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Performance Evaluation of Stateful Serverless
Computing using Stream Processing

Abhishek Medhane
X21182787

Abstract

In the evolving landscape of cloud-native technologies, serverless Function as a
Service (FaaS) platforms are gaining significant traction. In the field of real-time
streaming, it is becoming important to process such big data as the use cases are
increasing, ranging from IoT, smart devices, and e-commerce, hence a need for
storage and query optimization techniques. In this research work, we delve into
the advantages of stateless serverless computing that retains state across real-time
streaming invocations. Our objective is to gauge its efficacy in executing complex
stateful tasks. Through a comprehensive, measurement-driven analysis focused
on real-time streaming, we assess various performance, latency, and throughput
metrics. This research focuses on the construction and deployment of Kafka streams
and the development of a stateful serverless function in Apache Flink. We aim
to design modular stateful functions and migrate them to diverse databases on a
unified platform, facilitating efficient storage and latency measurements via diverse
deployment strategies, as opposed to local storage. Also, significant work has been
done to propose a novel approach and compare the stateful operations using Flink’s
Python Table APIs.
Keywords– serverless, FaaS, stateful, streaming, latency, Flink, Kakfa

1 Introduction

With the development of cloud computing and the growing explosion of data sources,
the previous generation of computing models continually evolved to manage and process
vast amounts of information. To manage such a huge and complex volume of data and
to handle such a complex computing model, serverless computing became an emerging
concept, focusing on the need to build applications without the overhead of infrastruc-
ture management and being scalable. Serverless computing allows us to focus solely on
writing code and deploying applications without worrying about server provisioning or
maintenance. This model offers increased flexibility and cost efficiency as resources are
automatically allocated and scaled based on demand.Carbone et al. (2015)

With the help of serverless computing businesses can now eliminate the worry about
availability, provision of VM resources, scalability of infrastructure and allow efficient
optimization of cloud resources. When there is a high demand, serverless computing
allows parallel executions to be started automatically. Furthermore, it may scale up or
down as needed to suit demand. The fundamental benefit of serverless computing is
that it eliminates server use from developers and runs code on-demand, automatically
scaling and billing for only the time the code is executing. This enables elasticity because
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developers are not concerned with the minute aspects of server management. Apache
Flink which is open-source, supports both event-time and out-of-order event processing,
offers managed state consistency with exactly-once promises, and serves both batch and
streaming with high throughput and low latency.

1.1 Background

Serverless computing allows us to run individual functions in response to events without
managing the underlying infrastructure. These functions, when executed, are stateless
by default, meaning they do not retain any memory of prior invocations.

However, many real-time applications require some form of state retention to function
effectively, leading to the evolution of stateful serverless computing. Stateful serverless
computing is the main method used in our research work, where serverless functions can
maintain state or context across multiple invocations. This allows for the preservation
of data and enables the functions to remember information from previous executions,
making them more suitable for complex applications that require a persistent state. By
incorporating stateful serverless computing, we can build applications that are not only
scalable and cost-effective but also capable of handling dynamic data and providing per-
sonalized experiences to users.

Serverless computing and stream processing are complementary technologies that can
be used together to build powerful and scalable applications. Serverless computing can
be used to run the stateless functions that are needed to process data streams, while
stream processing can be used to manage the state of the application and ensure that
data is processed in a timely manner.

1.2 Importance of performance evaluation in stateful serverless
computing

Performance evaluation in stateful serverless computing is pivotal for us to determine
economic efficiency, user experience optimisation, and informed architectural decision-
making. It guides us in resource allocation, ensures responsiveness and reliability for
enhanced user interactions, and aids in making crucial decisions about state management.
Additionally, it prepares systems for scalability challenges, supports continuous iterative
improvements, and is essential for security and regulatory compliance, giving us optimised
applications.

1.3 Research Question and Objectives

Research Question. [How can we leverage using stateful serverless comput-
ing to achieve high performance and reduce the impact of low latency using
stream processing?].

The surge in data volume and speed necessitates efficient processing solutions, with
traditional server architectures often faltering due to scalability constraints. While server-
less computing offers a scalable, cost-effective alternative, its inherent stateless design
poses challenges for real-time stream processing tasks that require rapid, low-latency
data handling. This research aims to focuses on how stateful serverless computing could
help improve the performance of stream processing. By incorporating stateful server-
less computing, stream processing tasks can benefit from the ability to retain and access
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data across multiple function invocations. This allows for faster and more efficient data
handling, enabling real-time stream processing to meet the demands of high-speed data
volume and low-latency requirements. While exploring the potential of stateful serverless
computing in this research could result in improvements in resource allocation optim-
ization and overall system performance for stream processing applications. Also, using
powerful visualization tools we can achieve more insights of the big data source.

