first data set. A bin’s fill level being monitored outside is the subject of
the second data set. In doing our research, we utilised the second data set.

3.2 Data Understanding

The data set contains 16,801 rows, and 5 columns. The column ’id’ display the id of the
sensor deployed on the dustbin for the reading, the column ’Fill Percentage’ is showing
how much percentage the dustbin is filled from bottom, the column ’battery’ shows the
battery level of the sensor deployed. The column ’eventDate’ is the timestamp of when
the sensor took the reading of the bin and ’Distance’ is the distance between the sensor
which is placed on the lid of the bin and the waste.

The fill percentage is being calculated by comparing the distance between the sensor
which is mounted on the top of the dustbin and the waste level to the full distance of the
empty bin. Hence, the distance and the fill percentage columns are inversely proportional
to each other.

3.3 Data Preparation

For predictive analysis, the timestamp data is very crucial. We converted the eventDate
column data to date time format, by this the data is made more suitable for time series

2https://zenodo.org/record/3375560

4

https://zenodo.org/record/3375560

machine learning algorithms. This transformation makes it simple to easily compute the
time gaps between various events and sorting events in chronological order. We re sample
the data at 5-minute intervals and identify any missing timestamps and we found 133
missing values.

Figure 1: Fill Percentage Over Time

Our data was divided into training and test sets; the test set would span 5 consecutive
days. To evaluate the model’s performance over a specified time period, this duration was
selected. To distinguish between our training and test data, we must choose a specific
time interval. For the test period to cover the specified 5 days, this timestamp must be
exactly 5 days before the end of our data set. Once we have the timestamp we wanted, we
split our data set in half. Data that came before the established date makes up the first
component, called the training set. The test set, which comprises the second component,
spans the five days after the timestamp. We used a method known as interpolation
to preserve the integrity of our data set. By guessing missing values based on the data
already collected, a continuous and coherent data set is created for analysis. Our training
set has 14,477 data points after the split and filling in the missing values, whereas the test
set has 1,430 data points. These sizes represent the variety of cases accessible for model
testing and training. We extract more characteristics with a time component from the
timestamp data. The weekday, hour of the day, month, and other elements are among
these properties. These temporal aspects provide perceptions of temporal patterns that
can improve the precision of our analysis and modelling.

3.4 Data Pre-processing

Figure 2: Distance from Ultrasonic Sensor Over Time

5

Our data is split into two primary categories as we move forward. Every attribute
that we utilise to create predictions are included in one section, which is referred to as the
input features (X). The value we’re attempting to forecast or analyse is represented by
the second component, which is referred to as the target variable (y). Both the training
and test data sets are separated in this way.

3.5 Model Evaluation

In order to train and evaluate machine learning models, we have incorporated a number
of them at this stage, including SARIMA, XGBoost, Prophet, Holt-Winters Exponential
Smoothing, and Generalized Additive Model. In the stage of model evaluation, the
models’ performance was then assessed. Different graphs have been generated for the
models provided in this study in order to do a comparative analysis.

4 Design Specification

The architecture, model deployment, and general functionality of the research project,
which leverages Internet of Things (IoT) data and Predictive Analysis, are all signific-
antly shaped by Amazon SageMaker. Amazon SageMaker is a crucial element that makes
it easier to create and use machine learning models. SageMaker’s features for data pre-
paration, model training, and hosting are used by the cloud-based architecture. The
system takes advantage of SageMaker’s modular and scalable design to ensure flexibility
in response to shifting needs and data volume.

I have used AWS SageMaker to develop and model the machine learning models. This
project uses five machine learning algorithms in total for predictive analysis of waste
level data. All of the models use the time series learning technique, which is widely used
to analyse and forecast future values based on historical data collected over time from
observations of a variable.

The machine learning models I have used in my research’s are:

• SARIMA (Seasonal Auto Regressive Integrated Moving Average)

• XGBoost

• Prophet

• Holt-Winters Exponential Smoothing

• Generalized Additive Model

4.1 SARIMA (Seasonal Auto Regressive Integrated Moving Av-
erage)

The powerful time series forecasting technique called the Seasonal Auto Regressive Integ-
rated Moving Average (SARIMA) model was created to recognise and forecast patterns
in data that exhibit both trend and seasonality. SARIMA expands the capabilities of the
Auto Regressive Integrated Moving Average (ARIMA) model to take into account the
intricacies of data that is depending on the season.

