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Optimizing Container Resource Allocation by Right

Sizing using Historical Timeseries Metrics in ARIMA
Model

Libin Tom Kuriyakose Kadavil
21204420

Abstract

Containers have revolutionized the deployment and management of applications
in cloud computing environments, offering significant advantages such as lightweight
and portable packaging, faster startup times, and reduced resource overhead. While
containers excel in resource efficiency, the lack of resource limitations can lead to
overconsumption or underutilization, especially in resource-constrained edge cloud
environments. In edge cloud environments, which are located closer to end-users
and devices, computing resources are inherently limited due to factors like physical
space, power availability, and constrained network bandwidth. Optimizing resource
usage in edge cloud environments is crucial to ensure smooth operation, meet qual-
ity of service requirements, and maximize performance. Right sizing containers
plays a vital role in achieving resource optimization by allocating the appropriate
amount of compute resources based on application requirements. Right sizing offers
advantages such as cost optimization, improved performance, scalability, stability,
reliability, and simplified resource management. While container orchestrators like
Kubernetes provide features like Vertical Pod Autoscaler (VPA) for resource alloc-
ation optimization, relying on historical resource usage metrics for right sizing con-
tainers offers several advantages over real-time metrics. Historical metrics provide
a more comprehensive and detailed view of resource utilization patterns, enabling
accurate recommendations for resource requests and limits. They also allow for
the identification of trends and seasonal variations, facilitating informed decision
making for resource allocation. This research aims to explore approaches for right
sizing container resource allocation by analyzing real historical resource usage met-
rics of a private company. By implementing Time Series forecasting model ARIMA
(Auto Regressive Integrated Moving Average) to predicted the future CPU require-
ments. Findings show a potential cost reduction of up to 60% over a year compared
to traditional fixed resource limits. While acknowledging the rough nature of the
estimation, the study underscores the potential benefits of the approach.

Keywords

Container Orchestration, Resource Management, Time Series Analysis, Predictive Mod-
eling, Auto Regressive Integrated Moving Average (ARIMA ), Kubernetes.
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1 Introduction

In today’s dynamic and rapidly evolving world of cloud computing and containerized ap-
plications, efficient resource management is paramount to achieving optimal performance
and resource utilization. According to the research utilizing data disclosed by Google,
which offers insights into cluster utilization, approximately 70% of the allocation is des-
ignated for high-priority tasks, while merely 25% to 35% of the allocation matches the
actual utilization Reiss et al. (2012). In another article by Amazon Web Services, states
that right-sizing can cut cost about more than 36% ﬂ This observation distinctly high-
lights the significant issue of under-utilization as a primary cost-related concern. As the
demand for scalable and responsive systems continues to grow, accurate prediction and
allocation of computational resources become critical factors in ensuring seamless oper-
ations. This research endeavors to address this challenge by proposing a methodology
that combines the time series analysis and predictive modeling for informed resource al-
location decisions within containerized environments.

Container orchestration platforms, such as Kubernetes, have gained immense popularity
for their ability to manage the deployment, scaling, and management of containerized
applications. Effective management of these resources, particularly CPU utilization, is
essential to ensure that applications run efficiently without encountering performance
bottlenecks or wastage of resources. Traditional approaches of resource allocation often
rely on static limits, which may lead to either under-utilization or over-subscription of
resources. The unconstrained nature of containers, however, might result in inefficient
resource consumption in edge cloud settings with limited resources, which could have an
impact on performance and overall effectiveness.

In this paper, experimented a comprehensive approach that leverages historical time series
data of pod CPU utilization metrics to inform resource allocation decisions. Employ the
Auto Regressive Integrated Moving Average (ARIMA) model, a powerful technique in
time series analysis to forecast future CPU utilization. By extrapolating from historical
data patterns, the ARIMA model provides valuable insights into future resource require-
ments, enabling more accurate and dynamic resource allocation strategies.

This paper is organized as follows: Section 2 provides an overview of related work in
the domain of resource management containerized applications. Section 3, is the design
of over all specification of the research and detailed list of tools and libraries used in the
research. Section 4, presents the dataset used for the analysis and outline the steps for
data pre-processing and elaborates on the methodology of utilizing ARIMA for predict-
ive modeling. Then demonstrated the application of proposed approach in Section 5 by
integrating the ARIMA model’s predictions into the deployment of containers through
dynamically deploying the manifesto using the python program into Kubernetes test en-
vironment. Finally, Section 6 discusses the experimental results and implications while
Section 7 concludes the paper by summarizing the contributions and outlining potential
avenues for future research.

LAWS Cloud Enterprise Strategy Blog: https://aws.amazon.com/blogs/enterprise-strategy/
rightsizing-infrastructure-can-cut-costs-36/
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2 Related Work

Software application deployment and management have undergone a revolution after the
introduction of containers in cloud computing environments Baarzi and Kesidis| (2021)).
Containers include benefits including portable and lightweight packing, quicker start-
up times, and less resource use. Right-sizing containers, however, becomes essential for
effective resource allocation in resource-restricted edge cloud scenarios, where computing
resources are constrained owing to physical space, power accessibility, and constrained
network bandwidth. This review examines several methods resource optimization.