This paper is organized in the following manner,Section 2 discusses related work on
various Stream processing frameworks and its processing time and efficiency. ?? specifies
the approach we have defined while doing this research and Section 4 describes the archi-
tecture and design specification followed by Section 5 containing the brief implementation.
Section 6 critically analyse our work with evaluation results, and finally in section 7 we
propose our work and future research area where their is scope for improvement.

2 Related Work

Serverless computing revolutionises cloud infrastructure by letting cloud providers handle
server and resource management, enabling developers to primarily concentrate on their
code. Within this framework, applications are transformed into smaller, event-responsive
functions, offering both cost efficiency and expedited development. Expanding upon
this, stateful serverless computing introduces memory retention between function calls,
which is essential for specific applications that need consistent processing. This state-
fulness is particularly pivotal in real-time streaming applications. Through mechanisms
like databases, caches, or message brokers, these stateful serverless systems can process
uninterrupted data streams swiftly, ensuring timely data access and management and
thus addressing the challenges posed by massive real-time data volumes.

2.1 Overview of the current state of serverless computing and
stream processing

Stream processing is recognised for its capability to handle data in real-time rather than
deferred database storage; therefore, it is widely used for real-time applications. Yet,
the inherent stateful nature of these applications clashes with the traditionally stateless
architecture of serverless computing. To overcome this, serverless platforms like Azure
Durable Functions and AWS Step Functions have integrated stateful extensions.

In this paper, Shahidi et al. (2021) evaluates the effectiveness of two popular stateful
serverless offerings, Azure Durable functions and AWS Step functions, for implementing
complex stateful workflows. The paper presents a detailed measurement-driven char-
acterization of the performance and cost trade-offs of these platforms for two different
applications: machine learning pipelines (training and inference) and video processing.
The results of the evaluation reveal several key insights into the factors that determine
the suitability of current serverless applications for stateful workloads.

This Singhvi et al. (2021) authors delves into serverless computing, introducing a novel
methodology for a tenant-specific, function-tailored shared data plane, aiming to rectify
certain shortcomings observed in present-day Function as a Service (FaaS) platforms.
This paper shows rigorous experiments that compare the performance of a serverless
platform to how it interacts with APIs. When the Shared Data Plane framework is used,
the size of the Docker action image and the time it takes to start up are both reduced by a
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lot. A practical application of this method is illuminated through a machine learning case
study executed on a serverless infrastructure. The main outcomes from this underline the
Shared Data Plane’s promise of enhancing the efficiency and adaptability of serverless
platforms. It emphasises the strategic advantage of distinguishing between code and
data entities in a serverless context and posits that the framework can pave the way for
broadening the spectrum of applications feasible in serverless settings.

2.2 Hadoop based real time data processing and streaming

The Hadoop-based framework, often cited as an initial structure, has been extensively
dissected by various researchers who explore its features through diverse methodologies.
Vaidya and Kshirsagar (2020) champion Hadoop’s legacy power, considering it a reliable
and potent platform for analysis. Their discussion delves into SCADA systems, high-
lighting their MapReduce capabilities that enable scalability across 4000 nodes for 1000
terabytes of data and efficient failure handling. Interestingly, the authors draw a compar-
ison between Hadoop and traditional databases, suggesting Hadoop’s superior efficiency,
though they haven’t considered other platforms like Apache Spark. This comparative
stance also resonates in Jabbar et al. (2020) work, where they juxtapose Hadoop with
SQL.

Merla and Liang (2017) identify Hadoop as a pivotal component in data analysis,
emphasising its prowess in managing vast datasets using distributed mechanisms. They
also discuss the latency-accuracy trade-offs, pointing out the complex procedures that
might delay operations and reduce result precision, which is in line with Perez et al.’s
(2017) sentiment. Furthermore, Grolinger et al. (2014) discuss challenges surrounding
MapReduce’s fault tolerance, where intermediate results from the Map phase contribute
to overheads, thereby inducing processing latency. In addition to the challenges men-
tioned, Grolinger et al. (2014) also highlight the issue of load balancing in MapReduce.
The uneven distribution of tasks across nodes can lead to bottlenecks and decreased over-
all performance. This further emphasizes the need for efficient resource allocation and
task scheduling algorithms in distributed systems utilizing MapReduce.

