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A Comparative Study of Metaheuristic Algorithms for
Enhancing Topology-Aware Scheduling in Kubernetes

Harsh Harendra Singh Mall
x21223572

Abstract

Containerization has become a game-changing technology that completely trans-
forms how we package software applications. And when it comes to managing
and scaling these containerized apps in the cloud, effective container orchestration
becomes absolutely crucial. Kubernetes, a widely recognized platform, excels in
orchestrating the deployment, scaling, and management of containers. However,
the proposed solution of default scheduling method employed by Kubernetes for
allocating containers to suitable nodes within the datacenter is primarily optimized
for cloud workloads, , but unfortunately does not consider topological information
about distributed environments int the context of fog and edge computing.

In this research, we propose a comparative analysis of three metaheuristic al-
gorithms applied to Kubernetes to achieve topology aware scheduling. Our invest-
igation centers around crucial metrics like execution time and the cost when the
topology information is considered when scheduling containers. Experiments show
that Genetic Algorithms has the lowest overall execution time and Local Search
Algorithm is better cost effective. We observe a latency improvement of Genetic
Algorithm as compared to Local Search Algorithm and a cost reduction of Local
Search algorithm when compared to Genetic and Tabu Search Algorithms.

1 Introduction

The introduction of cloud computing has completely changed the computing landscape
and offers enormous advantages for businesses and organizations all over the world. Access
to a flexible and scalable pool of computer assets, including networks, servers, storage, and
applications, is made possible by cloud computing. Its significance cannot be understated
since it gives enterprises the opportunity to scale, be cost-effective, be agile, and have
simpler administration. With the cloud, companies can expand and deploy apps quickly,
save money on infrastructure, and concentrate on their core capabilities.

Parallel to this, containerization has arisen as a potent technology that enables the
deployment of software applications and their dependencies into independent units known
as containers. Applications execute consistently across a range of computer settings due
to containers’ lightweight and uniform run-time environments.

Container orchestration is a an important component of managing containers in cloud.
Kubernetes is a well-known participant in this market, and it entails orchestrating the
deployment, scaling, and administration of containers. The most widely used and accep-
ted container orchestration platform is known as Kubernetes. The deployment, scaling,
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load balancing, and self-healing of containers are all automated by Kubernetes, resulting
in excellent availability and effective resource use.

In this section, we get into the importance of container scheduling in Kubernetes and
its performance in field of fog and edge computing which is limited by the fact that topo-
logical information of the network is not considered. In this report, we explore different
meta-heuristic algorithms that consider topology information and provide the Kubernetes
scheduler with location optimized scheduling information for deploying containers.

1.1 Importance of Container Scheduling

Recent years have seen a revolution in software development and deployment thanks to
the development of container technology, which was pioneered by the widely used Docker
platform. A revolutionary method for packaging and executing applications, contain-
ers offer a consistent and dependable run-time environment across a range of computer
systems. Containers are crucial because they speed up the software development and
deployment processes. Containers make the deployment of programs across many con-
texts simpler by eliminating conflicts and incompatibilities by encapsulating all essential
dependencies and parameters. They facilitate scalability, allowing programs to grow and
reproduce themselves without interruption in response to demand. Due to its portabil-
ity and small weight, Docker in particular has become quite popular in speeding up the
development process, and enabling the widespread use of microservices architecture.

But as containerized applications increase in size and complexity, it becomes increas-
ingly important to have effective container orchestration. Managing many containers
while performing operations like deployment, scaling, load balancing, and fault tolerance
is known as container orchestration. Among the different systems for container orches-
trations like Docker Swarm, Kubernetes and Apache Mesos, Kubernetes has become the
norm in this sector.

In the realm of Kubernetes, the work of allocating containers to the most appropri-
ate nodes within a cluster is handled mostly by the default scheduling method. It is
properly referred to as the ”default scheduler,” is essential for resource allocation optim-
ization and efficient utilization of the existing computer resources. It considers a number
of variables, such as the particular resource needs of containers, any outlined affinity or
anti-affinity rules, and other restrictions established by users or the system itself. The
default scheduler works to evenly distribute tasks throughout the cluster in a way that
enhances performance and guarantees the general stability of the entire system by care-
fully weighing these factors. It’s crucial to understand, though, that in fog and edge
computing, the Kubernetes’ built-in scheduling method presents multiple limitations.

