

Securing the Speed: Balancing Security and

Deployment Velocity in DevOps

MSc Research Project

In Cloud Computing

Ravina Mestry

Student ID: x22177264

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

…….Ravina Mestry…………………………………………………………………………………

Student ID:

…………x22177264……………………………………………………………………………………

Programme:

…MSc in Cloud Computing……………

Year:

………2023………….

Module:

……Research Project in Cloud Computing……………………………………….………

Supervisor:

……Vikas Sahni………………………………………………………………………………….………

Submission

Due Date:

……14/08/2023………………………………………………………………………………….………

Project Title:

Securing the Speed: Balancing Security and Deployment Velocity in

DevOps

Word Count:

……6944………………………… Page Count: …20………………………………….…….

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……Ravina Mestry…………………………………………………………………………………………

Date:

……10/08/2023………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

https://mymoodle.ncirl.ie/user/view.php?id=20022&course=1461

1

Securing the Speed: Balancing Security and

Deployment Velocity in DevOps

Ravina Mestry
Student ID: x22177264

Abstract

The DevOps approach to software development emphasizes Continuous Integration and

Continuous Delivery (CI-CD) to achieve faster release cycles and improved quality. However,

security is often neglected in the pursuit of deployment velocity, leaving software applications

vulnerable to cyberattacks. To address this challenge, organizations often incorporate multiple

security tools into their DevOps pipelines. However, this raises the question of how many security

tools should be used and what trade-offs exist between security and deployment velocity.

The research methodology employs an empirical approach, combining both quantitative

and qualitative analyses. A sample CI-CD pipeline is constructed, integrating key security tools

such as SonarQube, Super-Linter, OWASP (Open Web Application Security Project) ZAP, and

Snyk, along with AWS EC2, GitHub Actions, Terraform, and Docker for scalable infrastructure.

The evaluation of the research is centred on key performance metrics and indicators, including

Mean Time to Build (MTTB), Mean Time to Change (MTTC), and vulnerabilities identified to

measure the impact of security measures. Results demonstrate a slight increase in MTTB and

MTTC, attributed to security checks. The number of vulnerabilities identified highlights the

effectiveness of integrated security tools in enhancing application security. The findings empower

organizations to deliver secure and high-quality software products, strengthening their competitive

edge in the rapidly evolving software industry.

Keywords— DevOps, CI-CD pipeline, security, velocity

1 Introduction

Organizations are adopting DevOps because it enables faster and more frequent software

deployments (Lwakatare, et al., 2019, p. 214). DevOps aims to increase the pace and

automation of the software process. It utilizes automation to work with the development

team, operations teams, and for continuous delivery. Faster development and delivery are

accompanied with the crucial aspect of securing the CI-CD process. Continuous security

integrates security on several aspects of CI-CD pipeline (Vehent, 2018, p. 8). This research

discusses the importance of automating security to incorporate security effortlessly into CI-

CD pipelines. Businesses that use a CI-CD strategy for application delivery identify

velocity as a business goal (Deegan, 2020). This research aims to investigate the

relationship between the number of security tools used in the DevOps pipeline and the

security and efficiency of the CI-CD process. While using numerous tools can increase

security, it can also complicate things and delay deployment. This research also discusses

the trade-offs between enhancing security and maintaining a fast-paced CI-CD pipeline.

Layers of application security are used in continuous security as part of the CI-CD

pipeline to find potential threats and vulnerabilities. Static code analysis, security testing,

2

container security, cloud and network security are some of the levels of security in the CI-

CD pipeline. Security tools are progressively incorporated into the DevOps pipeline to

assure the security and dependability of software applications. However, the effectiveness

and speed of the pipeline could be impacted by the incorporation of various security

solutions into the CI-CD process (Dyess, 2020). This paper examines different CI-CD

pipeline stages and the security tools that go along with them at various integrated security

stages. This research paper a comprehensive study that aims to explore the delicate balance

between security and deployment velocity in DevOps. The paper delves into the integration

of security practices at various stages of the CI-CD pipeline, analysing the impact on

deployment speed and the effectiveness of security measures.

This research finds the trade-offs between safeguarding the efficiency of the CI-CD

process and the security of applications by implementing the CI-CD pipeline with and

without integrated security tools. The research methodology for this study adopts a data-

driven and empirical approach. The research method encompasses both quantitative and

qualitative analyses to provide a holistic understanding of the balance between security and

efficiency. The research implementation phase focuses on the practical integration of

security measures into the CI-CD pipeline. The evaluation is conducted applying the

metrics studied in literature review to assess the efficiency and speed of the development

process of the CI-CD pipeline. Moreover, experiments are done to determine how different

numbers of tools affect the pipeline and related metrics to achieve balance.

This research analyses the effects of integrating multiple security tools in the

DevOps pipeline and the potential impact on the speed of the pipeline as well as the

efficiency of the CI-CD process. The paper emphasizes the significance of integrating

security early in the development process, automating security testing, and fostering

collaboration between development and security teams. This research also provides

recommendations for optimizing the balance within the integration of security tools and

velocity in the CI-CD pipeline. By identifying the optimal number of security tools and

their appropriate placement within the CI-CD pipeline, organizations can effectively secure

their software applications without sacrificing deployment speed. Ultimately, this research

contributes to the development of a more secure and efficient DevOps process.

2 Related Work

DevOps is a software development methodology that combines operations (Ops) and

software development (Dev) (Ahmed & C. Francis, 2019; Krief, 2019) to improve the

effectiveness and efficiency of software development and deployment. Security is a major

concern in DevOps due to the complexity and frequency of software releases (Rajapakse,

et al., 2021, p. 2). The articles in this literature review were examined in relation to

DevOps security challenges, security tools at various stages, and metrics to assess the

DevOps pipeline.

