

Configuration Manual

MSc Research Project

In Cloud Computing

Ravina Mestry

Student ID: x22177264

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

…….Ravina Mestry…………………………………………………………………………………

Student ID:

………x22177264……………………………………………………………………………….……

Programme:

……MSc in Cloud Computing………………

Year:

……2023…………….

Module:

……Research Project in Cloud Computing…………………………………….………

Lecturer:

……Vikas Sahni………………………………………………………………………………………

Submission

Due Date:

……14/08/2023……………………………………………………………………………….………

Project Title:

Securing the Speed: Balancing Security and Deployment Velocity in

DevOps

Word Count:

……2165………………………… Page Count: ……16…………………….…….………

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……Ravina Mestry…………………………………………………………………………………

Date:

……10/08/2023……………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

https://mymoodle.ncirl.ie/user/view.php?id=20022&course=1461

1

Configuration Manual

Ravina Mestry
Student ID: x22177264

1 Introduction

The system requirements, setup, software, and installation specifications used in this research

will be better understood by readers of this configuration manual. Additionally, a detailed

explanation of the procedures to be followed when carrying out this research project is provided

in this manual. Table 1 lists the tools version and URLs discussed in detail in Section 3.

Prerequisites

• AWS and Django Python knowledge.

• AWS, Docker, and GitHub login.

• Infrastructure as code knowledge.

No. Tools Version URL

1 Terraform 1.5.3 Overview | x22177264-research-project-webapp | nci-research-

project | Terraform Cloud

2 Docker 3.8 ravinamestry/x22177264_ravina_mestry general | Docker Hub

3 OWASP

ZAP

2.13.0 http:// <X22177264_ ravina_mestry_research_project_zap_

PUBLIC_IP>:8080/

4 Snyk - https://docs.snyk.io/integrations/ci-cd-integrations/github-

actions-integration

5 Datadog v7 Agent 7 | Datadog (datadoghq.eu)

6 SonarQube 3 http:// <X22177264_ ravina_mestry_research_project_sonarqube

_PUBLIC_IP>:9000/

7 GitHub 2.34.1 ravinamestry/x22177264_ravina_mestry_research_project

(github.com)

Table 1: AWS EC2 Instance Specification

2 Before you begin

2.1 Web Application

The web application Employee Contacts was developed in Django Python using the Django

framework. Django offers the first setup for a virtual environment. In addition to CRUD

features like create, update, and delete shown in Figure 1, Employee Contacts also offer non-

CRUD functionality like data validation for fields in the add new employee page form. The

database that is utilized by the application is SQLite. The employee contacts web app is

https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project-webapp/settings/general
https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project-webapp
https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project-webapp
https://hub.docker.com/repository/docker/ravinamestry/x22177264_ravina_mestry/general
https://docs.snyk.io/integrations/ci-cd-integrations/github-actions-integration
https://docs.snyk.io/integrations/ci-cd-integrations/github-actions-integration
https://app.datadoghq.eu/account/settings/agent/latest?platform=ubuntu
https://github.com/ravinamestry/x22177264_ravina_mestry_research_project
https://github.com/ravinamestry/x22177264_ravina_mestry_research_project

2

installed on Gunicorn wsgi application server and SQLite database is migrated using below

commands.

python3 manage.py makemigrations

python3 manage.py migrate

Figure 1: Web Application

• Created a virtual Python environment on local machine to install Django.

• Activated the virtual environment.

cd /mnt/c/work/workspace/django-workspace

python3 -m venv ravina_mestry_research_project_webapp _gunicorn _venv

source ravina_mestry_research_project_webapp_gunicorn_venv/bin/activate

• Installed Python 3.10.6.

• Used pip to install Django 3.2.13.

• Started the Django project and started with below command.

cd ravina_mestry_research_project_webapp

python3 manage.py runserver 8080

• After adding the URL generated by running the server in settings.py

‘ALLOWED_HOSTS’ the Django application is shown running successfully.

• The web application is then deployed on AWS EC2 instance in Development (Dev),

Staging (Stage) and Production (Prod) using Docker image.

3 Tools/Cloud-based services

3.1 AWS EC2

• AWS EC2 instances are used for deploying dev, stage and prod environment for

running the Web application, also for installing SonarQube and Zap discussed in

Section 3.4 and 3.6 respectively.

• AWS Instances are created using Terraform, discussed in Section 3.2.

3

Figure 2: AWS EC2 Instances

• The Terraform-generated EC2 instances for this project are listed shown in Figure 2

and details of Instance Type and AMI ID are listed in Table 2.