6

SARIMA combines a number of essential elements to acquire its forecasting prowess.
Historical trends can be incorporated due to the Auto Regressive (AR) component, which
predicts the impact of earlier observations on the current value. The Integrated (I) com-
ponent manages differencing, which entails deducting earlier values from the present value
to ensure stationarity, where the statistical characteristics of the data remain constant
throughout time. The Moving Average (MA) component, which aids in identifying ran-
dom shifts and patterns, takes into account the impact of previous forecasting errors on
the present number.

Permanasari et al. (2013) have discussed that when a time series shows a seasonal
variation, seasonal ARIMA (SARIMA) is used. The multiplicative process of SARIMA
will be written as (p, d, q)(P,D,Q)m, where (P,Q) is a seasonal moving average notation
and (P) is a seasonal auto regressive notation. The length of the seasonal period is
indicated by the sub scripted letter.

The hyper parameters of the SARIMA model are:

• (p): Trend auto regression order.

• (d): Trend difference order.

• (q): Trend moving average order.

• (P): Seasonal auto regressive order.

• (D): Seasonal difference order.

• (Q): Seasonal moving average order.

• (m): The number of time steps for a single seasonal period.

Given that we have daily seasonality with 5-minute intervals, (m) will be 288 (as there
are 288 intervals in a day).

SARIMA is particularly good for forecasting time series data with complicated pat-
terns because it can incorporate temporal and seasonal components. Despite its benefits,
SARIMA has drawbacks, such as the requirement to choose the right placements for each
of its parts, which frequently necessitates testing and validation. Additionally, with lar-
ger datasets or sophisticated configurations, the computational complexity of the model
may rise.

4.2 XGBoost

XGBoost is a powerful gradient boosting algorithm that can be used for time series fore-
casting. It’s well-known for its efficiency, flexibility, and strong predictive performance.

Since XGBoost is a tree-based algorithm, it doesn’t inherently capture time depend-
encies. I need to create lagged features that provide information about previous time
steps. Due to its regularisation strategies, parallel processing, and gradient boosting
ideas, XGBoost performs exceptionally well. While parallel processing speeds up tree
construction for scalability, regularisation reduces over fitting. It is adept at handling
problems involving classification and regression involving a variety of data formats.

The capacity of XGBoost to handle imbalanced data sets and provide precise pre-
dictions for unusual events is one of its prominent characteristics. Additionally, it aids
interpret ability by providing insights into the significance of the features.

7

Ndayishimiyepas et al. (2022) used Xgboost to compute the total of the predictions
from each tree as the final prediction. Traditional Euclidean-space optimisation tech-
niques cannot be applied to the tree ensemble model in Figure 4 since it has functions as
parameters. Instead, the model undergoes additive training.

Figure 3: XGBoost Architecture

4.3 Prophet

The Prophet model is a robust forecasting tool developed by Facebook that is designed
to handle missing data, outliers, and multiple seasonalities. It is based on an additive
model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus
holiday effects. Prophet uses an additive model that takes trend, seasonality, and holiday
effects into account. Because it can detect sudden changes and outliers in the data, it
is resistant to anomalies. Additionally, it enables users to include unique seasonality
and events that can have an impact on the data. Prophet stands out for its intuitive

Figure 4: Prophet Architecture

user interface and automatic handling of numerous modelling decisions, such as outlier
detection and handling missing data. Because of this, it may be used by people with
different degrees of competence, from novices to seasoned data scientists. Prophet offers
simplicity, but it may not be as adaptable as other advanced time series models. Prophet,
on the other hand, offers a useful option that requires little technical know-how and
parameter modification for situations where quick and precise forecasts are necessary.
Stefenon et al. (2023) stated that it’s a useful tool for companies and researchers looking
for effective time series forecasting without becoming entangled down in the details of
complex modelling methodologies.

8

4.4 Holt-Winters Exponential Smoothing

Holt-Winters Exponential smoothing is an advanced time series forecasting technique
created to identify and forecast patterns in data that exhibit trend, seasonality, and level
components. This approach, which includes the names of its creators Charles Holt, Peter
Winters, and Frank Brown, works especially well for data sets that exhibit recurring
patterns that are persistent over time.

Holt-Winters Exponential Smoothing, at its core, smothers data by emphasising re-
cent data points while compensating for historical values by distributing exponentially
decreasing weights to previous observations. The three primary parts are as follows:

• Level Component: The level component depicts the time series’ underlying baseline
and captures its overall trend through time. It takes into account how the series
has evolved during recent observations.