Fan et al. (2019) shed light on Hadoop’s comprehensive data management capabil-
ities, encompassing storage, queries, and resource management. With the integration
of algorithms such as XGBoost and decision trees, they demonstrate Hadoop’s efficacy,
using a case study of 1500 substations from the Hubei power grid. Their findings suggest
a commendable accuracy rate of 93.98% and a marked reduction in failure rate by 75%.
However, it’s noteworthy that their examination remains solely within Hadoop’s purview,
with no exploration of alternative architectures or real-time streaming data. While the
study showcases Hadoop’s effectiveness in handling storage, queries, and resource man-
agement, it is important to consider other architectural options and the potential impact
of real-time streaming data. Exploring alternative architectures and evaluating Hadoop’s
performance in real-time scenarios could provide a more comprehensive understanding
of its capabilities and limitations. Additionally, comparing its results with other techno-
logies would help determine the most suitable solution for specific use cases beyond the
scope of this study.
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2.3 Spark and Flink based real time data processing and stream-
ing

In the rapidly evolving domain of cloud computing, distributed data processing platforms
play a pivotal role, in driving large-scale data analytics. One such critical player, Apache
Hadoop MapReduce, has emerged as the predominant choice for numerous enterprises,
serving as a benchmark in distributed computing. However, its intrinsic programming
nature is often regarded as cumbersome, demanding a considerable amount of groundwork
for even rudimentary analytical functions. This intricate operational modality has cata-
lyzed the inception of more intuitive, dataflow-centric platforms, most notably Apache
Spark and Apache Flink. Both Spark and Flink, in addition to targeting enhanced per-
formance via optimized in- memory processing, prominently emphasize facilitating users
with embedded, advanced data processing utilities. These functionalities, ranging from
streamlined filtering to join operators, are postulated to render data analysis endeavors
more straightforward compared to the traditional Hadoop MapReduce environment. This
paper embarks on a mission to decipher whether these platforms genuinely simplify the
user experience or if they merely present a facade of simplicity.Gomes et al. (2015)

To gain a holistic understanding, a meticulous usability study was conducted involving
a contingent of students. D’silva et al. (2017) familiarized themselves with the intricacies
of all three platforms, attempted to resolve diverse use cases anchored in a data science
milieu. Preliminary findings unveiled a discernible inclination towards Spark and Flink,
relegating MapReduce to a less preferred position. Interestingly, when juxtaposing Spark
and Flink, the differential in terms of user preference and development time proved insig-
nificant, indicating that both platforms might be equally proficient for batch-centric big
data operations. In essence, this research endeavour furnishes valuable insights into the
user-centric efficacy of Big Data platforms. By shedding light on the usability dynamics
of these platforms, it sets the stage for further investigations that might pave the way for
more intuitive and user- friendly big data processing tools in the future.Toliopoulos and
Gounaris (2020)

In the contemporary digital realm, the burgeoning demand for proficient stream ana-
lysis has been a catalyst for the emergence of an array of open-source Streaming Data
Processing Systems (SDPSs). These systems are characterized by their unique capabil-
ities and performance attributes, offering distinct solutions to the challenges of stream
analysis. Despite some preliminary efforts that attempt to juxtapose these systems un-
der rudimentary workloads, there exists an evident paucity of comprehensive insights
into their performance dynamics. Addressing this gap, the research paper under scru-
tiny endeavors to introduce a systematic framework tailored for the benchmarking of
distributed stream processing engines. With the primary intent of performance assess-
ment, this research concentrates on three prominent SDPSs, namely, Apache Storm,
Apache Spark, and Apache Flink. The study places a heightened emphasis on evaluat-
ing the throughput and latency of windowed operations, recognized as the foundational
operations in stream analytics. What amplifies the credibility of this benchmark is its
meticulous design, which stems from real-world, industrial paradigms, particularly draw-
ing inspiration from the online gaming industry. The Salloum et al. (2016) contribution
to the literature can be demarcated into three pivotal facets. Initially, it elucidates the
concepts of latency and throughput specifically for stateful operators, providing a stand-
ardized definition that aids in comprehensive analysis. The study further accentuates the
significance of distinctly segregating the system under examination and the driver. This
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segregation is crucial for authentically mirroring the open-world model inherent in typical
stream processing deployments, thereby enabling an evaluation of system performance
under genuine, realistic conditions. Lastly, the Akil et al. (2017)research is instrumental
in pioneering a benchmarking framework dedicated to delineating and examining the
sustainable performance of streaming systems. This research piece illuminates the idio-
syncratic features and applicable scenarios of each system, making significant strides in
the domain of streaming data processing system evaluation.Li et al. (2020) Through its
methodological approach and findings, it offers invaluable insights for stakeholders aiming
to optimize the performance of their streaming systems.