2.1 Right-sized containers ideas and advantages

The relevance of right-sizing containers in edge cloud systems is explored. It describes
how determining the optimum number of compute resources to allocate based on applic-
ation needs is known as "right-sizing.” The benefits of appropriate sizing are discussed
in this section, including cost reduction, enhanced performance, scalability, stability, and
dependability, as well as easier resource management Li et al.| (2022). Resource Allocation
with Container Orchestrators: In this part, Researchers discuss how container orchestrat-
ors like Kubernetes could optimize resource allocation. It talks about how Kubernetes’
Vertical Pod Autoscaler (VPA) functionality automates resource changes. Although VPA
employs real-time measurements, the section stresses the drawbacks of depending just on
real-time data in edge cloud systems with limited resources.

2.2 Resource Optimization with RUBAS Virtual Pod Auto-
scaler

In a study titled ”Exploring Potential for Non-Disruptive Vertical Auto Scaling and
Resource Estimation in Kubernetes,” the authors introduced a system named RUBAS
(Resource Utilization Based Auto Scaling System). RUBAS utilizes Kubernetes’ built-in
Metrics Server to gather resource utilization information for each container within the
cluster. The system deploys pods upon their arrival and initiates the collection of CPU
and memory metrics at one-second intervals. New estimations are generated every minute.
RUBAS assesses the resource utilization of individual pods against their allocated limits.
If the utilization aligns with the allocation, the pods continue running. However, discrep-
ancies trigger two instructions to Docker: one to checkpoint the container and another to
create an image with the current state and data. The launch specification is then formed
using the checkpoint and image Rattihalli, Govindaraju, Lu and Tiwari (2019).

The estimation strategy employed in this approach involves calculating the median of
resource utilization with a buffer, where the required resource is determined as the Me-
dian of Observations with buffer. This calculation is based on the metrics collected
over 60 seconds with the buffer representing the absolute deviation of absorbed values.
While this approach may suit applications that can be vertically scaled at varying inter-
vals, it may not be ideal for applications with fixed concurrency of worker specifications.
Configuration changes based on the estimation could adversely affect overall application
operations. Additionally, determining application worker size from resource estimation
proves challenging. The approach proposed in this research employs historical data to
estimate the maximum utilization placement over a defined time period, with the value



remaining constant until significant deviations arise within the application.

2.3 Horizontal Autoscaling Approach for Optimised Resource
Utilization

A study centered around elastic cloud resource management strategies within the Kuber-
netes framework has introduced an automatic horizontal scaling system architecture. This
architecture is built upon the Monitor-Analyze-Plan-Execute (MAPE) loop to address
load balancing challenges that arise when removing redundant pods in capacity reduction
scenarios. This is due to the limitations of a horizontal pod auto scaler’s single monitor-
ing metric, which may not accurately gauge workload demands. The proposed approach
also integrates a resource deletion strategy with the horizontal scaling system Yunyun
et al.| (2022).

The strategy put forth in this research aims to enhance Horizontal Scaling atop Kuber-
netes’ native solution. It introduces a design for a passive scaling strategy that relies on
weighted metric thresholds. This design improves upon the core Horizontal Pod Auto-
scaler (HPA) by monitoring additional resource metrics, in contrast to the basic HPA’s
single-metric approach, and applying weight to the analysis output. Unlike the present
research, this paper primarily concentrates on the accurate resource sizing for a specific
category of applications within Kubernetes, prior to their management by a horizontal
autoscaler.

2.4 Fairness in Scheduling Techniques to Optimisation Resource
Utilization

In an endeavor to compute resource constraints while ensuring equity within Kubernetes,
a solution was introduced to address the equitable allocation of pods. This approach
specifically concentrates on maintaining the quality of service for pods within a multi-
resource environment, accommodating diverse pod submissions with varying CPU and
memory requirements. The challenge addressed pertains to the Kubernetes scheduler’s
behavior of prioritizing pod requests aligned with available resources rather than consid-
ering the resource limits, which could lead to resource constraints if all pod utilizations
surge. In such cases, the operating system kernel disregards the set limits and allocates
only the minimum requested resources [Hamzeh et al.| (2019)).

This proposal aims to mitigate the resource allocation complexities within Kubernetes
by ensuring fairness among all pods, particularly when each pod demands maximum
resources. Upon scheduling pods onto specific nodes, the resource limits are advocated
to be treated uniformly for all pods within that node. However, this study’s focus is
in accurately estimating the appropriate limits for pods that cannot be vertically auto-
scaled, whereas fairness could be an additional consideration for future enhancements in
managing application concurrency.



2.5 Allocation of Virtual Machines in Data Centers using AR-
IMA Forecasted Scheduling

This literature review investigates the utilization of forecasting models for the purpose
of selecting appropriate instruments to predict the migration of Data Center (DC) vir-
tual machines (VMs). The study involves a comparative analysis of various forecasting
methods, assessing their effectiveness in predicting VM migration within the context of
Google cluster environments. The experimental results of these forecasting methods are
evaluated using real-world data. The outcomes demonstrate the superior performance of
the prediction and scheduling of DC VM resources leading to a reduction in overloaded
and under-loaded VM situations. Consequently, the efficiency of DC IT-infrastructure re-
source allocation is enhanced. The article establishes fundamental prerequisites for mod-
els and methods dedicated to predicting time series patterns in DC workloads. Among
these, the chosen primary model is the Auto Regressive Integrated Moving Average (AR-
IMA) model. Effective parameter intervals for the model are determined through meth-
odologies such as Auto-Correlation Function (ACF), Partial Auto-Correlation Function
(PACF), and derivative function analyses Dmytro et al.| (2017).