2.1 Security and its challenges in DevOps

With a focus on quicker and more frequent releases, DevOps is becoming more and more

well-known. However, this focus on speed can sometimes come at the expense of security

3

(Desai & T N, 2021, p. 1). Another difficulty that arises with speedy deliveries is how to

get the security team to complete their tasks promptly and effectively (Leppanen et al.,

2022, p. 8). DevOps emphasizes collaboration among the various (Rahman & Williams,

2016a) development team, operations team, and security team of an organization

(Sánchez-Gordón & Colomo-Palacios, 2020, p. 2). Even though DevOps advocates for

improved collaboration, faster delivery, and the elimination of defects, security is

frequently overlooked. DevOpsSec is a tool that combines security with DevOps (Desai &

N, 2021, p. 2-3; Larrucea, et al., 2019, p. 453-454) is essential because it upholds the

fundamental principle of keeping security a priority and integrating security practices and

measures into the DevOps cycle (Rajapakse, et al., 2022, p. 2; Sánchez-Gordón & Colomo-

Palacios, 2020). The Security team is dedicated to making sure that the delivered software

is thoroughly examined for vulnerabilities and threats while the DevOps team strives to

move as quickly as possible (Dyess 2020, p. 16), by implementing the DevOpsSec

solution, both departments productivity and outcomes are improved (Ahmed & C. Francis,

2019).

Moving security to the left (Bird, 2016; Mansfield-Devine, 2018, p. 16) earlier into

the design, coding, and automated test cycles helps with the pace of the delivery rather than

waiting until the system is developed, built, and then attempting to fit some security checks

shortly before release. DevOpsSec emphasizes adding security to every step of the business

process of DevOps, including requirement gathering, development, testing, deployment,

monitoring, and maintenance, to achieve the desired results (Desai & N, 2021, p. 6).

DevOpsSec incorporates security into all phases of the process by upholding compliance,

identifying any weaknesses, and putting controls and monitoring in place (Bird, 2016),

making security measures repeatable, dependable, and integrated throughout the entire

development process (Desai & N, 2021).

Many businesses continue to believe that placing too much emphasis on security

will slow down operations and harm their capacity to maintain a rapid pace (Dyess, 2020)

(Ahmed & C. Francis, 2019, p. 179). Security procedures must be as quick as development

procedures to maintain agility because speed is what distinguishes DevOps and

DevOpsSec (Rajapakse et al., 2022, p. 7), as the primary goal of the DevOps methodology

is to facilitate quick deliveries (Vehent, 2018). However, combining too many security

measures in today's fast-paced environment can impede the CI-CD process (Dyess, 2020,

p. 14), making it challenging to meet delivery deadlines for software (Rao, 2021).

This literature review shows the significance of integrating security in the DevOps

pipeline at various stages and emphasizes the challenges of integrating security in the

DevOps pipeline. One of the most appealing aspects of DevOps is its emphasis on speed

(Mansfield-Devine, 2018, p. 16). The gap in this research lies in the lack of comprehensive

studies that specifically address the challenge of balancing security and deployment speed

in DevOps. While there are existing research papers that discuss security practices and

challenges in DevOps and the importance of continuous security monitoring, there is a

need for empirical studies that explore the impact of integrating security measures on

deployment speed. As velocity is the demanding factor in DevOpsSec (Leppanen,

Honkaranta & Costin, 2022, p. 8), the research question aims on exploring the impact of

4

velocity on multiple security tools integrated in the CI-CD pipeline and analyse trade-offs

in improving speed and efficiency of the CI-CD pipeline.

2.2 Security tools in DevOps

The DevOpsSec paradigm strongly supports and depends heavily on the use of

tools (Ahmed & C. Francis, 2019, p. 179). Selecting the appropriate tools can be

challenging (Rajapakse et al., 2022, p. 7). As a result, DevOpsSec has access to a wide

range of tools at every stage. The security is integrated into CI-CD pipeline through plan,

code commit, build, test and operation phases through Static application security testing

(SAST), Container Security, Infrastructure as Code (IaC), API security, Dynamic

application security testing (DAST), Incident response management and monitoring (Mao,

et al., 2020; Kumar & Goyal, 2020).

One of the prevalent software practices in the DevOps culture is the automation of

all tasks related to software development, including automating security on CI-CD

pipelines (Rahman & Williams, 2016b, p. 73; Kumar & Goyal, 2020, p. 10; Larrucea et al.

2019, p. 454). Automation makes it easier to integrate continuous security practices and

principles into the CI-CD pipeline (Jammeh, 2020). Web Application Security Testing

(WAST) uses its user interface to automate web security test attacking (Rangnau, et al.,

2020, p. 146) while static analysis tools are used to conduct code reviews and give

feedback to the appropriate software developers as part of automating code reviews.

SAST tools enhance code security by automatically identifying vulnerabilities in

the code (Bird, 2016; Jammeh, 2020) and automation of security testing executes testing

tasks such as test case management, test monitoring, and control (Rahman & Williams,

2016, p. 73), and automates security attacks test (Bird, 2016). DAST, which includes

penetration testing and exploits testing, examines an application's behaviour as it runs in

test and pre-production environments (Kumar & Goyal, 2020, p. 13). Automation in

monitoring uses automated tools to collect, report, and store system-related data for later

analysis (Sojan, et al., 2021; Rahman & Williams, 2016b, p. 73) and also security

overview, threat intelligence (Hsu, 2018), and incident management.