3 Methodology

3.1 Data Collection and Data Streaming

In this approach of gathering big data from significant real time applications a large scal-
able computing is required. This can be achieved by utilising stateful serverless computing
system and a stream processing framework. Farrokh et al. (2022) The stateful serverless
computing system allows for efficient handling of state management and processing of
streams, ensuring smooth operations and high performance. Additionally, the stream
processing framework aids in the seamless collection and streaming of data from various
real-time applications, enabling comprehensive analysis and evaluation of the gathered
big data. In order to conduct our research, we have optimised a system running on a
macOS device with an M2 chip and 8 GB of RAM, using Docker to create a seamless
configuration centred on the most recent release of Apache Flink. With Kafka topic
producing extensive fake data, Apache Flink’s prowess in both real-time and batch pro-
cessing outperforms traditional Lambda architecture. While batch processing deciphers
historical data patterns vital for forecasting, real-time data demands instantaneous pro-
cessing, facilitated by Apache Kafka’s high-velocity data handling. Using Apache Flink’s
integrated Kafka connector ensures efficient data ingestion and processing within this ar-
chitecture. There are no ethical aspects to use this dataset as the fake data is randomly
generated. Ramı́rez-Gallego et al. (2018)

3.2 Static Bounded Table and Unbounded Stream Oriented
Tables

After we have processed the data from the real-time streams to process large-scale data
analytics, Apache Flink provides two methods for stream processing. In this study, we
will use two primary table abstractions: Static Bounded Tables and Unbounded Stream-
Oriented Tables. Our research aims to execute data processing tasks, assessing both
their runtime performance and inherent characteristics. Static Bounded Tables, encom-
passing a predetermined data volume with explicit start and end bounds, are evaluated
based on batch processing efficiency, data integrity, and query optimization algorithms.
On the other hand, the infinite and ever-growing nature of Unbounded Stream-Oriented
Tables is assessed through metrics such as event time handling, window operations effi-
ciency, and state backends’ performance under varying load conditions.Kune et al. (2016)
Employing Apache Kafka as the data source and targeting Elasticsearch sinks, we will
evaluate a systematic benchmark for optimizing the table model for specific application
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Table 1: Comparison between Static Bounded Tables and Unbounded Stream-Oriented
Tables in Apache Flink

Static Bounded Tables Unbounded Stream-
Oriented Tables

Definition Finite, static datasets Represent infinite datasets
Size & Nature Fixed beginning and end Can grow indefinitely
Applicability in
Stream Processing

Limited to defined scope Ideal for real-time insights
& continuous processing

Performance &
Scalability

Optimized for finite data-
sets

Handle limitless data in-
flow; manage late/out-of-
order data

Use Cases & Prac-
tical Applications

Periodic batch processing,
reporting on static data

Real-time analytics, event-
driven applications, low-
latency insights

requirements. By evaluating the efficiency, data integrity, and query optimization al-
gorithms, we can ensure that the Unbounded Stream-Oriented Tables are able to handle
large amounts of data and process it effectively. Additionally, assessing metrics such as
event time handling, window operations efficiency, and state backends’ performance al-
lows us to optimize the table model to handle varying load conditions. By using Apache
Kafka as the data source and Elasticsearch sinks, we can create a systematic benchmark
that specifically caters to the application requirements, ensuring optimal performance
and seamless integration.Li et al. (2023)