However, in contrast to the aforementioned research on forecasting the VM allocation
in the large data-ceters, this research will be focusing on the right-sizing the container’s
resource allocation thus to achieve more optimised resource utilization in the area of
containerized application, where the resource is very crucial and bottleneck like in Edge
Cloud environments.

2.6 Resource Optimization in Edge Cloud Environments

The following section examines the unique challenges that develop in edge cloud environ-
ments when resource limitations require efficient resource allocation strategies. It focuses
on the impacts of both excessive and inefficient resource consumption in these circum-
stances and highlights the need of container sizing to maximize resource use. Among the
key problems with edge cloud configurations is the potential for excessive resource use. If
efficient resource management approaches are not implemented, containers may consume
more resources than necessary, which would lead to waste and increased running costs
Liu et al. (2020)).

Under-using resources has negative effects as well. If containers are given access to more
resources than they need to complete their tasks, important processing power is wasted.
In addition to wasting resources, under-utilization restricts the number of containers that
could be hosted on a given infrastructure Rattihalli, Govindaraju and Tiwari (2019). This
research overcome that challenge by forecasting the future requirement by analysing the
historical usage data.

2.7 Literature Gap and Research Directions

In resource-constrained edge cloud scenarios, effective container sizing becomes crucial.
Right-sizing containers entails determining optimal compute resource allocation based
on application needs, yielding benefits like cost reduction and enhanced performance.
While container orchestrators like Kubernetes optimize resource allocation, relying solely



on real-time data may not suit resource-constrained edge systems. RUBAS introduces
a system that estimates container resource needs using Kubernetes’ Metrics Server, but
it faces challenges with applications having fixed concurrency worker specifications. An-
other study proposes an automatic horizontal scaling architecture addressing load bal-
ancing during resource reduction. Unlike these, the research primarily focuses on accur-
ate resource limit estimation for non-vertically autoscaled pods. In edge cloud settings,
proper container sizing strategies are essential, mitigating the risks of both excessive
and inefficient resource usage. The present research aims to address these challenges by
forecasting future requirements based on historical usage data.

3 Design Specification

The study focuses on analyzing pod CPU utilization using a two-week historical data-
set of CPU usage metrics provided by a private company. The research employs a time
series forecasting approach, specifically utilizing the ARIMA (AutoRegressive Integrated
Moving Average) model to predict future CPU utilization trends. Time Series data often
exhibit temporal dependencies, where past values influence future values and ARIMA
models can capture the dependencies through autoregressive and moving average com-
ponents. Also this model can handle wide range of time series patterns, including trends,
seasonality and cyclic behavior and hence this model is very much suitable for time series
analysis. Fig[Ifis the over all approach of the research conducted.

Overall Research Design

Data Collection »> Data Processing » Stationarity Checking ﬁ
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Figure 1: Research Design

3.1 Tools and Libraries

A range of tools and libraries used to conduct this proposal which helped from the data
processing to deployment of the predicted model containers in the test environment.



Python: A versatile programming language used for data analysis, scripting, and ap-
plication development.

Minikube: A tool for setting up and managing a local Kubernetes cluster for develop-
ment and testing purposes.

Docker: A platform for creating, deploying, and managing containerized applications.
Kubernetes: An open-source container orchestration platform that automates the de-
ployment, scaling, and management of applications.

Visual Studio: An integrated development environment (IDE) for coding, debugging,
and building applications.

Google Colab: A cloud-based platform for writing and executing Python code collab-
oratively, particularly suited for machine learning and forecasting tasks.

Pandas Library: A Python library for data manipulation and analysis, providing data
structures and tools for efficient data handling.

JSON Library: A Python library for working with JSON data, used for reading and
writing JSON files.

NumPy Library: A fundamental package for scientific computing with Python, provid-
ing support for arrays and mathematical functions.

Matplotlib Pyplot Library: A Python library for creating static, interactive, and an-
imated visualizations in a wide range of formats.

Resample Library: A Python library for resampling time series data, providing tools
for adjusting time intervals.

Statsmodels TSA Seasonal Decomposition: A module within the Statsmodels lib-
rary that enables seasonal decomposition of time series data into trend, seasonality, and
residuals components.

Statsmodels TSA ADFuller: A module within the Statsmodels library that imple-
ments the Augmented Dickey-Fuller (ADF) test for assessing the stationarity of time
series data.

Statsmodels TSA ARIMA Model (ARIMA): A module within the Statsmodels
library for building and analyzing AutoRegressive Integrated Moving Average (ARIMA)
models.

sklearn Metrics Mean Squared Error: A module within the scikit-learn library for
calculating the mean squared error, a common metric for evaluating the accuracy of re-
gression models.

itertools: A Python module providing functions for creating iterators for efficient loop-
ing and data manipulation.

PyYAML: A Python library for working with YAML (Yet Another Markup Language)
files, often used for configuration files.

Kubernetes Python Library: Kubernetes api for interacting with a Kubernetes cluster
using client tools for the atuomated deployment of the manifesto to the cluster from the
developed program.