No. Security at various stages Security Tools

1 Code Commit SAST Tools: SonarQube, Checkmarx, Veracode

2
Build OWASP Dependency-Check, Snyk

3 Test

DAST Tools: OWASP ZAP or Burp Suite, IBM

AppScan

4
Artifact Generation Clair, Anchore, Semgrep, CodeQL, Twistlock

5 Deployment

Terraform Sentinel, AWS Config, Azure Security

Center
6 Verification and Approval Security Assertion Markup Language, OAuth tools

7 Monitoring and Observability PagerDuty, VictorOps, Logstash, Datadog

Table 1: Security Tools for various stages of CI-CD Pipeline

5

Table 1 shows some examples of security tools for the various stages of the CI-CD

pipeline (Rangnau, et al., 2020; Deegan, 2020; Kumar & Goyal, 2021; Jammeh, 2020).

SAST tools secure coding (Yarlagadda, 2020, p. 3) without launching the program,

examine the code and look for vulnerabilities with early detection of potential flaws,

vulnerabilities, and code smells is made possible (Rajapakse, et al., 2022, p. 15-16). Later

in the CI-CD cycle (Rajapakse, et al., 2021), DAST tools are used to secure and scan

applications in real-time (Kumar & Goyal, 2020, p. 13). Utilizing IaC tools, businesses can

deploy and manage infrastructure automatically (Kumar & Goyal, 2020, p. 12). API

security tools are WAST aids in securing and monitoring API endpoints while CI-CD tools

automate the build, test, and deployment of code (Rangnau, et al., 2020, p. 146) while tools

for API security check authentication, validation, and error handling.

Lastly, due to the dynamic nature of the infrastructure, maintaining such

infrastructures necessitates continuous monitoring in addition to other factors like security

and infrastructure administration (Sojan, et al., 2021) and can manage security incidents

and respond to security breaches with the aid of incident response and management tools

(Yarlagadda, 2020, p. 3). Overall, the articles on security tools that have been reviewed

emphasize the value of automation and integration of multiple security tools in adopting

continuous security at various stages of the CI-CD process. Nonetheless, the studies

focused on the technical aspects of security tools and practices without fully exploring the

trade-offs and best practices to achieve an optimal balance between security and efficiency.

The gap in the research is the absence of a systematic investigation into the practical

implementation of security tools in the CI/CD pipeline and their effect on deployment

velocity. By providing practical insights and recommendations, this research seeks to

address the gap in existing research and contribute valuable knowledge to the field of

DevOps security. Furthermore, this research aims to bridge this gap by evaluating their

impact on deployment speed and effectiveness for which study on metrics is conducted in

next subsection.

2.3 Metrics for Evaluation in DevOps

Measuring the security of software is a difficult task. The DevOps paradigm makes it even

more difficult to measure security because of the frequent and continuous software

releases. The lack of appropriate security metrics was one of the most frequently cited

causes of these issues (Rajapakse, et al., 2022, p. 10). The new process is challenging to be

evaluated using the conventional metrics currently in use to measure the productivity and

effectiveness of the software development and delivery process (Deegan, 2020, p. 4). Data

from the CI-CD pipeline that has been integrated with several security tools must be

gathered and analysed, using a variety of metrics for security and deployment velocity

efficiency. Thus, reviewing previous work on metrics is crucial for the research question.

Software metrics aim to identify and measure the key factors affecting software

development (Lehtonen, et al., 2015, p. 18). Measuring pipeline performance is a crucial

component of CI-CD pipeline for evaluation for which the identification of key metrics for

assessing the effectiveness of the integrated security CI-CD. For assessing the effectiveness

and quality of an automated delivery flow, numerous studies have put forth various

6

metrics. The paper by (Lehtonen, et al., 2015) explores different metrics that can be used to

evaluate pipeline performance, such as development time, and deployment time while

(Deegan, 2020, p. 12) highlights metrics for the velocity of the CI-CD pipeline. While

(Kumar & Goyal, 2020) mentions metrics such as vulnerabilities identified and scan pass

rate for measuring security as well metrics such as MTTC and change lead time to evaluate

the agility aspect of the CI-CD pipeline. Identifying areas for improvement in the CI-CD

pipeline and implementing changes that increase efficiency and reduce in errors is

achievable by measuring with these metrics.

After reviewing, numerous studies have proposed various metrics for evaluating the

performance and quality of an automated delivery flow Table 2 lists the metrics and their

description (Kumar & Goyal, 2020; Deegan, 2020; Lehtonen, et al., 2015) which are

important for evaluating the research question covering aspects of agility, velocity,

security, and quality of the CI-CD pipeline. Finding a balance between security and

deployment that maximizes security while minimizing any negative impacts on

deployment velocity is thus necessary to ensure the efficient and rapid delivery of software.

The metrics that are used to assess CI-CD pipelines are examined in this literature review

to determine the efficiency and speed.

Table 2: Metrics for evaluation of CI-CD Pipeline

No. Metrics Description

1 Deployment Mean Time Time taken for deploying release in production

2 Deployment Frequency Number of deployments in a certain period

3 Mean Time to Change Time is taken to build, test and deploy the code

change

4 Mean time to detect Time is taken to detect the vulnerability

5 Mean time to Market The average time is taken to initiate and release

the feature in production

6 Vulnerabilities Identified Number of vulnerabilities detected

7 Mean Time to Build Average Time taken to build the code

8 Scan Pass Rate Number of scans performed in a certain period

The most efficient way to collect and analyse important data using the metrics in Table 2 is

to compare the CI-CD pipeline with multiple security tools integrated and examine the

effects this has on the pipeline's velocity. The research questions below plan to explore the

numerous tools and techniques available for implementing security in the DevOps pipeline

at various stages, evaluating the CI-CD pipeline for multiple security tools using metrics

researched and identifying best practices for achieving this balance.

RQ1: How does the integration of multiple security tools in the DevOps pipeline impact

the security and efficiency of the CI-CD process?

RQ2: What are the trade-offs and best practices for achieving a balance between security

and deployment velocity?