Authors Rejiba and Chamanara (2022), delve into the realm of custom schedulers em-
ployed across various domains. Their work addresses the default scheduler’s limitations,
particularly in the context of fog and edge computing. The authors mention that topo-
logical awareness of fog nodes is one of the areas that requires development. They draw
attention to the fact that in circumstances involving fog and edge computing, the default
scheduler is unable to effectively manage resource allocation and task distribution. This
emphasizes the demand for special scheduling algorithms created to handle the unique
problems in these distributed and resource-constrained environments.
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1.2 Research Objective

Considering the limitations of the default scheduler in Kubernetes, particularly in relation
to the topological information of fog and edge computing environments, this research
delves into the scheduling aspect of the orchestration tool, specifically tailored to the
unique requirements of fog and edge scenarios. While there are various approaches to
developing a custom algorithm, the meta-heuristic and hybrid meta-heuristic approaches
have emerged as the most commonly used algorithm in this context, which brings us to
our research question -

How does the performance and efficiency of Kubernetes in scheduling
improve when applying topology-aware metaheuristic algorithms, and how
do these algorithms compare in terms of execution time and cost?

The objective of this research is to create and implement a framework which provides
details about the network latencies between fog nodes and to implement and compare
three different metaheuristic algorithms on the basis of execution time and cost.

1.3 Structure and Outline

The remaining sections of this thesis are divided into five sections as described below

• Section 2 presents the related works that have been implemented related to the
topic of kubernetes scheduling in the field of fog and edge.

• Section 3 of this paper details about the setup and the methodology followed

• Section 4 provides an overview of the design and implementation of this work and
its details.

• Section 5 provides the experiments carried out and its results.

• Section 6 is the final section which provides the conclusion and future work.

2 Related Work

In this section, most of the paper deals with fog and edge computing scenarios in custom
scheduling. As we know in fog and edge all the nodes are situated in different geographical
locations, it is important to know the topology of the nodes, for better communication
and to improve costs.

In the paper (Santos et al.; 2019), the filtering step of the default Kubernetes scheduler
is extended by the authors’ topology-aware scheduler. Their strategy comprises optim-
ising the network distance between a particular Pod and a target location defined in
its configuration file by employing round-trip time labels, which are allocated to cluster
nodes in advance. The round-trip time labels are issued statically to cluster nodes, which
means they do not take into account dynamic fluctuations in network latencies that may
occur during run-time, which is one shortcoming of this technique. Due to the possibility
that the static labels might not precisely reflect the state of the topology, this can result
in less-than-ideal scheduling decisions.

In their research, authors (Kayal; 2020) address the issue of fog nodes’ finite resources,
which might result in a lack of capacity for multi-container pod hosting. They provide a
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unique solution to this problem that entails dividing such pods into their component con-
tainers and spreading them among several fog nodes. As a result, a topology-aware node
scoring system is presented to assess the appropriateness of fog nodes for each container.
This ranking takes the distances between the various fog nodes into consideration and
helps decide where to position each container for best performance and shortest commu-
nication latency. It should be noted that while though the authors refer to these actions
and ideas as scheduling plugins, they haven’t given any specifics on how to carry them
out, as it is only a theoretical framework.

The authors (Fu et al.; 2021) present Nautilus, a dynamic run-time system that integ-
rates a number of modules, one of which is a communication-aware microservice mapper.
Based on the communication overhead between microservices, this particular module is in
charge of dividing the microservice graph into several pieces. In order to ensure frequent
data exchanges take place in memory, it is important to effectively map these divisions
to cluster nodes.

Although Nautilus provides a way to move application pods when there is an un-
even distribution of computing resources among nodes, one drawback is that it does not
provide Pod rescheduling in situations when connectivity between microservices has been
compromised. In situations where microservice interactions are disrupted, the system
might not be able to dynamically adjust to changes in communication patterns, which
could result in less-than-ideal performance.

The authors (Nakanishi et al.; 2020) present a novel approach to improve Kubernetes
utilisation over a wide area network (WAN), with an emphasis on deployment of applic-
ations at the network edge. They make adjustments to the Kubernetes scheduler, which
now takes the Autonomous System (AS) path of the Border Gateway Protocol (BGP)
into account. This indicates that when choosing an AS path for deployment, the sched-
uler prioritises shorter AS pathways. The results of the trials show that this strategy
reduces application access times, which is essential in edge contexts.

The issue of higher latencies brought on by users receiving service from far-off fog
nodes is covered in this paper (Nguyen et al.; 2020). To accommodate increasing demand
at particular fog node locations, Kubernetes scheduling algorithm might not create new
replicas. The authors suggest associating nodes with their individual locations in order
to overcome this issue and allowing users to indicate their preferred deployment site in
the pod specification, with varying priority if necessary. The evaluation’s findings show
that this strategy successfully lowers latencies for users in areas where client requests are
increasing.