AWS Instance Name Instance

Type

AMI ID

x22177264_ravina_mestry_research_project_sonarqub

e

t2.mediu

m

ami-

04505e74c0741db8

d

x22177264_ravina_mestry_research_project_zap t2.mediu

m

ami-

04505e74c0741db8

d

x22177264_ravina_mestry_research_project_dev t2.micro ami-

053b0d53c279acc90

x22177264_ravina_mestry_research_project_stage t2.micro ami-

053b0d53c279acc90

x22177264_ravina_mestry_research_project_prod t2.micro ami-

053b0d53c279acc90

Table 2: AWS EC2 Instance Specification

3.2 Terraform

• Created new Terraform

Organization nci-research-

project and workspaces

x22177264-research-project,

x22177264-research-project-

sonarqube and x22177264-

research-project-zap shown in

Figure 3.

• Saved the AWS variables for

above three workspaces in

Terraform shown in Figure 4.

Figure 3: Terraform organization and Workspaces

https://app.terraform.io/app/nci-research-project
https://app.terraform.io/app/nci-research-project
https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project
https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project-sonarqube
https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project-sonarqube
https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project-zap
https://app.terraform.io/app/nci-research-project/workspaces/x22177264-research-project-zap

4

• In main.tf for Terraform mentioned the EC2 instance

details in Figure 5 for creating development, Staging, and

production environments with the Key name, Security

group ID and Tag name.

• Terraform also notes Public_IP for the EC2 instances and

terraform_create.yml saving the Public_IP in GitHub

Actions in Figure 6.

• The Public_ID noted in Secrets of GitHub in Figure 7 is

retrieved by deploy-dev.yml and deploy.yml to deploy the

Web Application to respective environments using Docker.

• Docker Images which consist of Web Application are

copied to the Public_IP saved in GitHub Secrets.

 Figure 4: Terraform AWS Variables

Figure 5: Terraform AWS Instance details

Figure 6: Terraform saving Public_IP in GitHub Secrets

5

Figure 7: Terraform creating Instances for Dev/Stage/Prod

3.3 Docker

• Created the repository ravina-mestry/x22177264_ravina_mestry to save the Docker

Image for Web app shown in Figure 9.

• Docker Image is built and pushed to Docker Hub by Terraform in

.GitHub/workflows/build.yml workflow in Figure 8.

Figure 8: Docker Image Tag Specification

Figure 9: Docker Image pushed in Docker Hub

• Docker-compose consists of Docker Image to be pulled and ran in Docker container

which runs the Web app on Dev/Stage/Prod environments in Figure 10 using below

command. Docker login is stored in GitHub Action Secrets.

sudor docker-compose up -d

6

Figure 10: Docker Image ran on AWS Instance for Dev/Stage/Prod

3.4 SonarQube

• Created AWS EC2 t2.medium Instance for SonarQube using Terraform in Section

3.1.

• Added the configuration into docker-compose.yaml.

• Increased the Elasticsearch limit by adding the following command in

installdocker.sh.

sudo sysctl -w vm.max_map_count=262144

• Built and started the docker containers.

sudo docker-compose up -d

• Navigated to <InstanceIP>:9000 and created the project x22177264_ravina_mestry

and configured for GitHub Actions by creating SONAR_TOKEN and

SONAR_HOST_URL secrets and sonar-project.properties file in GitHub repository.

• Ran the .github/workflows/build_sonarqube.yml to show the analysis of code in

Figure 11.

Figure 11:

SonarQube

Code

analysis

http://54.157.183.210:9000/dashboard?id=x22177264_ravina_mestry

7

3.5 GitHub and GitHub Action

• Created GitHub repository

x22177264_ravina_mestry

_research_project.

• Added the code for webapp

discussed in Section 2.1.

• Added terraform/main.tf to create

infrastructure in AWS EC2 in

Section 3.2.

• Included SonarQube scan, Super-

Linter, Snyk scan, and Datadog

monitoring tools on the CI-CD

pipeline.

• Created Workflows shown in

Figure 12 for creating and

destroying infrastructure,

building Docker Image, and

deploying the web app in

Dev/Stage/Prod environments.

Figure 12: GitHub Actions Workflows

3.6 ZAP

• Created the AWS EC2 t2.medium Instance for Zap using Terraform discussed in

Section 3.1.

• Added owasp/zap2docker-stable in Docker file with entry point zap-webswing.sh.

• Ran the docker containers with the ports 8080 or 8090 in Docker-compose.yml.