4 Methodology

4.1 Objective

The main objective of this research is to optimize resource allocation for containers in
a cloud computing environment, using real-world pod CPU utilization metrics from a
private company’s production infrastructure. The research aims to determine the op-
timal size for pods in terms of CPU resources, considering the unique requirements and
workload patterns of medical-related applications. However, determining the right CPU
size is an iterative process, and it requires a good understanding of your application’s
behavior and performance requirements. Regular monitoring, analysis, and adaptation
are key to maintaining optimal resource utilization.

4.2 Research Questions

How to optimization of container resource allocation by leveraging historical metrics to
accurately forecast future resource requirements?

4.3 Data Collection

Each application resource needs would vary from one another. However, understanding
the base line of the requirement and a common approach can be achieved to optimize the
resource in a general accepted approach. For the experiment of this research, the dataset
containing pod’s CPU utilization metrics is used. This real data has been provided by
a private company from their one of the medical related production application infra-
structure. This dataset is provided for the soul purpose of academic research and will be
handled through the data ehtics principles for the anonymity and security of the data.
The dataset includes timestamped CPU utilization at 10-minute intervals for two-week
period. In the Fig[2] is the current utilization graph of the pod from the private company.

Figure 2: Pod Current Usage Metrics

4.4 Workload Analysis

Thematic analysis is used to examine the data that have been gathered. Finding pat-
terns, themes, and categories within the data using thematic analysis enables a thorough
comprehension of the study subject. The iterative analysis is used to make sure that any
new topics are properly investigated. Data exploration and visualization are crucial steps
in understanding the dataset and making informed decisions. Using the pythons Pandas



library, dataset’s data frames have been created for further analysis having timestamp
and utilization as features. All the pods are allocated with 2 Core CPU for the cur-
rent running workload. The Pod peak utilization is at 1.35, average 0.32 and min 0.13.
Matplot library has been used to visualise the data for the analysis.

4.4.1 Time Series of CPU Utilization

In this line chart for time series of CPU Utilization in fig|3| ploted the Utilization and the
peak value for the period of two weeks. As stated the vales in the section [£.4] a single
peak over the period of the metrics has been recorded.
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Figure 3: Time Series of CPU Utilization

4.4.2 Aggregated and Grouped Analysis

Aggregating and grouping the time series data allows to analyze patterns at different
time intervals. In the Fig 4] plotted the aggregated daily max utilization starting at 1.03
and spiking to 1.34 and the drop to 0.83.

4.4.3 Seasonal Decomposition

Seasonal decomposition allows to separate the time series data into different components:
trend, seasonality, and residuals Gweon and McLeod| (2013). This helps in understanding
underlying patterns and trends. The period parameter has been set to 24*6 as the data
is at 10 minute intervals for a daily seasonality, this specifies the number of data points in
one complete season. Also the daily aggregated seasonal decomposition has been plotted.
In Fig [5| plotted the Observed, Trend, Seasonal and Residual using the Statsmodels
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Figure 4: Daily Aggregated Max Utilization

seasonal_decompose library for both the actual and aggregated data. In this plotting, it
is evident that this time series has seasonality and upward trend.

4.4.4 Stationary Checking

The primary assumptions time series forecasting is that the data should stationary to
achieve the forecasting. By removing the trend and seasonality, the time series would
be made stationary. Removing is the process of separating the trend and seasonality
component leaving the errors(Residual).

Rolling Statistics are commonly used in time series analysis and other fields where data
points are collected over time. It is particularly useful for smoothing out fluctuations and
identifying trends or patterns in noisy or volatile data. In the Fig[f] plotted the Rolling
Statistics and it is clear that the data has fluctuations and further smoothing has to be
carried out for better forecasting.

However, for further more comparison in the statistical point, another method, Augmen-
ted Dickey-Fuller (adfuller) has been performed on the same data for later comparison
after running the smoothing techniques. Adfuller is a statistical test used to determine
whether a given time series is stationary or not. The ADF test works by comparing the
autoregressive (AR) model of the time series with a model that includes a unit root.
The null hypothesis of the ADF test is that the time series has a unit root and is non-
stationary. The alternative hypothesis is that the time series is stationary. It produces
a test statistic and a p-value. If the p-value is below a chosen significance level (such
as 0.05), it would reject the null hypothesis. Adfuller is a component of statsmodels tsa
stattools.
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Figure 5: Seasonal Decomposition Actual and Aggregated

The p value of adfuller test for the daily aggregated data is : 0.8455405909803948 which
is above 5 % and the data is non-stationary as per the null hypothesis of the ADF test.
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Figure 6: Rolling Mean and Standard Deviation

5 Implementation

The implementation of the proposed methodology involves several key steps, ranging
from data acquisition and pre-processing as described in section [ to the integration
of predictive modeling into resource allocation. This section provides a comprehensive
overview of the technical details involved in realizing our approach.

5.1 Data Transformation

In time series analysis, data transformation using logarithm and differencing is a com-
mon practice to stabilize and make the data more amenable for analysis. The logarithm
transformation, often applied to data with exponential growth patterns or varying scales,

10



compresses large values while expanding smaller ones, reducing the impact of extreme
values and making the data distribution more symmetrical. This can aid in achieving
homoscedasticity and improving the fit of models.

Differencing involves computing the differences between consecutive observations, aiming
to remove trends or seasonality. First-order differencing eliminates linear trends, while
seasonal differencing can mitigate seasonality effects. These transformations can help
convert non-stationary time series data into stationary ones, which are more suitable for
applying various statistical techniques and forecasting in the ARIMA model.