• Trend component: The trend component depicts the direction and rate of the
time series’ long-term changes. It records the data regular upward or downward
movement.

• Seasonal Component: The seasonal component takes into account recurring pat-
terns that happen at regular intervals, such as daily, weekly, or monthly cycles. It
captures recurring fluctuations brought on by a variety of outside causes, including
seasons, holidays, and economic cycles.

Singh et al. (2020) discussed the two primary variants of Holt-Winters Exponential
Smoothing: additive and multiplicative. When the seasonal fluctuations are constant,
regardless of the level of the time series, the additive technique is appropriate. When
the level of the time series changes along with the amount of seasonal variations, the
multiplicative technique should be used.

4.5 Generalized Additive Model

By enhancing Generalised Linear Models’ (GLMs’) capabilities, Generalised Additive
Models (GAMs) constitute an important development in the field of statistical modelling.
Despite being quite good at modelling relationships between predictors and response
variables, GLMs are constrained by the linearity assumption. Li et al. (2019) mentioned
that GAMs come into play to overcome this restriction, allowing for the flexible modelling
of nonlinear connections.

GAMs introduce the idea of smooth functions for predictors while retaining the fun-
damental concepts of GLMs. Consequently, GAMs can handle a variety of response
types, including binary, count, and continuous variables, just like GLMs can. GAMs per-
mit these interactions to take on more complex shapes as opposed to assuming a linear
relationship between the predictors and the outcome.

Another advantage of GAMs is their interoperability. It is possible to investigate
the structure of the smooth functions to learn more about how predictors and responses
interact. This makes it easier to get important insights and comprehend the variables
influencing the result.

9

5 Implementation

5.1 Configuring AWS SageMaker

AWS SageMaker modelling configuration includes a number of significant stages. I
launched the AWS Management Console and went to SageMaker first. When building
up the notebook environment, I used PyTorch 1.10 Python 3.8 CPU Optimised image,
which is included in deep learning containers, along with python3 Kernel. I then built a
notebook instance of 48 vCPU + 96 GIB and ml.c5.12xlarge instance type. The Jupyter
Notebook interface is then opened, and I upload and process the data set there. I loaded
datasets through the Jupyter interface and used code cells to install the required libraries.

5.2 Dustbin’s Fill Cycle Analysis

Through an in-depth analysis of the time it takes for the dustbin to fill to 90% capacity,
we identified distinct fill cycles by considering readings below 20% as the starting point
for each cycle. This approach ensures that we capture the time required to fill the dustbin
from a nearly empty state to 90% full.

The analysis revealed the following insights:

• Average Time to Fill to 90% Approximately 5 days, 13 hours, 22 minutes

• Minimum Time to Fill to 90% Approximately 1 day, 8 hours, 3 minutes

• Maximum Time to Fill to 90% Approximately 9 days, 18 hours, 41 minutes

Given this information, we can define the test set length as 5 days, representing a
typical fill cycle. This choice balances the need to capture the inherent variability in fill
times with the desire to have a test set that is representative of common scenarios.

By using a 5-day test set, we ensure that the model evaluation is grounded in the
actual operational dynamics of the waste collection system, providing more robust and
meaningful performance metrics.

5.3 Conclusion of Data Exploration & Pre processing

5.3.1 Data set Structure

This data set contains an abundance of information that was methodically obtained using
a sensor that was placed atop a garbage can. The ”Distance” data is carefully sourced
from an ultrasonic sensor that measures the distance between the sensor and the contents
of the bin. This sensor expertly captures key metrics, including the ”Fill Percentage,”
which denotes the extent of the bin’s occupancy, the ”Battery Level,” which is essential
for maintaining uninterrupted sensor functionality. These readings provide a thorough
insight of the condition of the garbage can as a whole, laying a vital foundation for wise
resource allocation, waste management, and operational optimisation decisions. Rijah
and Abeygunawardhana (2023)

5.3.2 Pre processing

The timestamps were rounded to the nearest 5-minute interval, and irrelevant columns
were removed. We treated missing values with interpolation.

10

5.3.3 Summary Statistics

• Fill Percentage: Varied between 0% and 95% with an average fill level of 49.32%.̇

• Battery: Mostly stable around the value of 56

• Distance: Ranged from 300 to 3001 units, with an average distance of 1255.91 units.