3.6.1 Steps to run a Quick Start Automated scan

• Started ZAP <x22177264_ravina_mestry_research_project_zap_PUBLIC_IP> and

clicked the Quick Start tab of the Workspace.

• Clicked the large Automated Scan button.

• In the URL to attack text box, entered the full URL of the web application.

• Clicked the Attack.

• Figure 13 shows the scanner attacking passively the web application.

https://github.com/ravinamestry/x22177264_ravina_mestry_research_project
https://github.com/ravinamestry/x22177264_ravina_mestry_research_project

8

Figure 13: GitHub Actions Workflows

3.7 Snyk

• Created Snyk account with organization name ‘ravinamestry’ and generated Snyk

API Token.

• Integrated Snyk with GitHub Actions and Docker Hub. Enables Repository access for

GitHub Actions and enables Detect application vulnerabilities for Docker Hub in

Figure 15.

• Created GitHub Action Secret for SNYK_TOKEN which is used in Figure 14 env

section in .github/workflows/build.yml workflow for Scanning the web app.

Figure 14: Snyk GitHub Actions and Docker Hub Integration

9

• Snyk scans the image ravinamestry/x22177264_ravina_mestry:ncirl_cloud_research

_webapp_x22177264_ravina_mestry for high severity vulnerabilities mentioned in

Figure 15.

• Used --sarif-file-output and the GitHub SARIF upload action, when GitHub creates

code scanning alerts in a repository using information from Static Analysis Results

Interchange Format (SARIF) files, SARIF files are uploaded to a repository using

GitHub Actions.

• Continue-on-error is true so that when Snyk Action fails when vulnerabilities are

found this would not prevent the SARIF upload action from running.

Figure 15: Snyk configuration

• Figure 16 shows the Docker image and GitHub repo scanned for vulnerabilities and

Snyk tracks and flags Pull Requests in the top-most vulnerable projects with severity

levels critical, high, medium, and low.

Figure 16: Snyk dashboard

https://docs.github.com/en/code-security/secure-coding/uploading-a-sarif-file-to-github
https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#jobsjob_idstepscontinue-on-error

10

3.8 Datadog

3.8.1 Set up for Tracing on GitHub Actions Workflows

• Configured the GitHub App name ‘Datadog – ResearchProject’ in Datadog

integration in Figure 17.

• Edited the Permissions to grant Actions: Read access.

• Configured tracing for GitHub Actions for Enabling CI Visibility for the research

repository in Figure 18.

• The Pipelines page in Datadog shows Pipelines and Pipeline Execution with duration

and CI status in Figure 19.

Figure 17: Created GitHub App in Datadog

Figure 18: Enabling CI Visibility in Datadog

https://docs.datadoghq.com/continuous_integration/pipelines/github/#configure-the-datadog-integration
https://docs.datadoghq.com/continuous_integration/pipelines/github/#configure-the-datadog-integration
https://docs.datadoghq.com/continuous_integration/pipelines/github/#configure-tracing-for-github-actions

11

URL: Set up Tracing on GitHub Actions Workflows (datadoghq.com)

Figure 19: Datadog Pipeline Visibility

3.8.2 Set up for Cloud Security Posture Management (CSPM)

• Datadog Integrations tile clicked on AWS and selected AWS region and Datadog API

Key.

• Enabled Cloud Security Posture Management to scan the cloud environment, hosts, and

containers.

• Clicked on Launch CloudFormation Template and created stack.

• After the stack is created, on the AWS integration tile in Datadog and clicked Ready.

URL: Setting Up CSPM (datadoghq.com)

Figure 20: Datadog CSPM Configuration

• Enabled Collect Resources toggle for AWS Resource in Figure 20 in Security>Setup.

• Enabled Cloud Security Posture Management Collection to enable resource collection

for CSPM in AWS Integration tile.

• Figure 22 shows the Cloud Security Posture with misconfigured resources and posture

score.

Figure 21: Datadog agent installation in terraform

https://docs.datadoghq.com/continuous_integration/pipelines/github/
https://docs.datadoghq.com/security/cspm/setup/?tab=aws

12

Figure 22: Datadog Posture Management

3.8.3 Set up for Datadog Agent

• Got the steps for installing Datadog agent from the URL mentioned in Table 1 and

added the steps in the terraform

terraform/installdocker.sh file shown in Figure 21.

• Below command shows the status of the Datadog

agent running for the host.

sudo service datadog-agent status

3.9 Super-Linter

• Entered the code in Figure 23 in the

.GitHub/workflows/build.yml workflow from the

URL mentioned below.