7

3 Research Methodology

In this research, the CI part is facilitated by a combination of powerful tools that streamline

the development workflow and enhance the overall software quality as well as security by

integrating security. The selected tools discussed in section 4 streamlines the development

process, automate security testing, and ensure code quality throughout the development

lifecycle. The CI-CD pipeline starts with AWS EC2, a scalable and reliable cloud

infrastructure service provided by AWS EC2, the compute capacity to host the CI-CD

environment and support the execution of build and test processes. The heart of the CI

process is driven by GitHub Actions, a powerful automation platform integrated with

GitHub repositories. GitHub Actions enabled to define workflows with push or pull

requests. As a trigger event occurs, GitHub Actions automatically kicks off the defined CI

workflows discussed in Section 5. EC2 instances are provisioned using Terraform, an IaC

tool ensuring the consistent setup of the CI-CD environment, eliminating manual errors,

and reducing deployment time provisioning AWS resources, including services required

for the CI-CD environment.

Next, the CI-CD process performs code analysis using SonarQube, an advanced code

quality and security analysis tool. SonarQube examines the codebase, identifies bugs, code

smells, and security vulnerabilities, providing valuable insights to improve code quality

and detailed reports to help address issues early in the development process. Super-Linter

is then utilized to enforce consistent code styles and formatting guidelines across multiple

programming languages. This ensures that the code adheres to the team's coding standards

and maintains uniformity across the codebase. To monitor the CI-CD pipeline's

performance, Datadog is integrated for real-time monitoring and observability. Datadog

provides detailed insights into resource utilization, build times, and other key metrics to

monitor the CI process's efficiency and performance.

In terms of security, Snyk is used for dependency scanning. Snyk identifies

vulnerabilities in third-party libraries and dependencies, ensuring that the codebase remains

secure from known security issues. Additionally, OWASP ZAP is employed for DAST

performing automated security scans on the web application to identify potential

vulnerabilities in real-time. To achieve consistency and portability, Docker is utilized for

containerization. Docker allows for packaging the application and its dependencies into

containers, ensuring that the same environment is used across different stages of the CI

pipeline.

In terms of evaluation, analysing important metrics, such as MTTB and MTTC in

order to determine the effects of incorporating security measures into the CI-CD pipeline.

The objective was to locate any major temporal changes brought on by the employment of

security technologies and procedures. To assess the effect of integrated security

technologies on the application's overall security posture, the number of vulnerabilities

discovered during security testing was also the goal. This goal was to demonstrate how

well the integrated security technologies have supported the application's security.

In conclusion, the CI-CD part of the DevOps pipeline is a well-orchestrated integration

of various tools, enabling automated build, code quality analysis, security testing, and

8

continuous monitoring. The seamless integration of these tools in designed pipeline

enhances the software development process's efficiency, ensures code quality, and

strengthens the security posture of the application and aims to finds the impact on the

security and efficiency of the pipeline.

4 Design Specification

The resources that were used in the implementation of the research question are discussed

in subsections below and details are provided in configuration manual.

4.1 Amazon Web Service (AWS)

AWS Elastic Compute Cloud (EC2) was utilized to host the CI-CD environment,

providing scalable compute capacity for seamless integration. Terraform was employed to

automate the provisioning, modifying, and destroying of AWS EC2 instances and set up a

consistent and reproducible environment.

4.2 Docker

Docker was utilized for containerization, ensuring consistency across different

environments, and simplifying the deployment process. Docker containers packaged the

application and its dependencies, providing a consistent runtime environment throughout

the pipeline.

4.3 GitHub and GitHub Actions

GitHub was used for collaboration and version control. GitHub Actions is a CI-CD

platform that automates, modifies, and carries out the CI-CD workflows directly in the

repository. GitHub Actions was used for automating, building, testing, and deploying the

CI-CD pipeline. Docker delivered the software in packaged containers. GitHub Actions

build and push Docker images which runs the application in the container.

4.4 Super-Linter

Super-Linter analyses the code in the repository against various linters for different

programming languages, checking for code style issues and coding standards violations.

With Super-Linter integrated into your GitHub Actions workflow, the consistent code

styles were enforced which improve code quality across the repository, making it easier for

to maintain a high standard of code throughout the software development process.

4.5 Security Tools

Below are the security testing tools that were used in the CI-CD pipeline at various stages.

4.5.1 SAST

 SonarQube automated code review and consistently produced clean code. To assist in

performing ongoing code checks of the project, it integrates into the current workflow and

finds problems in the code. SonarQube was useful in locating and describing the problem

9

and explained why the code puts security at risk. It also offered advice on how to resolve

the problem.

4.5.2 Container Security Scanning

Snyk was integrated for dependency scanning to identify security vulnerabilities in

third-party libraries. This proactive approach helped address potential security risks before

they became critical.

4.5.3 DAST

OWASP ZAP was used for DAST. It automatically scanned the web application for

security vulnerabilities during runtime, providing real-time feedback to improve

application security.

4.5.4 Network Security

AWS VPC (Virtual Private Cloud) protects web applications from common web

exploits and provides a private network within the AWS cloud infrastructure where

resources were launched securely. Security Group acts as a virtual firewall for AWS

resources and control inbound and outbound traffic to instances.

4.5.5 Monitoring tools

Datadog was employed as a monitoring and observability tool to gain real-time

insights into the CI-CD pipeline's performance. The tool provided metrics and dashboards

to monitor resource utilization, build times, and application performance, enabling Cloud

Security posture management.

5 Implementation

The research implementation includes two main workflows were designed and

implemented: the Infrastructure Deployment Workflow and the Application Deployment

Workflow. These custom workflows were defined to trigger events based on code changes,

integrated with various tools to ensure security measures were met without compromising

deployment velocity.