5.3.4 Visualizations

• Fill Percentage: The figure 2 showed fluctuations and patterns, reflecting the usage
and emptying cycles of the dustbin.

• Distance: The distance from the sensor varied inversely with the fill percentage,
decreasing as the bin filled as shown in figure 3.

5.4 Seasonal Decomposition & Time Series Analysis

Damrongkulkamjorn and Churueang (2005) discussed that seasonal decomposition and
time series analysis are important resources for examining and comprehending temporal
data trends. Time series data are observations that are collected over time periods of
days, months, or years. These data frequently display a variety of patterns, including
trends, seasonal fluctuations, and abnormalities.

The process of seasonal decomposition entails dividing a time series into its three
basic elements, trend, seasonality, and residuals. The trend is an indicator of the data’s
underlying long-term movement, which may be increasing, decreasing, or steady over
time. Seasonality refers to repeated patterns that happen on a regular basis, such as
daily, weekly, or annual cycles. After trend and seasonality are taken into consideration,
residuals include the unexplained variability and arbitrary fluctuations that are still there.

The seasonal decomposition plot provides insights into different components of the
”Fill Percentage” time series:

5.4.1 Observed

percentage over the whole temporal spectrum. This unaltered analysis depicts the vari-
ations in fill levels as they change over time, capturing the true essence of the temporal
dynamics of the data. The flow of fill percentages are clearly shown through this novel
time series, providing the framework for additional analysis, trend identification, and
predictive modelling.

5.4.2 Trend

The underlying and persistent pattern found in the data is what is meant by the term
”trend.” It acts as a conduit through which the subtle changes in the data over a long
period of time are visible. The trend provides a panoramic orientation by encompassing
the broad trends that endure across time and providing a clear sense of the data’s main
trajectory.

11

Figure 5: Seasonal Decomposition Plot

5.4.3 Seasonal

Seasonal: The term ”seasonal” refers to reoccurring patterns that appear at regular peri-
ods, in this case repeating everyday. The graphical display highlights the fill percentage’s
cyclical changes and reveals a distinct daily pattern in the data. This finding emphas-
ises the data’s propensity to display regular patterns that correspond to the passing of
each day, providing insight into the systematic oscillations that occur with a predictable
rhythm.

5.4.4 Residual

The term ”residual element” refers to the remaining noise or random oscillations in the
data after the trend and seasonal components have been methodically removed. It basic-
ally captures the unexplained variance that is left behind after taking into consideration
the structured patterns.

The decomposition confirms the presence of daily seasonality in the data and provides
a clearer view of the trend and residual components.

5.5 Model Selection & Training

5.5.1 SARIMA

SARIMA is an extension of ARIMA that explicitly supports uni variate time series data
with a seasonal component. It adds three new hyper parameters to specify the auto

12

regression (AR), difference (I), and moving average (MA) for the seasonal component
of the series. Once the required libraries have been loaded, the IoT sensor data is first
placed into a data set by parsing the Date column and converting it to a Date Time
format in Jupyter Notebook in AWS SageMaker. Now, the model only accepts the Date
and fill percentage columns as input. The primary libraries used to generate ARIMA and
SARIMA models are Pandas, NumPy, Matplotlib, Sklearn, and statsmodel.tsa.

Figure 6: ACF and PACF Plots

5.5.2 Hyper Parameter Analysis

• Correlogram Function (CF) and Partial Auto correlation Function (PACF) Plots:
The use of CF and PACF plots is essential for revealing the complex auto correl-
ation structure ingrained in the data. We learn a lot about the possible ordering
of the seasonal auto regressive (P) and moving average (Q) components by visual-
ising these charts. These graphical representations make it easier to spot lags that
have noticeable auto correlation, which helps us choose the best parameters for our
investigation.

• Application of the Augmented Dickey-Fuller (ADF) test on seasonally differentiat-
ing data emerges as a critical determinant as we begin the investigation of seasonal
patterns. This statistical test determines whether unit roots exist, which would
suggest non-stationarity. We determine the order of seasonal differencing (D) ne-
cessary to establish stationarity by putting the seasonally differentiated data to this
test. This crucial stage directs our comprehension of the stability of the data, per-
mitting knowledgeable choices regarding the temporal properties and the suitable
metrics to get significant insights from the time series data.