3.3 Mental Model of Data Flow in Stream Processing

In stream processing with Apache Flink and Kafka, data is ingested continuously from
Kafka topics into Flink. These streams are then transformed within the PyFlink, in-
cluding operations like filtering or complex windowed aggregations. Lohrmann et al.
(2015) PyFlink chunks the continuous data into manageable windows for processing.
The Kafka-SQL-Flink connector and flink-sql-elasticsearch connectors which are avail-
able to download from Apache Flink official website. Zaharia et al. (2012) This ensures
seamless data flow and maintains processing guarantees. Once this data is processed, the
data is streamed to elasticsearch sinks or Kafka topics. Essential to this entire workflow
is Flink’s native support for parallelism, ensuring scalability, and its ability to handle
iterative feedback loops for recursive data operations. With the Kafka-SQL-Flink con-
nector and flink-sql-elasticsearch connectors, Apache Flink provides a reliable and efficient
solution for data processing. These connectors allow for easy integration with external
systems, enabling the seamless flow of data. By streaming the processed data to elastic-
search sinks or Kafka topics, Flink ensures that the output is readily available for further
analysis or consumption. Additionally, Flink’s native support for parallelism and ability
to handle iterative feedback loops make it a powerful tool for handling recursive data
operations and achieving scalability.

7



Figure 1: Mental Model of Unified Batch and Stream Processing

3.3.1 Data Source and Data Ingestion

It starts with Kafka, a distributed event streaming platform that acts as the source of
the data. Kafka allows for the ingestion of large volumes of data from various sources in
real time. It provides durability and fault tolerance, ensuring that data is not lost in case
of failures. Flink seamlessly integrates with Kafka, allowing for the efficient and reliable
consumption of data from Kafka topics. This integration enables Flink to process and
analyze the data as it arrives, ensuring that insights are generated and actions are taken
in near-real-time. Kafka topics serve as channels where raw data streams are published.
Gupta and Agrawal (2019)

3.3.2 Stateful Computations

Stream processing applications often need to maintain state (like counting events). Flink
provides fault-tolerant state management. This ensures that even in the event of failures
or system crashes, Flink can recover and resume processing from where it left off, without
losing any data. Flink’s stateful computations allow for complex operations on the data
streams, such as aggregations, joins, and windowed computations, making it a powerful
tool for real-time data processing and analysis. With its seamless integration with Kafka
and robust state management capabilities, Flink is an ideal choice for building scalable
and reliable stream processing applications.Ramı́rez-Gallego et al. (2018)

8



3.3.3 Data Flow in Flink

Once data is ingested from Kafka it becomes infinite streams, which Flink processes in
real-time. As the data traverses Flink, it undergoes transformations ranging from basic
filtering to intricate windowed aggregations. To manage these continuous streams, Flink
segments them into windows for batch-like processing. The Kafka-Sql-Flink connector
facilitates seamless data exchange, with Flink checkpoints aligning with Kafka offsets to
guarantee precise processing. Post-processing, Flink directs the refined data to various
endpoints, be it another Kafka topic, a database, or other storage systems, readying
it for subsequent analysis or applications. As data flows through Flink, it undergoes
various transformations. This could be simple operations like filtering or mapping, or
more complex operations like windowed aggregations. Given the continuous nature of
streams, Flink uses windows to chunk up unbounded data streams and process chunks as
finite batches. These windows can be time-based, where data is grouped into fixed time
intervals, or count-based, where data is grouped into fixed-size chunks. Flink allows users
to define different windowing strategies based on their specific needs. Once the data is
grouped into windows, Flink applies various operations such as aggregations, joins, or
calculations on the data within each window. This allows for efficient processing of large
amounts of data in a scalable and fault-tolerant manner. After the processing is complete,
Flink sends the results to the specified endpoints, ensuring the refined data is ready for
further analysis or application consumption.

flink-sql-connector-kafka-1.17.1.jar

3.3.4 Elasticsearch Sink and Data Processing

After processing the data, Flink pushes the results to elasticsearch sinks. The sink is
defined in elasticsearch indices which is set up using docker conrainer. This is where the
processed data gets its value, as it is will be used for further analysis, visualization, or
any downstream application. The elasticsearch-sql-flink connector integration of Flink
with kafka sends the data to the designated endpoints to processed index on elasticsearch
sinks. The processed data is made readily available for analysis, visualization, and other
downstream applications by specifying the sink in elasticsearch indices. The value of the
processed data is completely appreciated and may be successfully tapped thanks to this
shortened approach.

flink-sql-connector-elasticsearch7-3.0.1-1.17.jar

4 System Architecture and Design Specification

The architecture as shown in 2 underlie the design and the associated requirements for
efficient way to reduce latency by usign stream processing of real time big data streaming
with an improved and efficient manner. The aim of these architecture is to capture the
latency and throughput of the E-commerce Sales data. Evaluation methods and metrics
used in previous studies have primarily focused on traditional batch processing methods
for analyzing E-commerce Sales data, neglecting the potential benefits of real-time stream
processing. This gap in the current literature highlights the need for further research in
exploring the effectiveness and efficiency of using stream processing for reducing latency
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and improving throughput in analyzing big data streams. By designing a system archi-
tecture that leverages stream processing techniques, this study aims to address this gap
and provide insights into the potential advantages of this approach.