5.1 Infrastructure Deployment Workflow

The infrastructure deployment workflow was initiated using AWS EC2 as the cloud

infrastructure service. Terraform, an IaC tool, was used to automate the provisioning of

AWS EC2 instances and development, staging, and production environment resources.

This ensured consistent and reproducible environment setups across all stages of the

pipeline. For version control and continuous integration, GitHub Actions served as the

central automation tool. As the infrastructure changes were pushed to the repository,

GitHub Actions automatically initiated the workflow, streamlining the development cycle.

The Infrastructure Deployment Workflow used GitHub Actions to automatically

deploy and configure the AWS EC2 instances and other infrastructure components to

10

development, staging, and production environments shown in Figure 1. The Infrastructure

Deployment Workflow also included security measures. Snyk was used for dependency

scanning to identify vulnerabilities in third-party libraries. It ensured that any potential

security risks related to dependencies were addressed during the infrastructure setup.

SonarQube early feedback helped to improve code quality and address potential security

risks. Docker and Datadog agent are installed after the infrastructure is provisioned.

Docker was utilized containerization, by application deployment workflow for packaging

the application and its dependencies into containers.

Datadog was integrated into the Infrastructure Deployment Workflow for real-time

monitoring and observability of the infrastructure. It provided metrics and dashboards to

monitor resource utilization, ensuring the pipeline's performance and stability. Datadog

also provided Cloud Security Posture Management showing the misconfigured resources,

posture score and top issues to investigate according to the severity.

Figure 1: Infrastructure Deployment Workflow

5.2 The application deployment workflow

The application deployment workflow illustrated in Figure 2 was initiated after AWS EC2

instances were provisioned using Terraform and development, staging, and production

environments were ready for application deployment. GitHub Actions served as the CI-CD

automation tool, allowing for the definition of custom workflows triggered by code

changes.

The Super-Linter tool was employed to enforce consistent code styles and coding

standards across different programming languages. This not only improved code

readability but also ensured that code adhered to the team's coding conventions. In terms of

security, SonarQube and Super-Linter performed code analysis, providing early feedback

to the developers. The SonarQube tool provided detailed reports and metrics to identify and

address potential problems early in the development process. In terms of security, Snyk

performed dependency scanning to identify vulnerabilities in third-party libraries, while

OWASP ZAP conducted dynamic application security testing during runtime, providing

real-time feedback on security issues. The continuous scanning feature of Snyk facilitated

to stay updated on potential security risks. Docker containers packaged the application and

its dependencies, ensuring a consistent runtime environment and simplifying the

deployment process. The workflow shown in Figure 2 was structured to build and push the

11

image to the Docker Hub upon pull request on develop branch and deploy the Docker

image to deployment environment upon merging with the develop branch. Similarly, when

the code was merged to the master branch. Once the code was merged to master branch the

Docker image was deployed to the staging environment, ensuring smooth deployment and

security testing. The manual trigger was put in place to deploy the Docker image to

production environment as shown in Figure 2.

Figure 2: Application Deployment Workflow

The implementation involved carefully configuring and integrating these tools into the

CI-CD pipeline to ensure smooth automation and security testing. The pipeline was

structured to include stages for code compilation, static analysis, security testing, and

containerization. The CI-CD pipeline's security measures were designed to detect and

address vulnerabilities at various stages of the development process, from code writing to

deployment. This proactive approach aimed to prevent security issues from propagating

further down the pipeline. Furthermore, the implementation addressed how the pipeline

would measure key metrics, such as deployment lead time, vulnerability identification, and

mean time to change. These metrics were essential for evaluating the impact of the

integrated tools on the overall security and deployment velocity. In conclusion, the design

specification and implementation ensured the seamless integration of research resources in

the CI-CD pipeline. The design's comprehensive approach emphasized security, code

quality, and efficiency, contributing to the successful execution of the research project and

its goal of achieving a balance between security measures and deployment velocity in

DevOps practices.

12

6 Evaluation

The evaluation of the research project involved analysing key metrics, including

MTTB for measuring aspect of velocity and MTTC for measuring aspect of agility and

vulnerabilities identified for measuring aspect of security, to understand the impact of

integrating security measures in the CI-CD pipeline.