The authors (Eidenbenz et al.; 2020) concentrate on reducing application latency to
optimise industrial automation applications. They do this by transforming the applica-
tion placement issue in a Kubernetes-based fog computing environment as an optimisation
effort with application delay as the primary cost parameter, with the goal of minimising
expenses. Their suggested solution offers an estimated approach that accounts for a num-
ber of variables, including location restrictions, linkages between fog nodes, links between
application components, and their respective data requirements. The authors conduct
experiments to show that the best outcomes are obtained when their technique is im-
plemented utilising native Kubernetes capabilities like priority classes and pod affinities.
Using this method, the deployment of industrial automation applications is successfully
optimised, resulting in decreased latency and enhanced performance in the fog computing
environment.

In paper (Haja et al.; 2019), the authors construct scheduling algorithms that takes
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the topology of edge nodes into account in order to enable latency-sensitive edge applic-
ations.They provide a unique strategy that uses repeated measurements of edge node
delays to accomplish this. These metrics are used to categorise the nodes according to
their individual delays. The suggested scheduler for a pod that contains a delay re-
striction verifies the labels that have been assigned to each node. In order to ensure that
latency-sensitive applications are deployed on the most suitable edge nodes, the scheduler
then chooses the node that can satisfy the stated delay requirement.

In paper (Rossi et al.; 2020),the authors presented ”ge-kube,” a specialised version
of Kubernetes created specifically for geographically dispersed installations. Two major
contributions are highlighted in the study. To improve scalability and resource manage-
ment, they first use reinforcement learning to figure out the ideal number of application
clones. Second, in order to reduce deployment time and resource allocation, their strategy
focuses on the effective placement of application instances. Their method does this by ac-
counting for both the network delays between nodes and the resources that are available
on each node. Ge-kube guarantees that application instances are positioned in a way
that shortens deployment time and optimises resource utilisation in a geo-distributed
environment by taking these aspects into account simultaneously.

In this paper (Marchese and Tomarchio; 2022), the authors provide a topology-aware
scheduler scoring plugin and a unique descheduler operator created specifically for Kuber-
netes. The score plugin considers a number of variables, including the state of the cluster
network, node-to-node latencies, and the traffic transferred between microservices in dis-
tributed applications. They use a Prometheus metrics server, where network latencies are
assessed using node probes and application traffic data is gathered using Envoy proxies
operating within each application Pod, to retrieve the pertinent metrics. The descheduler
periodically decides to evict Pods for better placement while continually monitoring the
network circumstances and application load.

The authors illustrate the efficacy of ge-kube through tests utilising a geo-distributed
Redis cluster(database). It outperforms the built-in Kubernetes scheduler, increasing
operations per second by an impressive 3 times. These results show how ge-kube signi-
ficantly enhances the performance of geo-distributed deployments, making it a potential
option for effectively handling such situations.

In the paper (Pusztai et al.; 2021), authors propose Pogonip a specialised edge-aware
scheduler created for handling asynchronous microservices in Kubernetes. They solve
the placement issue by modelling it as an optimisation problem for integer linear pro-
gramming. They provide a heuristic strategy, which acts as an approximation solution
method, to effectively uncover practical answers for real-world circumstances. A collec-
tion of scheduler plugins for Kubernetes are used to accomplish this heuristic.

Pogonip’s significant drawback is that it does not provide pod rescheduling in response
to evolving network circumstances. This indicates that the system might not dynamically
adjust to changing communication patterns, which could result in performance issues
when network circumstances change.

(Caminero and Muñoz-Mansilla; 2021) describes an addition to the standard Kuber-
netes scheduler that uses network status data to identify the best fog node for completing
a batch job application within a certain time frame. To determine if an application can be
finished before the deadline, the scheduler includes a prediction function. The scheduler
rejects the application if it decides that the deadline cannot be reached.

It is significant to note that the suggested method does not take into account com-
munication exchanges between Pods and is primarily intended for batch processes. As a
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result, it might not be the best option for instances where inter-microservice communic-
ation is crucial. Table 1 provides a summary of limitations in the related work described
in this section.

Paper Approach and Contribution Limitations

(Santos et al.;
2019)

Extended Kubernetes scheduler with
topology-aware strategy using RTT la-
bels for Pod placement.

Static labels ignore dy-
namic network latency fluc-
tuations.

(Kayal; 2020) Dividing multi-container pods among
fog nodes based on topology-aware
node scoring.

Lack of specifics for imple-
menting theoretical frame-
work.

(Fu et al.; 2021) Nautilus: Communication-aware mi-
croservice mapper, dynamic run-time
system.

Inability to reschedule
Pods after microservice
connectivity disruption.