As discussed and plotted in the [{.4.4] it is evident that the dataset has seasonality
and trend. Through log and differencing transformations, it will help further modeling to
mitigate data irregularities, stabilize variance, and create more manageable data for mod-
eling, ultimately enhancing the accuracy and reliability of forecasts and insights drawn
from the time-dependent data. In the Fig [7| plotted the data after the transformation
and adfuller resulted with p value of 0.
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Figure 7: Transformed Data

5.2 Auto Regressive Integrated Moving Average (ARIMA) Mod-
eling

As stated in the section , The ARIMA (Auto Regressive Integrated Moving Average)
model building involves selecting appropriate parameters (p, d, q) for auto regressive,
differencing, and moving average components, respectively. It aims to capture temporal
patterns, stationarity, and seasonality in time series data, facilitating accurate forecasting
and analysis.

There are many methods and techniques to selecting the appropriate (p, d, q) para-
meters. ACF (AutoCorrelation Function) measures correlation between a time series and
its lagged values, helping identify potential patterns|Dmytro et al.| (2017)). PACF (Partial
AutoCorrelation Function) reveals direct relationships between values at different lags,
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aiding in determining optimal lags for forecasting models like ARIMA. However, in this
research, a manual identification of the best parameters has been detected by running the
prediction in a for loop by leveraging the itertools library to parse the range from 0 to 8
and compared the root mean squared error RSME (from the sklearn.metrics library) with
the predicted results of 120 possible combinations with a lowest RSME of 0.1790705366
with the parameters (0,0,6).

An ARIMA model was constructed to forecast future CPU utilization, extending the
time series data’s length. The average prediction yielded 0.8477 CPU utilization, while
the root mean square error (RMSE) measured 0.1629. This model demonstrates its
capability to approximate forthcoming trends, with the RMSE illustrating the closeness
of predictions to actual values. These results underline the model’s potential in aiding
decision-making, resource allocation, and proactive system management by providing in-
sightful estimations of CPU utilization patterns. Plotted the actual and the predicted
values in Fig[§

ARIMA Model Prediction

—— Train
1.3 A ARIMA Prediction

1.2
1.1 A
1.0 A
0.9
0.8 q

0.7 1

03 10 17 24 31

Aug
2023
timestamp

Figure 8: Actual and ARIMA Model Prediction

5.3 Container Deployment Python Program using Kubernetes

Utilizing the trained ARIMA model, we predict the future CPU utilization values based
on the observed historical patterns. The predicted CPU utilization is then utilized as a
dynamic resource limit for containerized applications. To ensure realistic limits, observed
mean CPU utilization has been accounted, preventing predicted values from falling below
the observed peak.

A python program has been developed to deploy the pods. To operationalize the predicted
CPU utilization, this program dynamically generates a deployment manifesto configura-
tion for Kubernetes deployments. The manifesto embeds the predicted CPU utilization
value as the resource limit for the deployment of the pods. The program also utilises
the python’s Kubernetes client library and deploys the pod in the kubernetes cluster and
also generates a manifesto YAML for the configuration backup.

In this research, for the purpose of the demonstration, used minikube a kubernets sand-
box application to create the cluster in the local environment. This seamless integration
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between predictive modeling and container orchestration allows for agile and responsive
resource allocation. The subsequent sections delve into the pseudocode detailing each
step of the implementation process. Through this approach, we enable data-driven and
adaptable resource management strategies, enhancing the efficiency and performance of
containerized applications.

5.3.1 Data Acquisition and Preprocessing

e Load JSON dataset from file

Extract CPU utilization values from dataset

Convert the timestamp to pandas date and time with ms unit

Convert the dataset to dataframes

Set timestamp as the index

e Resample the daily max utilization

5.3.2 AutoRegressive Integrated Moving Average (ARIMA) Modeling
e Define ARIMA parameters: order (p, d, q)

e Train ARIMA model with the resampled CPU utilization data

5.3.3 Resource Limit Prediction

e Predict future CPU utilization using ARIMA model

e Ensure predicted value = mean(observed CPU values)

5.3.4 Dynamic Manifesto and YAML Generation
e Define YAML template with predicted_cpu placeholder

e Replace predicted_cpu with predicted value

Record other deployment details through keyword argument

Generate pod deployment YAML file

Print(”Pod deployment YAML with predicted CPU as resource limit generated.”)

5.3.5 Deploy Container to the Kubernetes (minikube) Cluster

e Import the kubernetes config and client

e Deploy pod using the dynamically generated manifesto through Kubernetes client
api

e Print api response
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5.4 Container Deployment in Kubernetes (Minikube) Cluster
5.4.1 Kubernetes Cluster

A Minikube Kubernetes sandbox environment has been created as discussed in section
(.3l Minikube is a tool that sets up a local single-node Kubernetes cluster in the local
environment, which allows to develop and test applications in a Kubernetes-like envir-
onment. This is particularly useful for local development and testing purposes. In this
setup, Minikube utilizes the Docker daemon underlying it to manage and orchestrate the
Kubernetes control plane and worker nodes.