Seasonal Lags: We can observe spikes at regular intervals, suggesting the presence of
daily seasonality. P and Q Values: Based on the PACF and ACF plots, we may consider
trying different values for the seasonal auto regressive (P) and moving average (Q) terms
during the model fitting process.

The ADF test is used to check for stationarity in a time series. Here are the results:
ADF Statistic: -5.56
Given the low p-value, we can reject the null hypothesis that the series has a unit

root, and we can conclude that the seasonally differenced series is stationary.

13

Figure 7: Seasonally differenced series

SARIMA Model works better since the data follows a seasonal trend. The SARIMA
model is fitted using similar procedures. It was also given to check the auto correlation
function (ACF) and partial auto correlation function (PACF) plots in order to ascertain
the values of p and q. The SARIMA model is then trained on the train data using the
variables p, d, and q. The data has now been divided into train and test groups.Order
by Season (3, 2, 1) The.fit() method is then used to fit the model. Once the model
has been trained, the values for the test data are forecast using the function.forecast().
Both predicting values and data frame values are examined using the evaluation metrics
MAPE, and MAE.

5.5.3 XGBoost

Extreme gradient boosting (XG Boost) is one of the best ways to apply the gradient
boosting machine learning approach. XGBoost is created for classification and regression
problems in addition to time series forecasting. The initial step involves setting up the
XGBoost library. The cleaned IoT sensor data set is now used as input for the XG
Boost model. In the features engineering section, we created lagged features which is a
common approach for time series forecasting is to create lagged features, which are values
of the target variable (in this case, fill percentage) at previous time steps. By using these
lagged values as features, we allow the model to learn from past observations to make
future predictions. After that we did model preparation and model training performed
evaluation on the results.

5.5.4 Prophet

The Prophet model is a robust forecasting tool developed by Facebook that is designed
to handle missing data, outliers, and multiple seasonalities. It is based on an additive
model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus
holiday effects. In data Preparation stage the column eventDate was changed to ”ds”
and the column Fill Percentage was updated to ”y” in accordance with the prophet
model’s specifications. Prophet expects the input data to have two columns: ds for the
timestamps and y for the values we want to forecast. In the model initialization stage
we configured the Prophet model to include daily seasonality with a frequency of 288
intervals, which corresponds to the 5-minute data intervals we have in our data set. This
accounts for the repetitive patterns that occur within a day. We also Tuned different
hyper parameters.The [.fit()] function is used to fit the prophet model to training data,

14

and prediction values are then forecasted. To compare, MSE and MAE measurements
are used.

5.5.5 Holt-Winters Exponential Smoothing

The Holt-Winters Exponential Smoothing model is a powerful time series forecasting tech-
nique that generalizes and extends the exponential smoothing method. It is well-suited
for data with trends and seasonal patterns. While initializing the model, we imported
libraries like Exponential Smoothing and we initialized the Holt-Winters Exponential
Smoothing model with the specified parameters like trend Component which specifies
the type of trend component (’additive’ or ’multiplicative’), seasonal component which
specifies the type of seasonal component (’additive’ or ’multiplicative’) and seasonal peri-
ods which Specifies the number of observations per seasonal cycle (e.g., 288 for daily
seasonality with 5-minute intervals). Then we fitted the model into the training data
and initialized the forecasting. One the forecasting is successfully done, we calculated
the MAE and MSE and plotted the graphs.

5.5.6 Generalized Additive Model

GAMs are an extension of Generalized Linear Models (GLMs), allowing for nonlinear
relationships between the predictors and the response variable. First we created a copy
of the training data for feature engineering and then we created N lagged features, after
that we dropped the null values and separated the features other then Fill Percentage as
X and target as Fill Percentage. Then we imported LinearGAM library and define the
GAM model with smoothing terms for each feature. We proceeded to make predictions
on the test set and calculate the MAE and MSE and plotted the Actual vs Predicted Fill
Percentage graphs.

6 Evaluation

All of the models that have been deployed will be thoroughly examined in this section.
We will thoroughly evaluate each model’s performance to determine its efficacy and fore-
casting ability.

Mean Absolute Error (MAE) and Mean Squared Error (MSE), two well-known per-
formance metrics, will be used to assess the precision and competence of these models in
predicting the amount of waste that will be present in the bins.