(Nakanishi
et al.; 2020)

Kubernetes scheduler considering
Autonomous System (AS) path of
BGP for edge deployment.

Focus on edge deployment,
may not address all scen-
arios.

(Nguyen et al.;
2020)

User-defined preferred deployment site,
associating nodes with locations to re-
duce latencies.

Limited to addressing
latencies caused by distant
nodes.

(Eidenbenz
et al.; 2020)

Optimizing industrial automation app
latency using Kubernetes capabilities.

Focus on specific use case,
may not generalize well.

(Haja et al.;
2019)

Scheduling algorithm considering edge
node topology for latency-sensitive
apps.

Limited to latency-sensitive
applications.

(Rossi et al.;
2020)

Ge-kube: Reinforcement learning for
scaling and effective placement in geo-
distributed environments.

Specific to geo-distributed
deployments.

(Marchese and
Tomarchio;
2022)

Network-aware scheduler and desched-
uler for Kubernetes with consideration
of network metrics.

Network-centric, may not
cover all scenarios.

(Pusztai et al.;
2021)

Pogonip: Edge-aware scheduler using
heuristic approach for microservices in
Kubernetes.

No pod rescheduling for
changing network circum-
stances.

(Caminero
and Muñoz-
Mansilla; 2021)

Network-based fog node selection for
batch job completion.

Primarily for batch pro-
cesses, may not fit all cases.

Table 1: Summary of Research Papers on Kubernetes Topology Awareness

3 Methodology

In the previous section, we have discussed the different approaches taken to address the
limitations of the default scheduler that Kubernetes offers. Kubernetes is built for large
scale applications and is tailored for data centers in which network performance is rather
homogeneous and consistent. However, it has its limitations in the context of fog where

6



the edges are situated in different geographical locations, possibly in different countries.
In such topologies, network latencies play an important role, where it can range from
100ms to 400ms. Such delays are very significant, hence, consideration of topology is
crucial when scheduling containers in Kubernetes. In this section, we are going to look
at a methodology to simulate these environment while considering algorithms that take
topology into considerations and with software and tools.

3.1 IfogSim Simulation Process

IfogSim is a powerful toolkit used for monitoring and various different tasks like resource
management in Internet of Things, Fog and Edge computing environments with mi-
croservice orchestration and dynamic clustering as its features developed by Perez Abreu
et al. (2019). In this paper, all the simulation is done in iFogSim. Ifogsim is an extension
of CloudSim which was created by author Calheiros et al. (2011). The architecture of
the simulation process is given in Figure 1. iFogSim offers a variety of classes designed to
make simulation easier. These classes simulate various different components like a data
center, fog nodes, application and cloudlet. The fog device class contains the core of fog
nodes which includes important characteristics like processing power, energy efficiency
and communication abilities. The specialised Cloudlet class, represents small fog nodes
that operate as intermediaries between users and fog nodes. Cloudlets are represented as
containers. It has characteristics, resource capacity, and communication profiles tailored
to each place.

Figure 1: iFogSim Environment Setup

Figure 1 shows two configuration files, the first one is a topology file which is in JSON
format and the second one is a container file which is in text format. These files contains
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different characteristics of the edges and containers. The characteristics of fog devices
are as follows

• MIPS: Million Instructions per seconds is a way to measure processing power. MIPS
indicate the processing power of the fog device

• Memory (RAM): It is the amount of Random Access Memory a fog device has.

• Storage capacity: The amount of storage spaces to hold data by a fog device.

• Energy Consumption: Fog devices have different energy consumption profiles.

• Communication Bandwidth: Fog devices have varying communication bandwidths.

• Latency: This is an important characteristics that define the latency that the fog
device offers.

Cloudlets also offer the same characteristics as the fog device but it has some unique
features like

• Task Offloading: Offloading tasks from end devices, allowing resource intensive task
to process locally.

• Virtualization Support: Many cloudlets support virtualization like containers.

• Load Balancing: Cloudlets help in balancing load by redistributing tasks among
different fog nodes.

In iFogSim, the FogBroker class is essential for effectively handling scheduling jobs
and allocation over the fog network. It acts as a dynamic orchestrator, improving the fog
computing environment effectively. FogBroker acts as a mediator between application
and fog devices. It also monitors the execution and also manages the resources for fog
devices. FogBroker assigns different The characteristics of fog broker class are as follows:

• Task Distribution: The fog broker class uses algorithms to distribute task among
different fog devices.

• Scheduling Strategies: Users can implement different scheduling algorithms like
metaheuristic algorithms within the FogBroker class.

• QoS Considerations: FogBroker makes sure that tasks with p=higher priority or
with strict latency receive timely processing and resource allocation.