Figure 2: ETL Pipeline for Stream Processing

We are performing operation on Data Stream Table API using two methods which are
using string processing and windowing data processing technique. In String processing
we are getting data from E-commerce as we can see in 2 and we are processing this data
using python pre-processor and the giving to apache flink for post-processing and and
sending data to the elasticsearch. We can visiualize our data using kibana from which
we can see or create various dashboard based on our data for example. Order count,
time-series based order, order types.

String processing will contains the data which does not need to be processed at real
time. This data includes historical information, such as past orders and customer details.
By utilizing a python pre-processor, we can clean and transform the data before sending
it to Apache Flink for further post-processing. Once processed, the data is then sent
to Elasticsearch, where it can be easily accessed and analyzed. This approach allows us
to efficiently handle large volumes of data and generate insightful visualizations using
Kibana.

For Stream processing we will be using windowing technique to enable aggregation
and analysis of data within specific time intervals or based on certain conditions. In this
research we will be using Tumbling windows and Sliding window technique. In Tumbling
windows it divide the stream into non-overlapping, fixed-size time intervals and all events
withing a specific windows are grouped together and processed as a batch. In Sliding
windows, unlike tumbling windows, it overlap with each other.It consist of both a window
size and a slide interval. As the window sliders over the data stream, events are assigned
to multiple windows, allowing for continuous analysis of data. In Above 2 we are sending
data to Kafka from two source in which one using sliding window technique and another
tumbling window technique and to process these data real-time we are kafka and further
we are processing it in Apache Flink and it generated output sending to the sink which
our Elasticsearch. In Apache Flink, the sliding window technique is applied by defining
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a window size and slide interval. This allows for continuous analysis of the data stream
as the window slides over it. On the other hand, the tumbling window technique is
used by specifying only the window size, which creates non-overlapping windows. Both
techniques are utilized to process the data in real-time. The processed output is then
sent to Elasticsearch, serving as the sink for the analyzed data.

In 2 to connect Apache Flink we are using Pyflink with two connectors. Connectors
are used to connect with Kafka topic and elasticsearch. Connectors are the JAR file.

For these research we are using Docker container to run Apache flink, Kafka and
ELK stack without any resource limitation. Our system specifications are a Macbook
with an M2 chip, 8GB of RAM, and a 500GB NVME SSD. The Pyflink connector for
Kafka allows us to consume data from Kafka topics and process it in Apache Flink.
This data is then analyzed and transformed before being sent to Elasticsearch using
another connector. These connectors act as intermediaries, providing seamless integration
between the various components of our data processing pipeline. With the help of Docker
containers, we have been able to run all these components without any resource limitations
on our Macbook, ensuring smooth and efficient data processing.

5 Implementation

In this section, we specify the required development environment for PyFlink jobs and
the various Datastream Table API operators available.

5.1 Environment Setup

The Python Flink API architecture, introduced post version 1.9, consists of a user module,
a communication module bridging the Python and Java virtual machines (VMs), and a
task submission module for the Flink cluster. This architecture transitioned from the
older JPython-based DataSet and DataStream APIs, which were not compatible with
Python 3.X. In the new design, communication between the Python API and the Java
VM occurs through a Python gateway connected to Java’s GateWayServer. Adopted
for compatibility and unified architecture, the latest Python API is built on the Table
API, ensuring seamless operation similar to the Java Table API and offering enhanced
advantages in performance and integration. The system should be configured for Python
version ¡= 3.8 and the code is recommended to run in a virtual environment setup.
Running the code in a virtual environment setup ensures that the dependencies and
packages required for the Python API are isolated from the system’s global environment.
This allows for easier management and avoids conflicts with other Python installations.
Additionally, it is important to note that the Python API’s compatibility with Python
version ¡= 3.8 ensures that the code can be executed without any compatibility issues on
newer versions of Python.

python --version

Python 3.8.10

pip install apache-flink==1.17.1

pip confluent-kafka==2.2.0
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5.2 Development Environment