Figure 3: MTTB with Integrated Security Tools

Figure 4: MTTB without Integrated Security Tools

0

50

100

150

200

250

300

Run 1 Run 2 Run 3 Run 4 Run 5

Build and Push Scan webapp 16 22 15 21 17

Build and Push PushComplete 0 1 1 1 1

Build and Push webapp 44 49 45 55 44

Build and Push Sonarscan 53 69 64 63 48

Build and Push Lint Code 117 150 119 132 117

Build and Push BuildStart 2 1 2 1 1

Ti
m

e
in

 S
ec

o
n

d
s

No. of Runs

Mean Time to Build with Intergated Security

0

10

20

30

40

50

60

70

Run 1 Run 2 Run 3 Run 4 Run 5

Build and Push PushComplete 2 1 2 2 2

Build and Push Webapp 59 45 61 62 56

Build and Push BuildStart 2 1 1 1 1

Ti
m

e
in

 S
ec

o
n

d
s

No. of Runs

Mean Time to Build without Integrated Security

13

Figure 5: MTTC with Integrated Security Tools

Figure 6: MTTC without Integrated Security Tools

0

50

100

150

200

250

300

350

400

Run 1 Run 2 Run 3 Run 4 Run 5

Deploy to Prod 43 33 31 28 32

Deploy to Stage 34 31 33 30 44

Deploy to dev 35 37 29 30 31

Build and Push ScanWebapp 16 22 15 21 17

Build and Push PushComplete 0 1 1 1 1

Build and Push Webapp 44 49 45 55 44

Build and Push SonarScan 53 69 64 63 48

Build and Push LintCode 117 150 119 132 117

Build and Push BuildStart 2 1 1 1 1

Ti
m

e
in

 S
ec

o
n

d
s

No. of Runs

Mean Time to Change with Integrated Security

0

20

40

60

80

100

120

140

160

180

Run 1 Run 2 Run 3 Run 4 Run 5

Deploy to Prod 34 29 36 38 31

Deploy to Stage 34 30 35 33 35

Deploy to Dev 36 35 36 32 37

Build and Push PushComplete 2 1 2 2 2

Build and Push Webapp 59 45 61 62 56

Build and Push BuildStart 2 1 1 1 1

Ti
m

e
in

 S
ec

o
n

d
s

No. of Runs

Mean Time to Change without Integrated Security

14

Figure 7: MTTC with One Integrated Security Tool

Figure 8: Vulnerabilities Identified by Security Tools and Monitoring

6.1 Discussion

The evaluation involves applying the metrics studied in literature review and study the

impact of multiple security tools in the CI-CD pipeline. the analysis of key metrics to

measure agility, velocity, and security in the CI-CD pipeline. Two crucial metrics, MTTB

0

20

40

60

80

100

120

140

160

180

Run 1 Run 2 Run 3 Run 4 Run 5

Deploy to Prod 31 37 33 28 33

Deploy to Stage 43 33 30 32 31

Deploy to dev 37 37 32 37 30

Build and Push Scan Webapp 15 18 20 15 20

Build and Push PushComplete 1 1 1 1 2

Build and Push Webapp 40 37 38 55 55

Build and Push BuildStart 1 1 1 1 1

Ti
m

e
in

 S
ec

o
n

d
s

No. of Runs

Mean Time to Change with one Integrated Security Tool

0

10

20

30

40

50

60

70

80

SonarQube ZAP Snyk Datadog CSPM

8
0

23

1

23

1

49

6
0 1

31 29

4 5

77

3

N
o

. o
f

V
u

ln
er

ab
ili

te
s

Security Tools and Monitoring

Vulnerabilities Identified

Critical High Medium Low

15

and MTTC, were used to assess the efficiency and speed of the development process.

Additionally, the number of vulnerabilities identified during security testing were

measured to evaluate the impact of integrated security tools on the overall security posture

of the application.

Mean Time to Build (MTTB)

MTTB measured the average time taken to build and compile the application code to

the successful build completion from the initial pull request to merged in develop branch

and master branch, shorter MTTB signifies faster development cycles and increased

responsiveness to code changes.

During the evaluation, the MTTB was calculated for both the standard CI-CD pipeline

and the pipeline with integrated security tools shown in Figure 3. The pipeline with

integrated security experienced a significant increase in MTTB compared to the standard

pipeline without integrated security shown in Figure 4. This can be attributed to the

additional security testing and code analysis processes incorporated into the pipeline.

While the increase in MTTB indicates improved security measures, it also signifies that the

development cycle may take a little longer to ensure code quality and security.

Mean Time to Change (MTTC)

 MTTC measured the average time taken from the successful build completion to the

deployment of the application into the development, staging and production environments.

This metric evaluated the speed of deployment and is a critical factor in measuring

deployment velocity.

During the evaluation, the MTTC was substantially increased in the pipeline with

integrated security tools displayed in Figure 5 compared to the standard pipeline displayed

in Figure 6. The streamlined security testing and automated vulnerability scanning

contributed to quicker identification and resolution of security issues, resulting in faster

deployments. This upsurge in MTTC indicates that integrating security measures into the

CI-CD pipeline increase the delay but can, in fact, enhance it by preventing security-related

delays.

During the evaluation of MTTC with one Security Tool shown in Figure 7, it was

observed that integrating Snyk into the CI-CD pipeline resulted in a slight increase in

MTTC compared to the scenario with no security tools. The additional time taken can be

attributed to the dependency scanning process. SonarQube provides crucial feedback to

developers during the coding phase, it may not directly impact the work of release

engineers in the deployment process and like SonarQube, Super-Linter's direct influence

on the work of release engineers in the deployment phase is minimal. In contrast, Synk

plays a more significant role in enhancing security during the deployment process by

identifying vulnerabilities in third-party libraries. This proactive approach helps release

engineers address security risks and avoid potential security incidents in the production

environment. While this increase in MTTC signifies an enhanced security posture, it also

reflects that the security checks introduced an additional step in the deployment process.

16

Vulnerabilities Identified

In addition to agility and velocity metrics, the evaluation focused on measuring the

number of security vulnerabilities identified during the security testing phase. The pipeline

with integrated security tools consistently detected and addressed a higher number of

vulnerabilities. This outcome highlights the effectiveness of the integrated security tools in

bolstering the security of the application.

The increased number of vulnerabilities identified in the security integrated pipeline

demonstrated in Figure 8 shows the proactive nature of security measures, preventing

potential security breaches in the production environment. By addressing vulnerabilities

early in the development process, teams can significantly reduce the risk of security

incidents and associated downtimes.

Overall, the evaluation revealed a significant shift in time with the integrated security

tools. This shift indicates a balanced approach between security measures and deployment

velocity, highlighting the importance of integrating security using automation into the CI-

CD pipeline.

6.2 Trade-offs and best practices for achieving a balance between Security

and Deployment Velocity

Trade-offs

Time-to-Market vs. Security: One of the most significant trade-offs is between time-

to-market and security. Organizations often prioritize quick releases to stay ahead in the

competitive market. However, rushing deployments can compromise security measures,

leading to potential vulnerabilities. Striking the right balance involves implementing

security practices without significantly impacting release time.