• The Mean Absolute Error (MAE): It measures the average magnitude of errors
between actual and predicted values, is a significant benchmark. It captures the
absolute difference between these numbers and provides insight into the average
accuracy with which the models estimate waste quantities. A lower MAE indic-
ates that the model’s predictions are closer to the actual values, implying higher
accuracy.

• Mean Squared Error (MSE): By averaging the squared differences between the
expected and actual values, MSE determines prediction accuracy. Bigger errors
are highlighted, assisting in the evaluation of model performance across different
sectors.

15

6.1 SARIMA (Seasonal AutoRegressive Integrated Moving Av-
erage)

I ploted ACF and PACF graphs (Figure 6) which helped me understand the auto cor-
relation structure of the data and provide insights into the seasonal auto regressive (P)
and moving average (Q) orders, we can observe spikes at regular intervals, suggesting the
presence of daily seasonality.

I performed the Augmented Dickey-Fuller (ADF) test shown in Figure 7 as well on
the data to determine the order of seasonal difference (D) and the p value came as
1.5287170699873637e-06. Given the low p-value, we can reject the null hypothesis that
the series has a unit root, and it can be concluded that the seasonally differences series is
stationary. In order to build the SARIMA model, we have utilised auto arima to discover

Figure 8: Auto Arima Function

parameter values (p,q,d,P,Q,D) by iterating through the loop. to enable the identification
of the most suitable model. Figure 8 depicts the loop’s result as of the moment. The
best result is determined using the Akaike information criterion (AIC) value, a metric
of a statistical model’s relative quality for a certain collection of data. The AIC is a
metric that measures how well a model fits the data while accounting for the complexity
of the entire model. The model fits similarly with less features the smaller the AIC value,
hence for this study the AIC value used is 960.51, which was obtained for ARIMA(3, 2,
1), meaning it includes 3 auto regressive (AR) terms, 2 differencing term, and 1 moving
average (MA) terms. Following the application of the SARIMA model, the result was
initially assessed using diagnostic plots, as seen in the Figure 9. A good model should
have a normal distribution of residuals. It is expected that the KDE line will roughly
resemble the mean line in the histogram display.

The linear trend of the samples in the qq plot is matched by the ordered distribution
of residuals. The time series residuals have a poor correlation with its own logged form,
as shown by the correlogram (i.e. auto correlation) diagram.

After implementing all above into execution, the model was eventually assessed using
mean square error values. For this model, the Mean Absolute Error (MAE) and Mean

16

Figure 9: Model Diagnostics

Squared Error (MSE) are 6.939 and 147.450 respectively. In the graph, The discrepancies
between the actual and forecasted values suggest potential opportunities for improvement.
We might consider exploring different model specifications, feature engineering, or data
transformations. Here are visible differences between the actual and forecasted values,
especially in certain regions of the plot. Residuals and deviations contribute to the MAE
and MSE values we observed.

Figure 10: SARIMA Actual vs Forecast Graph

6.2 XGBoost

The initial step involves setting up the XGBoost library. The IoT sensor data set is now
used as input for the XG Boost model. The training data set and testing data set must
first be separated. A typical approach for time series forecasting uses lagged features,
which are values of the target variable (in this case, fill percentage) at earlier time steps.
I execute the model to use these lagged values as features to learn from past observations
and produce predictions for the future. The target value and the selected features have
now been used to partition the training data set. The model is then fitted using the
training data set and the testing data set. The XGBoost model’s performance on the test
set was Mean Absolute Error (MAE): 1.467 and Mean Squared Error (MSE): 6.719 The
XGBoost model has demonstrated reasonable predictive accuracy, both quantitatively

17

(MAE and MSE) and visually (plot). Figure 11 shows the actual vs. predicted fill
percentage values for the test set.

In the actual vs forecast graph, we can see that its almost overlapping the actual data
but around 22nd November to 23rd November, we can see the difference in the predicted
data in compare to actual data. For that day the actual waste level was constant in the
bin but XGBoost predicted some variation in that time period.

Figure 11: XGBoost Actual vs Forecast Graph

6.3 Prophet

To implement the time series forecasting using the Prophet model, I started by defining
the parameter grid, including ’seasonality mode’, ’daily seasonality’, ’yearly seasonality’,
and ’weekly seasonality’ options. Then I created a list comprising all potential combina-
tions of these hyper parameters. After then I Initialized variables to track the best hyper
parameters found during the process. Then it was proceeded to iterate through each
combination, initializing a Prophet model with the selected hyper parameters. Fitting
of this model to the training data was done for allowing it to learn patterns. Then, it
utilized the trained model to make forecasts on the test data and provide the best hyper
parameter, which was weekly seasonality and the Mean Absolute Error (MAE) and Mean
Squared Error (MSE) are 12.564 and 283.669 respectively. The actual vs forecasted graph
plotted by Prophet model is not accurate, as its going in a straight line between the days
21st November to 26th November while in same period we can see the fluctuations in the
actual data.