Fig [0 and Fig[I0] are the cluster details of the Minikube and Docker environment.

libintom minikube start --driver=docker
@ nmintkube v1.31.1 on Darwin 11.7.4
Using the docker driver based on user configuration
Using Docker Desktop driver with root privileges
Starting contrel plane node minikube in cluster minikube
% Pulling base image ..
> ger.io/kBs-minikube/kicbase...: 447.62 MiB / 447.62 MiB 100.00% 5.16 Mi
Creating docker container (CPUs=2, Memory=1985MB) ..
"/ Preparing Kubernetes v1.27.3 on Docker 24.0.4 ..
= Generating certificates and keys ...
= Booting up control plane ...
_ = Configuring RBAC rules ..
(¥ Configuring bridge CNI (Container Networking Interface)
Verifying Kubernetes components...
.. " Using image gcr.io/kBs-minikube/storage-provisioner:vs
i Enabled addons: default-storageclass, storage-provisioner

fusr/local/bin/kubectl is version 1.25.2, which may have incompatibilities with Kubernetes 1.27.3.
= Want kubectl v1.27.32 Try 'minikube kubectl -- get pods -A’

L» Done! kubectl is now configured to use "minikube" cluster and "default" namespace by default
intom minikube status

host: Running

kubelet: Running
apiserver: Running
kubeconfig: Configured

Figure 9: Minikube Environment

Llibinton _ sudo docker info

Context: default

Debug Mode: false

Plugins:

buildx: Docker Buildx (Docker Inc., v8.9.1)

compose: Docker Compose (Docker Inc.,
dev: Docker Dev Environments (Docker -8,
extension: Manages Docker extensions (Docker Inc., v@.2.13)

sbom: View the packaged-based Software Bill Of Materials (SBOM) for an image (Anchore Inc.,
scan: Docker Scan {Docker Inc., v8.21.8)

Figure 10: Docker Dev Environment

5.4.2 Program Execution

The Python program orchestrates the deployment of Kubernetes pods within the cluster,
utilizing keyword arguments to input data into various functions within the program.
These keyword arguments serve as parameters that guide the program’s behavior and
configuration. As the program executes, it generates a deployment manifest, which is a
structured configuration file that defines how the pods and related resources should be
deployed and managed in the Kubernetes cluster. This manifest includes details such as
the container image, resource requirements, number of replicas, networking settings, and
more. To initiate the program execution, the following command is used.

# command to execute the deployment with the predicted cpu limit.
$python3 predicted-pod-depolyment.py --ts_data prometheus-dataset-1.json
—--pod_name research-app-1 --image nginx:1.15.4 --cpu_request 500m
-—memory_request 500Mi —--memory_limit 1Gi --no_replicas 2 --port_num 80
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Here, predicted-pod-depolyment.py represents the name of the Python program file,
the —ts_data is timeseris utilization metrics file path, —pod_name is the desired name for
the application pod, —image is the container image name, —cpu_request is the CPU min-
imum request, -memory _request is the memory minimum request, -memory_limit is the
max memory limit, —no_replicas is the number of pod replicas, and -port_num is the pod
networking port number flags along with their corresponding values provide the neces-
sary input for the program’s functions.” Here the CPU limit will be the model prediction
output provided as input for the dynamic manifesto generation.

This Figure [11] captures the response and output generated after executing the Python
program. It showcases relevant information, such as the progress of pod deployment,
successful completion, or any potential error messages. The response may include details
about the dataset description before grouping, after grouping and pods creation status
from the response of the Kubernetes client api which is higlighted in the figure. This
visual representation offers insights into the program’s interaction with the Kubernetes
cluster and deployment process.

(reproject) libintom J~/Documents/ms_projects/sem3/research_project/k8=pods » python3 predicted-pod-depolyment.py ——ts_data prometheus-dataset-1.json —pod_name researc
-no_replicas 2 —port_num 8@
Imported the Dataset Succsussfully!

Time Series Dataset Details Before Grouping
count 2017. 000000

mean 0.321518

std B:

min

25%

50%

75%

max 35428

Name: utilization, dtype: float&d

Time Series Dataset Details After Grouping
count 15. 000000

mean ©.854279

std ©.187944

min

Name: utilization, dtype: float64
Time Series Data Head 2
utilization

timestamp
2 03

Figure 11: Deployment Program Output

5.4.3 Deployment Output

In Figure [12] observed the result of executing the kubectl get pod command. This com-
mand provides a concise overview of the current state of the deployed pods within the
Kubernetes cluster. The output showcases the successful deployment of pods, with the
requested number of replicas being 2 in this specific scenario. The ’STATUS’ column
indicates that both replicas are in a "Running’ state, indicating that they are active and
operational within the cluster. This visual representation confirms the accomplishment
of the deployment goal, and the desired pod replicas are up and running as expected.

Figure provides an insightful description of the deployed pods. This detailed de-
scription is accessible by executing the kubectl describe pod command, followed by the
name of the specific pod. The figure’s focus is on highlighting the pod’s predicted CPU
limit, which is an essential aspect of resource allocation and management in Kubernetes.
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The highlighted section underscores the allocated CPU resources for the pod, helping to
understand how the pod is configured in terms of computing power.