Automation vs. Manual Processes: Automation expedites the development process

and enhances efficiency. However, some security aspects may require manual intervention,

such as code reviews. Balancing automation with manual processes ensures thorough

security testing while maintaining deployment velocity.

Comprehensive Testing vs. Deployment Speed: Comprehensive security testing,

including static analysis, dynamic testing, and dependency scanning, is essential to identify

vulnerabilities. However, extensive testing can slow down deployments as demonstrated in

evaluation of the research. Optimized testing process ensures comprehensive security

without hampering deployment speed.

Complexity vs. Maintainability: Introducing multiple security tools can increase

pipeline complexity. While these tools enhance security, managing them can become

challenging. Striking a balance involves choosing the most effective tools while

considering ease of maintenance and operability.

17

Best Practices:

Shift-Left Security: Emphasize early security testing in the development cycle.

Developers should be actively involved in identifying and addressing security issues before

code commits. This reduces the chances of vulnerabilities reaching the later stages of the

pipeline as studied in literature review and implemented in research methodology.

Continuous Security: Adopt a continuous approach to security testing throughout the

CI-CD pipeline. Automated security tools continuously monitor and analyse code changes,

providing real-time feedback to developers. This ensures timely identification and

resolution of security issues.

Selective Security Tools: Carefully selecting security tools that align with the

organization's specific security requirements. Avoid unnecessary replication of

functionality and focus on tools that deliver the most use for the given context.

Security as Code: Integrate security practices into the CI-CD pipeline as code. This

includes versioning security configurations and treating security-related infrastructure as

code to enable repeatability and consistency.

Continuous Learning and Improvement: Encourage a culture of continuous

learning and improvement in security practices. Regularly review and update security

processes and tools to stay ahead of evolving threats.

Collaboration and Communication: Encourage collaboration between the

development, operations, and security teams to ensure that everyone is in agreement with

the security goals. Effective communication can lead to better decision-making and

problem-solving.

Security Training: Security training to all team members involved in the

development and deployment process as knowledgeable teams are better equipped to

identify and address security concerns effectively.

Security Metrics: Define and measure key security metrics to track the effectiveness

of security measures and identify areas for improvement.

Continuous Feedback Loop: Establishing a continuous feedback loop to gather

insights from users on security aspects. This feedback can inform improvements in security

practices and contribute to a more secure and user-centric result.

7 Conclusion and Future Work

This research highlights speed as a significant factor for DevOpsSec. This research aimed

on integrating multiple security tools in the DevOps pipeline and examine the impact of the

security and efficiency of the CI-CD process and also provide trade-off between the

number of security tools used and the speed of the pipeline. This research objective was to

find a balance that maximizes security while minimizing any negative impacts on

deployment velocity. Through a thorough literature review, this research discussed various

stages of security integrated and listed various security tools at various stages of the

pipeline and explored metrics for evaluating the efficiency and agility of the CI-CD

pipeline.

18

Through the research method and implementation of the CI-CD pipeline, this research

provides the best practices for achieving a balance between security and deployment

velocity in DevOps including continuous monitoring and improving the security posture of

the application. Overall, this research contributes to the knowledge in the field of

DevOpsSec by providing insights into the effective use of security tools and their impact

on the CI-CD process. It highlights the importance of balancing security and deployment

velocity and provides practical recommendations for achieving this balance.

The evaluation involved applying the metrics researched in literature review and study

the impact of multiple security tools in the CI-CD pipeline. The metrics used are mean time

to change, vulnerabilities identified, and Mean time to Build which measured the aspects of

agility, velocity, and security in the CI-CD pipeline. Additionally, the balance is achieved

by conducting experiments to measure the impact of varying numbers of tools on the

pipeline and the corresponding metrics. By measuring and tracking these metrics, the

effectiveness of the pipeline is evaluated, and improvements is made to optimize the

pipeline for efficiency and security. By selecting a subset of tools and evaluation metrics,

the research provides insights into how to achieve a balance between security and

deployment velocity in DevOps.

The future work for this research lies in exploring advanced security tools, Artificial

Intelligence/Machine Learning based security, dynamic security orchestration, and the

impact of security on customer experience. Additionally, enhancing security training for

developers, automated remediation mechanisms, and industry-specific security guidelines

are areas that hold promise for further research. By exploring these avenues, the research

can provide supplementary contribution to the continuous improvement of security

practices in DevOps and ensure a balanced approach that prioritizes both security and

deployment velocity.

References

Ahmed, Z. & C. Francis, S., 2019. Integrating Security with DevSecOps: Techniques and challenges.

International Conference on Digitization (ICD), cited by 24, DOI: 10.1109/ICD47981.2019.9105789

Bird, J., 2016. DevOpsSec. O'Reilly Media, Inc., URL:

https://learning.oreilly.com/library/view/devopssec/9781491971413/ [Accessed 18 March 2023].

Deegan, C., 2020. Continuous Security; Investigation of the DevOps Approach to Security. School of

Computing, National College of Ireland.

Desai, R. & T N, N., 2021. Best Practices for Ensuring Security in DevOps: A Case Study Approach.

Journal of Physics: Conference Series, Volume 1964, Issue 4, article id. 042045, Cited by 3,

DOI: 10.1088/1742-6596/1964/4/042045

Dyess, C., 2020. Maintaining a balance between agility and security in the cloud. 2016 IEEE/ACM

International Workshop on Continuous Software Evolution and Delivery (CSED), Cited by 1,

URL: https://www.sciencedirect.com/science/article/pii/S1353485820300313

19

Hsu, T., 2018. Hands-On Security in DevOps. Published by Packt Publishing,

URL: https://learning.oreilly.com/library/view/hands-on-security-in/9781788995504/ [Accessed 12

March 2023]

Jammeh, B., 2020. DevSecOps: Security Expertise a Key to Automated Testing in CI-CD Pipeline.