Figure 12: Prophet Actual vs Forecast Graph

Figure 12 shows the Prophet model’s predicted fill percentage values for the test set.

18

6.4 Holt-Winters Exponential Smoothing

At the start I imported libraries and initialized the Holt-Winters Exponential Smoothing
model with the specified parameters like y train,trend=None, seasonal=None, seasonal
periods=288). Then I fitted the model to the training data and forecast the bin level.
After that I modified the parameters and Re run the hyper parameter tuning with the
updated options and through a loop iterating through the hyper parameters and fit the
model. As a result we got a sorted table with hyper parameters and MAE.

The graph is not able to showcase the forecast and its predicting a constant level of
waste inside the bin. This may have occurred because the data is being updated at every
5 minutes and the model is not able to show the overlapping over the actual data.

Figure 13: Holt-Winters Exponential Smoothing Actual vs Forecast Graph

Table 1: Holt-Winters model MAE relation with parameters

Trend Seasonal Seasonal Periods MAE ($)
None None 288 6.399
None add 288 8.354
add None 288 9.0377
add add 288 12.017

Figure 14: GAM Model Actual vs Forecast Graph

19

6.5 Generalized Additive Model

At the start I imported libraries and Created a copy of the training data for feature
engineering. Then I created a lag of 3 that means the model will utilized past 3 result
for the forecast. Then I separated features (X) and target (y) and made predictions on
the test set. For this model, the Mean Absolute Error (MAE) and Mean Squared Error
(MSE) are 0.2407 and 1.9399 respectively.

In the graph, it can be seen that the actual and predicted lines are nearly overlapping
each other throughout, its show that Generalised Additive Model was able to predicted
and forecast the dustbin waste level accurately.

6.6 Discussion

The Generalised Additive Model excelled among the variety of models evaluated on the
waste bin data set. With favourable results for the MAE and MSE metrics, it proved
to have higher predictive abilities. The Generalised Additive Model repeatedly demon-
strated its effectiveness in this thorough assessment of all five models.

Table 2: Comparison of All Models

Model MAE MSE
SARIMA 6.939 147.450
XGBoost 1.467 6.719
Prophet 12.564 283.669
Holt-Winters Exponential Smoothing 6.399 143.970
Generalized Additive Model 0.2407 1.9399

The results of the XGBoost model were not as remarkable as those of the Generalised
Additive Model, despite achieving a good MAE value. When compared to the other
four models, the Prophet model performed considerably worse in terms of performance
indicators, demonstrating a comparably poorer predictive performance.

7 Conclusion and Future Work

In order to predict and forecast waste bin occupancy, a smart waste management system
was developed in this research. IoT, cloud computing, and machine learning are the
foundations of the architecture, which aims to improve waste management systems. The
improvement of the waste bin’s intelligence was suggested in order to accelerate the waste
collection, preserve the environment, and reduce waste collection time. Five machine
learning models for forecasting and predictive modelling have been deployed in this study,
and a comparative analysis has been done. The Generalised Additive Model produced
the best results, with an MAE and MSE that were less deviated from the actual values
(0.2407 and 1.9399, respectively).

Any future work in this area should concentrate on analysing information from several
waste bins put in various locations and develop an application or end user dashboard over
the cloud infrastructure where the concerned authorities may examine the prediction
data.

20

References

Aazam, M., St-Hilaire, M., Lung, C.-H. and Lambadaris, I. (2016). Cloud-based smart
waste management for smart cities, 2016 IEEE 21st International Workshop on Com-
puter Aided Modelling and Design of Communication Links and Networks (CAMAD),
pp. 188–193.

Al-Masri, E., Diabate, I., Jain, R., Lam, M. H. and Reddy Nathala, S. (2018). Recycle.io:
An iot-enabled framework for urban waste management, 2018 IEEE International Con-
ference on Big Data (Big Data), pp. 5285–5287.