• GitHub Actions will automatically run the Super-

Linter workflow whenever there is a pull request or

push event to the specified branches.

URL: https://github.com/marketplace/actions/super-linter

Figure 23: Super-Linter code in build

https://github.com/marketplace/actions/super-linter

13

4 Configuring the Pipeline

• Figure 24 illustrates the summary of CI-CD pipeline with integrated Security tools on

various stages of the pipeline designed for the research paper explained in sections.

Figure 24: CI-CD Pipeline with Integrated Security Tools

4.1 Infrastructure Deployment Workflow

• Below workflow in Figure 25 is created for infrastructure development, GitHub

actions will trigger terraform_create.yml workflow when there are changes in

infrastructure requirements from terraform terraform/main.tf path.

Figure 25: Infrastructure Deployment Workflow

4.1.1 Pull requests steps:

• Figure 26 shows pull request steps and merge to develop and merge to master steps in

terraform plan and apply execution.

• On pull request, terraform initiates the directory which has terraform Configuration

files and validates the Configuration.

• Terraform Plan shows the plan which has the actions Terraform will take in order.

14

• Terraform plan status returns whether a plan was successfully generated or not.

4.1.2 Merge to master steps:

• Terraform runs the Apply when Pull request is merged into master branch.

• Terraform Apply the plan and creates the infrastructure according to the plan.

• It retrieves the public IPs of instances and saves them in GitHub secrets shown in Figure

27.

Figure 26: Terraform Plan and Apply Execution

4.2 Application Deployment Workflow

• Develop branch from GitHub repo consists of code change which is to be added to the

development and then to Staging environments.

• When the Pull request is generated on Develop branch, GitHub actions will trigger

build.yml workflow on develop branch for webapp illustrated in Figure 28.

15

Figure 27: GitHub Secrets for Public IP

Figure 28: Application Deployment Workflow

• It builds and push the web app and Docker Hub image with tag

‘x22177264_ravina_mestry/project:ncirl_cloud_research_webapp_x22177264_ravina

_mestry’.

• When the develop branch is merged into develop branch shown in Figure 28, GitHub

actions will trigger deploy-dev.yml workflow on develop branch. It deploys the

application in development environment from GitHub Action secrets

x22177264_ravina_mestry_research_project_dev_PUBLIC_IP’.

• It gets docker-compose.yml file and removes existing Docker container and image, gets

Login for Docker, and runs Docker to deploy the application in development

environment from GitHub Action secrets

x22177264_ravina_mestry_research_project_dev_PUBLIC_IP’.

https://hub.docker.com/repository/docker/ravinamestry/x22177264_ravina_mestry
https://hub.docker.com/layers/ravinamestry/x22177264_ravina_mestry/ncirl_cloud_research_webapp_x22177264_ravina_mestry/images/sha256-8d1c99f3e7910accb218a8ac024ea3c4607cafb7a4cc5b24ecce92ca609535ea?context=repo
https://hub.docker.com/layers/ravinamestry/x22177264_ravina_mestry/ncirl_cloud_research_webapp_x22177264_ravina_mestry/images/sha256-8d1c99f3e7910accb218a8ac024ea3c4607cafb7a4cc5b24ecce92ca609535ea?context=repo

16

• When the develop branch is merged into

master branch, GitHub actions will

trigger deploy-stage.yml workflow on

master branch.

• When GitHub actions is manually

triggered with input PROD in the

workflow in Figure 29, removes existing

Docker container and image and the

deploy.yml workflow and deploys the

application in Production environment

from GitHub Action secrets

x22177264_ravina_mestry_research

_project_prod_PUBLIC_IP’.

 Figure 29: GitHub Action Deploy workflow

4.3 Destroy Infra Workflow

• The destroy infra workflow destroys no longer needed infrastructure. Resources like

Dev or Stage are destroyed and created when needed. The Terraform destroy command

terminates the resources in workspace. Figure 30 shows the terraform_destroy.yml

execution destroying the dev, stage, and prod AWS EC2 instances.

terraform_destroy.yml

terraform_destroy_sonarqube.yml

terraform_destroy_zap.yml

Figure 30: Destroy Infrastructure Workflow

https://github.com/ravina-mestry/ravina_mestry_devopssec_project/blob/master/.github/workflows/terraform_destroy.yml
https://github.com/ravina-mestry/ravina_mestry_devopssec_project/blob/master/.github/workflows/terraform_destroy_sonarqube.yml
https://github.com/ravina-mestry/ravina_mestry_devopssec_project/blob/master/.github/workflows/terraform_destroy_zap.yml