• Energy Efficiency: The FogBroker class implements energy efficient scheduling and
optimizing task to minimize energy consumption.

• Load Balancing: FogBroker balances the load among different fog nodes.
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3.2 Topology Aware Scheduling

The topology that is implemented is shown in the Figure 2. It depicts the topology
which has one cloud nodes and with many edges. We want to parameterized the number
of nodes to provide topologies with low, medium and large number of edge nodes. Cloud
nodes refers to a traditional cloud data center which is located in a centralized location.
They are design to process resource intensive task and provide service to wide range of
users or edges.

An edge node refers to a device or node that is situated closer to the data source or
the end device i.e., in different geographical locations. Edge nodes are crucial for offload-
ing work from centralised cloud nodes, cutting latency, and enhancing the application’s
overall responsiveness.

Figure 2 shows the design of the system that will be evaluated in later sections. C1,
C2 to CN depicts the containers that will be scheduled in these edge devices. Edges 1 to
Edges N depict the different number of edges that will be configured. Red lines indicate
the connection between the cloud and the edges as well as the edges and the containers.
Different latencies are provided between these devices. This topology is modeled for
evaluating the scheduling of different meta-heuristic algorithms. The model is scaled and
the performance of these algorithms are measured.

Figure 2: Network Topology

3.3 Metaheuristic Algorithms

Metaheuristic algorithms are at the heart of optimization that can efficiently navigate
through solution spaces to find nearly optimal solutions. They have applications, in
fields such as optimization, scheduling and routing as they are not limited to problem
structures like traditional NP-complete techniques. These algorithms mimic processes
like evolution, swarm behavior and other intelligent systems. Examples include colony
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optimization, simulated annealing, genetic algorithms and particle swarm optimization.
Metaheuristic algorithms effectively tackle problems by balancing exploration and ex-
ploitation making them particularly useful in ambiguous or computationally challenging
situations. Metaheuristic algorithms support multi-objective optimization and as meta-
heuristic algorithms provide results that are optimal and not exact, it is good for large
scale operations. Minimizing latency and maximizing utilization are two different ob-
jectives that can be handled by using metaheuristic approaches. In this research, we are
going to compare the following three metaheuristic algorithms.

3.3.1 Genetic Algorithm

In their research paper, Mirjalili and Mirjalili (2019) states that the survival of the fit-
test principle in nature serves as the basis for Genetic Algorithms (GA). Similar to a
population-based game, each solution represents a character with unique qualities (genes).
They undergo a fitness test to gauge their performance. The strongest characters have
a better probability of getting chosen, but weaker characters nevertheless have a chance.
This helps prevent hitting local dead ends. In order to generate new generations, the
algorithm combines and modifies the characters, gradually improving the answers. In the
end, GA selects the character that fits the situation the best and provides the greatest
solution. Algorithm 1 is a pictorial representation taken from a paper published by
Katoch et al. (2021). Full implementation is mentioned in the next section4.

Algorithm 1: Genetic Algorithm

Data: Population Y , Population size n, Crossover probability Cp, Mutation
probability Mp

Result: New population Ynew

1 Initialize population Y with n randomly generated chromosomes;
2 while Ynew is not complete do
3 Select chromosomes C1 and C2 from population Y based on their fitness

values;
4 if Random number r ≤ Cp then
5 Apply single-point crossover between C1 and C2 to produce offspring O;
6 end
7 else
8 Randomly select one of C1 or C2 as the offspring O;
9 end

10 if Random number r ≤Mp then
11 Apply uniform mutation to offspring O to generate O;
12 end
13 Place offspring O in the new population Ynew;

14 end

• Initialization: A population (Y) of n chromosomes is randomly initialized.

• The fitness of each chromosome in Y is computed.

• Two chromosomes (C1 and C2) are selected from the population Y based on their
fitness values.
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• The single-point crossover operator with crossover probability (Cp) is applied to
C1 and C2 to produce an offspring (O).

• The uniform mutation operator is applied to the produced offspring (O)with muta-
tion probability(Mp) to generate O.

• The new offspring O is placed in the new population.

• The selection, crossover, and mutation operations are repeated on the current pop-
ulation until the new population is complete.