Bharathiraja, N., Deepa, T., Hariprasad, S. and Chokkalingam, A. (2022). Design and
development of giot based intelligent smart waste management and predictive mod-
elling, 2022 6th International Conference on Trends in Electronics and Informatics
(ICOEI), pp. 7–12.

Damrongkulkamjorn, P. and Churueang, P. (2005). Monthly energy forecasting using
decomposition method with application of seasonal arima, 2005 International Power
Engineering Conference, pp. 1–229.

Leninpugalhanthi, P., Bharanidaran, G., Bahiradhan, T., Abirami, E., Anandh, R. and
Kumar, R. (2021). Enhanced smart waste management system with incinerator com-
partment, 2021 7th International Conference on Advanced Computing and Communic-
ation Systems (ICACCS), Vol. 1, pp. 1313–1317.

Li, J., Li, W., Guo, Z., Zhong, Z. and Wu, X. (2019). Lateral spread prediction based
on generalized additive model for hot strip finishing mill, 2019 Chinese Control And
Decision Conference (CCDC), pp. 1726–1730.

Likotiko, E., Misaki, S., Matsuda, Y. and Yasumoto, K. (2021). Sgbs: A novel smart
garbage bin system for understanding household garbage disposal behaviour, 2021
Thirteenth International Conference on Mobile Computing and Ubiquitous Network
(ICMU), pp. 1–8.

Medehal, A., Annaluru, A., Bandyopadhyay, S. and Chandar, T. (2020). Automated
smart garbage monitoring system with optimal route generation for collection, 2020
IEEE International Smart Cities Conference (ISC2), pp. 1–7.

N., S., Fathimal, P. M., R., R. and Prakash, K. (2019). Smart garbage segregation
management system using internet of things(iot) machine learning(ml), 2019 1st In-
ternational Conference on Innovations in Information and Communication Technology
(ICIICT), pp. 1–6.

Ndayishimiyepas, P., Wilson, C. and Kimwele, M. (2022). A hybrid model for predicting
missing records in data using xgboost, 2022 IEEE International Symposium on Product
Compliance Engineering - Asia (ISPCE-ASIA), pp. 1–5.

Permanasari, A. E., Hidayah, I. and Bustoni, I. A. (2013). Sarima (seasonal arima)
implementation on time series to forecast the number of malaria incidence, 2013 Inter-
national Conference on Information Technology and Electrical Engineering (ICITEE),
pp. 203–207.

21

Rijah, U. L. M. and Abeygunawardhana, P. K. W. (2023). Smart waste segregation
for home environment, 2023 3rd International Conference on Advanced Research in
Computing (ICARC), pp. 184–189.

Singh, B., Kumar, P., Sharma, N. and Sharma, K. P. (2020). Sales forecast for amazon
sales with time series modeling, 2020 First International Conference on Power, Control
and Computing Technologies (ICPC2T), pp. 38–43.

Stefenon, S. F., Seman, L. O., Mariani, V. C. and Coelho, L. d. S. (2023). Aggregating
prophet and seasonal trend decomposition for time series forecasting of italian electri-
city spot prices, Energies 16(3).
URL: https://www.mdpi.com/1996-1073/16/3/1371

22

	Introduction
	Research Question
	Document Structure

	Related Work
	Cloud Computing Implementation
	 Machine Learning Implementation

	Methodology
	Data Collection:
	Data Understanding
	Data Preparation
	Data Pre-processing
	Model Evaluation

	Design Specification
	SARIMA (Seasonal Auto Regressive Integrated Moving Average)
	XGBoost
	Prophet
	Holt-Winters Exponential Smoothing
	Generalized Additive Model

	Implementation
	Configuring AWS SageMaker
	Dustbin's Fill Cycle Analysis
	Conclusion of Data Exploration & Pre processing
	Data set Structure
	Pre processing
	Summary Statistics
	Visualizations

	Seasonal Decomposition & Time Series Analysis
	Observed
	Trend
	Seasonal
	Residual

	Model Selection & Training
	SARIMA
	Hyper Parameter Analysis
	XGBoost
	Prophet
	Holt-Winters Exponential Smoothing
	Generalized Additive Model

	Evaluation
	SARIMA (Seasonal AutoRegressive Integrated Moving Av- erage)
	XGBoost
	Prophet
	Holt-Winters Exponential Smoothing
	Generalized Additive Model
	Discussion

	Conclusion and Future Work