To run the PyFlink jobs, first we set up a Confluent Kafka development cluster, loading
data into Kafka using SalesProducer.py, and validating the setup. After the launch the
Confluent Kafka environment using Docker is launced , we then create a Kafka source and
sink topics. Also, it is importnant to download the Kafka Connector Jar, specifying the
absolute path and configuring it properly to xecute the sales producer program, and run-
ning the provided Flink programs (either the Table API or SQL Interface version). After
data processing, users can verify the contents of the ’processedsales’ and ’processedsales2’
topics using Kafka’s console consumer and the elasticsearch sink specified. Additionally,
it is recommended to monitor the performance and resource usage of the Docker contain-
ers using tools like Prometheus and Grafana. This will help in identifying any bottlenecks
or issues that may arise during the data processing. Furthermore, it is critical to regularly
backup the processed data stored in Elasticsearch to prevent any data loss in the event
of system failures or crashes.

docker exec -it broker kafka-topics --create \

--bootstrap-server localhost:9092 \

--topic salesitems

python3 -m flinkenv env

source/bin/activate

python salesproducer.py

6 PyFlink Job Submission

The process of executing a Python Table Job in Apache Flink involves four main steps.
Initially, we have to decide on the job mode: batch or streaming. Then we define the
data’s source, including its schema, source, and data type. The draft of the computa-
tional logic for the data and store the results in a specified system, which is termed as
defining the sink. Within the Python API, an execution environment is first created,
which is essentially a table environment containing a Table Config module for runtime
configurations. After setting up the environment, the data source table is defined for
which our Kafka topic as a source String data type. Once defined, the data structure is
converted into a table in the Table API layer, and fields and types are added using with
SCHEMA. After processing the data, a results table is established to store computational
outcomes. In our Aggregation job, a table with ’salesitem’ and ’count’ fields is created.
The computational logic is then written; with the Python API, this can be as concise
as a one-liner. In the aggregation example, source data is scanned, grouped by words,
selected, and then aggregated to calculate total sales, which is then inserted into the
results table.

docker exec -it jobmanager bash

./opt/bin/flink run -py /opt/flink/examples/python/datastream/aggragation.py

Job has been submitted with JobID c1e2f6767934121c07c7af6849fb1f24
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Figure 3: Flink Cluster running on docker container

7 Evaluation and Critical Analysis

For the evaluation of the proposed architecture the following case studies have been
performed. The expirimental setup uses the fake dataset produced by the kafka topic as
SalesProducer.

7.1 Case Study 1: Aggregation Functions using Kakfa Stream-
ing

Apache Flink’s Table API and SQL interfaces in Python (PyFlink) are used to perform
aggregation operations on batch data. The data, sourced from a CSV file named csv-
input, is ingested in a table called product sales with specific field names and types.

Using the Table API, it calculates the average price of unique products and the total
revenue for each seller. These computations are done by selecting distinct product prices
and then computing their average, and by multiplying quantities by product prices to de-
rive sales, followed by aggregating these sales per seller. In parallel, similar aggregations
are demonstrated using Flink’s SQL interface. In the Table API, the average price of
unique products and the total revenue for each seller are calculated by selecting distinct
product prices and computing their average. The sales are derived by multiplying quant-
ities by product prices, and then these sales are aggregated per seller. Similarly, Flink’s
SQL interface also demonstrates similar aggregations by using parallel processing. The
AVG function in SQL computes the average price, while the SUM function, combined
with a GROUP BY clause, calculates the total revenue per seller.

docker exec -it jobmanager bash

./opt/bin/flink run -py /opt/flink/examples/python/datastream/aggragation.py

Job has been submitted with JobID c1e2f6767934121c07c7af6849fb1f24
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7.2 Case Study 2: Tumbling Windowing using Kafka Streaming

In the context of stream processing, windows are a way to group a continuous stream
of data into finite chunks for processing. In Apache Flink, there are different types of
windows, and among them, tumbling windows is one type. This event defines a tumbling
window with a duration of 30 seconds. So, the data stream will be divided into non-
overlapping 30-second chunks. The processing time (proctime) is the windows created
based on when events which arrive in the Flink cluster. The start and end of the window
calculates the total sales (by multiplying quantity and product price and then summing it
up) for each seller within that window. The tumbling window allows for easy and efficient
data processing as it ensures that each event is assigned to only one window. This means
that no event will be counted multiple times or left out of any window. The arrival time
of events determines the window’s start and end times, ensuring that the calculation of
total sales for each seller within that window takes into account all pertinent information.
Overall, tumbling windows provide a reliable and accurate way to analyze and summarize
data in real-time.