3.3.2 Local Search Algorithm

Neighbourhood search, commonly referred to as a local search algorithm, is an effective
optimisation method for handling difficult issues. It starts with an initial solution and
then, by making minor tweaks, investigates surrounding solutions. A fitness function
is used to assess the quality of each prospective solution. The algorithm continues to
advance towards the best neighbouring solution that increases fitness value, progress-
ively approaching an ideal solution within a constrained region. Neighbourhood search
is effective for large-scale issues since it concentrates on locally modifying solutions as
opposed to global search techniques.(Ahuja et al. (2002))

Algorithm 2: Local Search Algorithm

Data: Initial solution or state Sinit, Neighborhood generation function
GenerateNeighborhood, Fitness function Evaluate, Stopping criteria

Result: Optimal solution or local minimum Sopt

1 Initialize current solution Scurrent with Sinit;
2 while Stopping criteria not met do
3 Generate neighboring solutions N by applying

GenerateNeighborhood(Scurrent);
4 Evaluate fitness of each solution in N using Evaluate;
5 Select the best neighboring solution Snext that improves fitness;
6 if Snext is better than Scurrent then
7 Update Scurrent to Snext;
8 end
9 else

10 Terminate the loop;
11 end

12 end
13 return Optimal solution or local minimum Sopt = Scurrent;

• Initialization: Start with an initial solution or state.

• Neighborhood Generation: Generate a solution and generate new neighboring solu-
tions by making small changes or perturbations to the current solution.

• Evaluate: Evaluate the quality of each neighboring solution using a fitness function
or an objective function.
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• Select best neighbouring solution that improves the fitness value.

• Update Solution : Move to the selected best neighboring solution and update the
current solution.

• Termination : Define a stopping criteria and then terminate when the criteria is
met or loop-back.

3.3.3 Tabu Search Algorithm

Tabu Search (TS) is a smart search algorithm that remembers its previous moves and uses
that knowledge to find better solutions for specific problems. It keeps track of historical
data in its memory, which helps it make well-informed decisions during the search pro-
cess. The memory is divided into two types: explicit memory, which stores complete and
highly attractive solutions to explore neighborhoods effectively, and attributed memory,
which stores data based on important features to create optimal solutions. Both short-
term and long-term memory structures, each with specific characteristics and methods,
are used by TS. It adheres to the problem’s requirements while making advantage of
clever move methods like switching chosen edges. With its memory and cunning man-
oeuvres, TS develops into an effective tool that strengthens search tactics and overall
performance.Algorithm 3 is taken from (Prajapati et al. (2020)).

Algorithm 3: Tabu Search Algorithm

Data: Initial solution or state Sinit, Neighborhood generation function
GenerateNeighborhood, Fitness function Evaluate, Tabu list size T ,
Number of iterations N

Result: Best solution found Sbest

1 Initialize current solution Scurrent with Sinit;
2 Initialize Tabu list Tlist as an empty list;
3 Initialize best solution Sbest with Scurrent;
4 for i← 1 to N do
5 Generate neighboring solutions N by applying

GenerateNeighborhood(Scurrent);
6 Evaluate fitness of each solution in N using Evaluate;
7 Select the best non-tabu solution Snext from N ;
8 Add Snext to the Tabu list Tlist;
9 if Size of Tlist exceeds T then

10 Remove oldest entry from Tlist;
11 end
12 if Snext is better than Sbest then
13 Update Sbest to Snext;
14 end
15 Update Scurrent to Snext;

16 end
17 return Best solution found Sbest;

• Initialization: initializing an initial solution and then a restricted Tabu list for track-
ing. Along with that initializing a variable to retain the most favorable solution.
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• Iterative Exploration: the algorithm generates neighboring solutions through a
neighborhood generation function, assesses their fitness using a suitable fitness func-
tion, and selects the most favorable non-tabu neighboring solution.

• Tabu List Management: The chosen solution is put into the Tabu list and is marked
as forbidden for certain iterations.

• Solution Update: If the selected solution better than the current best solution, it
replaces the latter and again starts the cycle of exploration and exploitation.

3.3.4 Discussion on Algorithms

The above algorithms in considerations are very popular and have unique features and
advantages. The strength of Genetic Algorithm lies in its ability to explore search
spaces simultaneously. Exploration means the algorithms ability to search new areas
where it could find a possible solution. Genetic Algorithm can search multiple potential
areas parallel which means that it can execute and schedule containers faster. On the
other hand Local Search Algorithm has the ability to fine tune its algorithm which
means that it does not need to explore the whole search space. It means that this
algorithm can benefit by saving costs. Tabu Search Algorithm maintains a adaptive
Tabu memory which in theory help keep record of the search spaces already visited and
it prohibits the re-visitation of the sub optimal solution. Thus in the evaluation section,
we will look into the different evaluation metrics and compare the performance of these
algorithms on the basis of execution time and cost.

In the next section, we will look into the design specification and implementation of
these algorithms.