Libintom kubectl get pods
NAME READY  STATUS RESTARTS  AGE

research-app-1-779db85dd6-59vzs  1/1 Running @ 6mi2s
research-app-1-779db85dd6-cBvsw  1/1 Running @ 6mi2s

Figure 12: Successful Pod Deployment

libintom kubectl describe pod research-app-1
Name: research-app-1-779db85dd6-59vzs
Namespace: default
Priority: 0
Service Account: default
minikube/192.168.49.2
Fri, 11 Aug 2023 23:03:35 +0100
app=research-app-1
pod-template-hash=779db85dd6
<none>
Running
10.244.0.19

10.244.0.19
ReplicaSet/research-app-1-779db85dd6

research-app-1-cont
Container ID: docker://2251a82e08dd4c3a198e91f71c1f670a1cOBe3ee6457d75bbd3175431ceeab1d
3 nginx:1.15.4
docker-pullable://nginx@sha256:e8ab8d42e0c34c104ac60b43bat0b19af08e19a0e6d50396bdfd4cef0347ba83
: 80/TCP
Host Port: 0/TCP
State: Running
Started: Fri, 11 Aug 2023 23:03:37 +0100
Ready: True
Restart Count: @
Limits:
cpu: B47m
memory: 1Gi
Requests:
cpu: 500m
memory: S00Mi
Environment: <none>
Mounts:
Jvar/run/secrets/kubernetes.io/serviceaccount from kube-api-access-9r754 (ro)

Figure 13: Deployed Pod Description

Overall the Python program coordinates pod deployment by utilizing keyword argu-
ments to configure its behavior. These arguments drive the creation of a deployment
manifest, a structured configuration file detailing resource deployment within the cluster.
Executed via command line, the program interfaces with the Kubernetes cluster to de-
ploy pods with specified attributes. The successful execution is reflected in the cluster’s
deployment, achieving the desired number of replicas. The program also interacts with
Docker for containerization and orchestration. Moreover, detailed pod attributes, like
predicted CPU limits, aid resource allocation optimization. Overall, this orchestrated in-
terplay underscores Kubernetes development and testing the implementation of forcated
efficient exploration of Kubernetes capabilities in a contained setting.

6 Evaluation

6.1 Experiment / Case Study 1 - Data Collection and Analysis

The data collection process was successful in obtaining real-world pod CPU utilization
metrics from a private company’s production infrastructure. The analysis conducted in
section provided valuable insights into the workload patterns and behavior of the
medical-related applications. The time series analysis, aggregated analysis, and seasonal
decomposition revealed underlying trends, seasonality, and fluctuations in the CPU utiliz-
ation data. The identification of non-stationarity using the Augmented Dickey-Fuller test
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highlighted the need for data transformation. Figure [14]is the adfuller result before and
after the transformation. The two transformation methods used are Log and Difference
which smoothen the metrics from 0.8455 to 0.0 P value. This evaluation demonstrated a
thorough understanding of the collected data’s characteristics, setting a strong foundation
for subsequent steps.

15] from statsmodels.tsa.stattools import adfuller g#5# Original Timeseries Data #########
# Perform Augmented Dickey-Fuller test:
51] ##### Original Timeseries Data ##f#diiss # ADF Test - nul hypothesis - non-stationary - if

# Perform Augmented Dickey-Fuller test:
# ADF Test - nul hypothesis - non-stationary - i adfuller result = adfuller(ts_sqgrt_diff.dropna(),

adfuller_result = adfuller(ts_daily, autolag='AI print(f'ADF Statistic: {adfuller_result[0]}")

print (f'ADF Statistic: (adfuller_result[0]}') print(f'p-value: {adfuller result[1]}')

int (f'p-value: dfull 1e[1]}’ , .
print(f'p-value: {adfuller result[1]}") for key, value in adfuller result[4].items():

for key, value in adfuller_result[4].items(): print(’Critial Values:')

print('Critial Values:') print (£’ {key}' {value} ')
print(f' {key}, {value}')
ADF Statistic: -29.715982989058123
ADF Statistic: -0.7046531182361528 p-value: 0.0
p-value: 0.8455405909803948 Critial Values:
Critial Values: 1%, -3.433605925774539
1%, -4.137829282407408 critial values:
Critial Values: 5%, -2.862978297026843
5%, -3.1549724074074077 Ead
Critial Values: Critial Values:
10%, -2.7144769444444443 10%, -2.5675356871295394

Figure 14: Adfuller Result Before and After Transformation

6.2 Experiment / Case Study 1 - ARIMA Modeling and Dy-
namic Resource Allocation

The implementation of the ARIMA modeling in section [5.2] showcased the capability to
forecast future CPU utilization based on historical patterns. The selection of ARIMA
parameters through a comprehensive search process yielded a promising model. The gen-
erated ARIMA model demonstrated its effectiveness by producing accurate predictions
and maintaining a low root mean square error (RMSE), shown the results in the Figure[15]
. These results affirm the suitability of the ARIMA model for predicting CPU utilization
patterns, contributing to the optimization of resource allocation strategies.