Department of Computing and Informatics Bournemouth University Poole, England, cited by 4.

Krief, M., 2019. Learning DevOps. Chapter 1, Published by Packt Publishing,

URL: https://learning.oreilly.com/library/view/learning-devops/9781838642730/ [Accessed 22 March

2023]

Kumar, R. & Goyal, R., 2020. Modeling continuous security: A conceptual model for automated

DevSecOps using open-source software over cloud (ADOC). Volume 97, University School of

Information, Communication and Technology (USIC&T), Guru Gobind Singh (GGS) Indraprastha

University, New Delhi 110078, India, Cited by 46, URL: https://doi.org/10.1016/j.cose.2020.101967

Kumar, R. & Goyal, . R., 2021. When Security Meets Velocity: Modeling Continuous Security for

Cloud Applications using DevSecOps. Part of the Lecture Notes on Data Engineering and

Communications Technologies book series (LNDECT,volume 59), cited by 6,

URL: https://doi.org/10.1007/978-981-15-9651-3_36

Larrucea, X., Berreteaga, A. & Santamaria, I., 2019. Dealing with Security in a Real DevOps

Environment. Communications in Computer and Information Science book series (CCIS,volume

1060), Cited by 8, URL: https://doi.org/10.1007/978-3-030-28005-5_35

Lehtonen, T., Suonsyrja, S., Kilamo, T. & Mikkonen, T., 2015. Defining Metrics for Continuous

Delivery and Deployment Pipeline. Tampere University of Technology, Tampere, Finland,

Symposium on Programming Languages and Software Tools, Cited by 32,

URL: http://ceur-ws.org/Vol-1525/paper-02.pdf

Leppanen, T., Honkaranta, A. & Costin, A., 2022. Trends for the DevOps Security. A Systematic

Literature Review. Conference: Business Modeling and Software Design: 12th International

Symposium, BMSD 2022At: Fribourg, Switzerland, Cited by 1,

DOI: 10.1007/978-3-031-11510-3_12, URL: https://www.researchgate.net/publication/361696077

Lwakatare, L. E. et al., 2019. DevOps in practice: A multiple case study of five companies.

Information and Software Technology Volume 114, October 2019, 217-230, Cited by 139,

URL: https://doi.org/10.1016/j.infsof.2019.06.010

Mansfield-Devine, S., 2018. DevOps: finding room for security. Network Security, Volume 2018,

Issue 7, cited by 39, URL: https://doi.org/10.1016/S1353-4858(18)30070-9

Mao, R. et al., 2020. Preliminary Findings about DevSecOps from Grey Literature. IEEE 20th

International Conference on Software Quality, Reliability and Security (QRS), cited by 42,

DOI: 10.1109/QRS51102.2020.00064

Mohan, V. & Othmane, L. b., 2016. SecDevOps: Is It a Marketing Buzzword?. 2016 11th

International Conference on Availability, Reliability and Security, cited by 122,

DOI: 10.1109/ARES.2016.92

Rahman, A. A. U. & Williams, L., 2016a. Security Practices in DevOps. HotSos '16: Proceedings of

the Symposium and Bootcamp on the Science of Security,

URL: https://doi.org/10.1145/2898375.2898383

20

Rahman, A. A. U. & Williams, L., 2016b. Software Security in DevOps: Synthesizing Practitioners’

Perceptions and Practices. 2016 IEEE/ACM International Workshop on Continuous Software

Evolution and Delivery (CSED), Cited by 95, cited by 25,

URL: https://doi.org/10.1145/2896941.2896946

Rajapakse, R. N., Zahedi, M., Babar, M. A. & Shen, H., 2022. Challenges and solutions when

adopting DevSecOps: A systematic review. Information and Software Technology, Volume 141,

January 2022, 106700, Cited by 21, URL: https://doi.org/10.1016/j.infsof.2021.106700

Rajapakse, R., Zahedi, M. & Babar, M. A., 2021. An Empirical Analysis of Practitioners'

Perspectives on Security Tool Integration into DevOps. ESEM '21: ACM / IEEE International

Symposium on Empirical Software Engineering and Measurement,

URL: https://doi.org/10.1145/3475716.3475776

Rangnau, T., Buijtenen, R. v., Fransen, F. & Turkmen, F., 2020. Continuous Security Testing: A Case

Study on Integrating Dynamic Security Testing Tools in CI-CD Pipelines. IEEE 24th International

Enterprise Distributed Object Computing Conference (EDOC), Cited by 25,

URL: https://doi.org/10.1109/EDOC49727.2020.00026

Rao, M., 2021. How to integrate automated AST tools in your CI-CD pipeline. Synopsys,

URL: https://www.synopsys.com/blogs/software-security/integrating-automated-ast-tools/ [Accessed

01 February 2023].

Sánchez-Gordón, M. & Colomo-Palacios, R., 2020. Security as Culture: A Systematic Literature

Review of DevSecOps. ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on

Software Engineering Workshops, cited by 45, URL: https://doi.org/10.1145/3387940.3392233

Sojan, A., Rajan, R. & Kuvaja, P., 2021. Monitoring solution for cloud-native DevSecOps. IEEE 6th

International Conference on Smart Cloud (SmartCloud), cited by 4,

DOI: 10.1109/SmartCloud52277.2021.00029

Vehent, J., 2018. Securing DevOps. Manning Publications,

URL: https://learning.oreilly.com/library/view/securing-devops/9781617294136/ [Accessed 28 May

2023].

Yarlagadda, R. T., 2020. DevOps for Better Software Security in the Cloud. Chapter 2, SSRN

Electronic Journal, Department of Information Technology, USA,

URL: https://www.researchgate.net/publication/350157883