4 Design Specification & Implementation

4.1 Topology Architecture & Specifications

Figure 3: Topology Architecture
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The topology architecture in Figure 3 is scaled starting from 10 edges, 50 edges and
100 edges. We schedule 50, 100, 150 and 200 containers at every edge interval. The
network latency between the cloud and the edge node vary from 150ms to 200ms which
is taken from a conference. 1

4.1.1 Node Configuration

This architecture contains 10 edges which gradually increases to 50 and 100 and with 1
cloud node. The following Figure 4 shows the configuration of the cloud nodes and the
edge nodes. This configuration is in the .JSON format and is executed by the fog broker
entity of iFogSim. All the configurations are taken from paper written by Awaisi et al.
(2019).

Figure 4: Node Configuration

4.1.2 Container Configuration

The .txt file contains the details of the containers that is going to be scheduled by different
algorithms. All the configurations are taken from 2 The configuration of the containers
are given in the following Figure 5

Figure 5: Container Configuration

1https://www.thousandeyes.com/resources/cloud-performance-report-2022
2https://www.kaggle.com/datasets/sachin26240/vehicularfogcomputing
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4.2 Algorithms

There are three different algorithms that are being tested in this paper namely Genetic
Algorithm, Local Search Algorithm and Tabu Search Algorithm. The design and imple-
mentation of these algorithms are as follows

4.2.1 Genetic Algorithm

The configuration of genetic algorithm is shown in the Figure 6. Number of individuals
is defined as the size of the population or can also be called as collection of potential
solution. The value is set to 500 which is optimal for this problem. Number of iteration
is also known as the number of generation that GA will run the evolutionary process.
More iteration leads to better convergence but it can also lead to an increase in cost.
And the value is set to 1000. Mutation rate brings in random change to an individual.
Increasing mutation rates promotes exploration of the search space but it gives poor
convergence, thus the value is set to 0.01. Crossover rate is mainly used to exploit the
already given search space and the value is set to 0.8. Number of Elicit individual is
defined as the best individual from the current generation and the value is set to 1.

Figure 6: Genetic Algorithm Implementation

4.2.2 Linear Search Algorithm

The configuration of Linear Search Algorithm is shown in Figure 7. An iterative im-
provement strategy is used in local search to investigate the area around a particular
solution. This variable is known as local search iteration and the value is set to 200. The
term initial sacrifice can be referred to as perturbation. It is basically given to introduce
randomness or diversification in the local search process. The method seeks to explore a
larger search area that could include better answers by first compromising the quality of
the present result and the value is set to 0.005. The descending speed in local search al-
gorithms often refers to the step size or movement distance covered during each iteration
of neighbouring solution exploration. The algorithm decides how far to step or modify
the solution while travelling from the present solution to its neighbours and the value is
set to 1.1.

15



Figure 7: Linear Search Algorithm Implementation

4.2.3 Tabu Search Algorithm

The configuration of Tabu Search Algorithm is shown in the Figure 8. MaxStable para-
meter is also known as the maximum stagnation or the maximum value of non improving
iterations to the best solution. Stagnation occurs when the algorithm remains trap in
the local optima. Thus the max value is set to 100. MaxIteration is also defined as the
maximum value of iteration where the algorithm will run and it is 1400. Maximum time
is the max time the algorithm will run and is set to 20. TabuLength is an important and
it is defined as how long a solution is considered as tabu or forbidden. When a move is
performed, it is added to a tabu list and no changes are made till the tabu length. The
value of tabu is set to 30.

Figure 8: Tabu Search Algorithm Implementation
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4.3 KubeEdge

An open source technology known as KubeEdge allows hosts at the Edge to enhance
native containerized application orchestration capabilities. It is based on Kubernetes
and offers basic network, application deployment, and metadata synchronisation between
cloud and edge infrastructure support. KubeEdge is preferred because the master control
plane is in the cloud and the workers are in edges. It helps in control plane separation.
After the implementation of algorithms, a YAML file can be generated which in turn can
be implemented in the KubeEdge to schedule containers.

5 Evaluation

The evaluation of results conducted will be explained in this section. The experiments are
conducted in iFogSim simulator with simulation of one topology and scaling the topology
with different edge nodes. Along with that a comparative analysis of response time and
cost of three algorithms have been conducted. With each experimental iteration, the
quantity of containers increases, ranging from 50 to 500, The simulation is divided into
three experiments each providing the graphs for execution time and cost.

• Experiment 1: Consists of 10 edge nodes with 50, 100, 150, 200, 300, 500 containers.