Figure 4: Tumbling Windowing in Apache Flink

Figure 5: Tumbling Windowing Index Latency on Elasticsearch
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7.3 Case Study 3: Sliding Windowing using Kafka Streaming

In stream processing, a sliding window moves over the incoming data stream in predefined
increments, and each window captures a subset of the data stream. Unlike tumbling
windows, which are non-overlapping, sliding windows often have overlapping data. Sliding
windows move over a data stream in specific increments and capture overlapping data
subsets. In this, a 30-second window slides every 10 seconds, analyzing sales data. For
each window, we calculate the total sales for each seller within that duration. Using
sliding windows provides us with more frequent analysis into streaming data, capturing
sales metrics for every overlapping 30-second window that starts every 10 seconds. This
allows us to track the performance of each seller in real-time and identify any sudden
changes or trends in their sales. By analyzing the sales data in non-overlapping, sliding
windows, we can also compare the performance of different sellers within the same time
frame. This approach provides a more granular view of the sales data and helps us make
timely decisions to optimize our sales strategies.

Figure 6: Sliding Windowing in Apache Flink

Figure 7: Sliding Windowing Index Latency on Elasticsearch
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Figure 8: Observartions between Spark and PyFlink

7.4 Case Study 4: Event Time Processing

In the event-time processing in PyFlink, the streaming data is processed based on event
timestamps, rather than the time it arrives into the streaming. Specifically, the data
contains a sales timestamp from which the event time field is derived, and a 5-second
allowance is provided for late-arriving data using watermarks. This setup facilitates the
aggregation of sales per seller in distinct 30-second, non-overlapping windows based on
this event-time. This approach allows for accurate analysis of sales data, as it takes into
account the actual time at which events occurred rather than when the data arrived. By
using event timestamps and watermarks, PyFlink ensures that late-arriving data is still
considered within a certain time frame, allowing for a comprehensive view of sales per
seller in specific windows. The resulting aggregated sales metrics, delineated by these
30-second intervals, are then stored in an Elasticsearch indexes the processedsales data
for real-time analysis of sales data.

Figure 9: Timely Stream Processing
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Figure 10: Data Visualization on Kibana Dashboard

8 Conclusion and Future Work

Our research on serverless computing in the context of real-time streaming revealed the
enormous potential of stateless serverless platforms that can preserve state across invoc-
ations. Through careful analysis based on measurements, we found the key trade-offs
between performance, latency, and cost. This showed how reliable and flexible Kafka
streams and Apache Flink’s stateful serverless functions are. We managed to process and
analyse the data stream in real time, using pyFlink for processing, Kafka for data extrac-
tion, Elasticsearch for storing the processed data, and Kibana for visualisation, stream
processing, and indexing the data into Elasticsearch. The combination of pyFlink, Kafka,
Elasticsearch, and Kibana allowed us to achieve efficient and scalable data processing and
analysis. Additionally, the stateful serverless functions provided by Apache Flink ensured
reliable and flexible stream processing capabilities. Overall, this architecture enabled us
to make real-time decisions based on the analysed data stream while maintaining optimal
performance, low latency, and cost-effectiveness. The modular approach we adopted for
designing stateful functions, especially with the capability to integrate with diverse data-
bases on a shared platform, showed notable advantages over traditional local storage
methods. This study substantiates the idea that cloud-native technologies, specifically
serverless FaaS platforms, can be optimized and fine-tuned to handle complex real-time
streaming applications with efficiency and scalability.

Further research work could delve into the scalability of our system, assessing its beha-
viour under heightened workloads and exploring its interoperability with diverse serverless
platforms hosted on cloud platforms and databases. We evaluated the elasticsearch for
advanced optimization techniques, further evaluation and comparative analysis can be
done using different databases. There’s also an avenue to enhance security measures,
ensuring data integrity and robust access control in shared platforms. Further, machine
learning algorithms could be harnessed to the full potential of big data. This would
enable more accurate predictions and insights, leading to improved decision-making pro-
cesses. Additionally, integrating natural language processing capabilities could enhance
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the system’s ability to understand and analyze unstructured data, further expanding its
potential applications.
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