• Experiment 2: Consists of 50 edge nodes with 50, 100, 150, 200, 300, 500 containers

• Experiment 3: Consists of 100 edge nodes with 50, 100, 150, 200, 300, 500 containers

5.1 Experiment 1 : 10 Edges

Figure 9: Experiment 1: 10 Edge nodes
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The first experiment is carried out with 10 Edge nodes and spinning up containers
ranging from 50 to 500 and noting down the response time (Execution time) as well as
the cost to execute these containers. From Figure 9 it can be concluded that Genetic
Algorithm and Local Search algorithm performs in a similar way but when scaling up,
Genetic Algorithm outperforms Local Search algorithm. The major difference is seen
when scheduling 500 containers where execution time of GA is less that Local Search.
Execution time of Tabu Search algorithm is significantly higher than the other two. And
comparing costs, it can be concluded that when scaling up the number of containers, the
cost of Local Search algorithm decreases as compared to Genetic Algorithm which has
the highest peak.

5.2 Experiment 2 : 50 Edges

The second experiment is carried out by scaling up the Edges to 50. From the Figure 10,
the difference in execution time between GA and LSA increases, which shows that GA
performs well in complex large scale scenarios. When compare costs, it is seen that LSA
algorithm is more cost effective than GA and Tabu search as well.

Figure 10: Experiment 2: 50 Edge nodes

5.3 Experiment 3 : 100 Edges

The third experiment is carried out by scaling up the edges to 100. From the Figure 11,
the difference in execution time further increases when comparing GA to LSA, where GA
outperforms LSA. And comparing costs, it can be seen that LSA is slightly more cost
effective in large scale applications.
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Figure 11: Experiment 3: 100 Edge nodes

5.4 Discussion

In this section, lets deep dive into the evaluation of different metrics and the results of
the above graphs.

• From Figure 9, Local Search Algorithm (LSA) maintains the lowest execution time
upto 300 containers. And when scaling up above 300, Genetic Algorithm (GA)
performs better. GA has 16.24% less latency than LSA when scaled up to 500
containers and that gap keeps increasing. And when comparing costs, it can be
seen that GA performs slightly better than LSA when scaling upto 200 containers.
When scaling up above 200, the cost spikes up for GA and LSA maintains a steady
increase.

• Tabu Search Algorithm (TSA) performs bests with low number of edges and con-
tainers. TSA exhibits similar performance as the other two algorithms for 10 edges
and upto 100 containers. Hence, it is not recommended for scheduling large scale
application.

• From Figure 10, when scaling up the edge node to 50, the execution time of GA is
less than LSA and the percentage gap increases to 16.98%. Thus GA is recommen-
ded over LSA for 50 fog nodes and when comparing costs, LSA algorithm outshines
other two algorithm with difference in cost of approximately 20%. When scheduling
500 containers, Tabu Search Algorithm (TSA) performs better than GA.

• From Figure 11, when scaling from 50 to 100 edges, the gap between execution
time increases from 16.24% to 18% between GA and LSA, GA being with a bet-
ter execution time. When scheduling 200 containers,a similar execution time is
noticed between GA and LSA. From the above experiments, Genetic Algorithm
is recommended for scheduling large scale applications having execution time con-
strain. Now comparing costs, Local Search Algorithm performs better with having
approximately 9% decrease in cost than Genetic Algorithm for scheduling large
scale applications.
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6 Conclusion and Future Work

In this paper, a comparison between three different meta-heuristic algorithms namely
Genetic Algorithm, Local Search Algorithm and Tabu Search Algorithm have been per-
formed successfully. The recommended Genetic Algorithm(GA) performs better than
the other two algorithm in terms of execution time. Local Search Algorithm(LSA) has a
similar performance but when scaling up the edges, GA outperforms LSA. Local Search
Algorithm performs better than other two algorithms in terms of optimizing costs. This
research successfully demonstrates the comparison between three different algorithm in
topology-aware scenarios. These experiments were conducted on a simulation tool called
iFogSim due to time and cost constrains, the future works include the following:

• Creating a YAML file with output of these algorithms.

• The implementation of these algorithm on actual Kubernetes cluster built for fog
and edge scenarios using KubeEdge.

• Another work will be to analyze different algorithms in network-aware topology
where the pods are interconnected and dependent on each other.
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Ahuja, R. K., Özlem Ergun, Orlin, J. B. and Punnen, A. P. (2002). A survey of very
large-scale neighborhood search techniques, Discrete Applied Mathematics 123(1): 75–
102.
URL: https://www.sciencedirect.com/science/article/pii/S0166218X01003389

Awaisi, K. S., Abbas, A., Zareei, M., Khattak, H. A., Shahid Khan, M. U., Ali, M.,
Ud Din, I. and Shah, S. (2019). Towards a fog enabled efficient car parking architecture,
IEEE Access 7: 159100–159111.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. and Buyya, R. (2011).
Cloudsim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms, Software: Practice and experience
41(1): 23–50.
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