The implementation of the dynamic resource allocation strategy using Kubernetes and
the Python program was successful in orchestrating the deployment of pods based on the
predicted CPU utilization. The program’s ability to dynamically generate a deployment
manifesto and utilize predicted resource limits showcased the integration between predict-
ive modeling and container orchestration. The deployment to the Minikube Kubernetes
cluster demonstrated the feasibility of the approach in a controlled environment. The suc-
cessful deployment of pods with predicted CPU limits verified the potential for adaptive
and data-driven resource allocation.
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from sklearn.metrics import mean_squared error

pred error = np.sgrt(mean squared error(test,pred model))
pred_error

0.1636538338189795

test.mean(), np.sqgrt(test.var())

(0.39618020600714215, 0.030894911036565935)

Figure 15: Root Mean Square Error

6.3 Experiment / Case Study 3 - Cost Comparison

In order to gauge the tangible benefits of the proposed resource allocation strategy, con-
ducted a cost comparison between the original configuration and the configuration util-
izing the predicted CPU limits. In the original setup, we had 20 pods running at 2
cores each, resulting in significant underutilization of resources. On the other hand, our
predictive modeling approach suggested a more efficient allocation, with an average pre-
dicted CPU limit of 0.8 cores per pod.

Considering a cost of 1 euro per core per day, calculated the annual expenses for both
scenarios. In the original underutilized configuration, the total cost over the course of
356 days amounted to 14,600 euros. In contrast, the implementation of predicted CPU
limits resulted in a substantially reduced cost of 5,840 euros for the same duration. This
stark contrast highlights the potential for substantial savings. By employing predictive
modeling and dynamic resource allocation, we achieved a remarkable 60% reduction in
costs, as depicted in Chart [16] It’s important to note that this cost reduction is a pre-
liminary estimate and could be further optimized in real-world scenarios.

While this cost comparison provides a compelling snapshot of the potential benefits,
it is accepted that additional factors need to be considered for a comprehensive evalu-
ation. Factors such as application performance, response time, system throughput, and
the potential impact of over-utilization should all be part of the equation when refining
this approach for future implementations.

6.4 Discussion

The findings of the research indicate promising results in optimizing resource allocation
based on predicted CPU limits. The utilization of real-world pod CPU utilization met-
rics provided a valuable dataset for analysis. Thematic analysis, time series exploration,
and ARIMA modeling contributed to understanding the workload patterns, identifying
trends, and generating accurate predictions for future CPU utilization. The integration
of predictive modeling into container deployment demonstrated the feasibility of dynam-
ically adjusting resource limits based on forecasted utilization. The cost comparison
revealed substantial cost reductions, with the predictive approach achieving a 60% re-
duction in expenses compared to the underutilized original configuration. This finding
underscores the potential of this methodology in achieving efficient resource utilization
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Figure 16: Comparison of Original vs. ARIMA Forecasted Annual Costs

and cost savings.

The detailed analysis of the methodology encompassed various stages, from data col-
lection and preprocessing to ARIMA modeling and dynamic deployment. The trans-
formation of the CPU utilization data through logarithm and differencing improved sta-
tionarity, facilitating accurate modeling. The ARIMA modeling process was successful in
predicting future CPU utilization, which was further utilized as dynamic resource limits
for container deployment. Furthermore, the integration of Kubernetes and the Python
program provided a practical approach to dynamically allocate resources based on pre-
dictions. The successful deployment of pods with predicted CPU limits validated the
viability of this approach in achieving adaptive resource allocation.

While the experimental design exhibited strong points, such as comprehensive data ana-
lysis and successful implementation, there are areas that warrant scrutiny and potential
enhancements. One limitation of the research was the focus on a single utilization met-
ric and a relatively short two-week timeframe. To enhance the generalizability of this
findings, future research could involve forecasting multiple usage metrics (e.g., memory,
network) over longer time periods. This would provide a more comprehensive view of
resource allocation optimization. Additionally, while ARIMA modeling yielded accurate
predictions, exploring alternative time series models like Seasonal ARIMA could provide
a benchmark for comparison. Comparing the effectiveness of different models in predict-
ing CPU utilization patterns would enhance the robustness of the findings.

In the realm of future improvements, several key enhancements are recommended. Firstly,
to address the variability of application workloads comprehensively, integrating predictive
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models across multiple usage metrics is proposed. This would entail developing predict-
ive models for memory and network usage, allowing for a more holistic approach to
resource allocation optimization. Additionally, extending the duration of data collection
and prediction could enhance the accuracy of forecasts by revealing longer-term trends
and seasonal patterns. Moreover, considering alternative time series models like Seasonal
ARIMA and exploring machine learning techniques may enhance prediction precision,
and a comparative assessment of these models would provide insights into the most ef-
fective resource optimization approach. In terms of contextualizing this research within
existing literature, it fills a significant gap by offering a data-driven solution for optimizing
resource allocation within fixed limits, a distinct departure from the predominant focus
on vertical resource scaling. This approach aligns more effectively with the constraints of
diverse application scenarios, ultimately advancing the field of cloud computing resource
management.

7 Conclusion and Future Work

In conclusion, this research has demonstrated a data-driven approach to optimize resource
allocation for containerized applications in a cloud computing environment. By lever-
aging historical CPU utilization metrics and ARIMA forecasting, proposed a strategy to
dynamically adjust CPU resource limits for pods. The results showcased a substantial re-
duction in resource underutilization, leading to cost savings of around 60% and improved
resource efficiency. Through comprehensive workload analysis, time series modeling, and
Kubernetes integration, we illustrated the feasibility and potential benefits of this ap-
proach.

Future Work: Looking ahead, there are several exciting directions to build upon the
progress made in this study. One promising avenue is to expand the predictive approach
beyond CPU utilization to include other vital metrics like memory and network usage.
This would create a more comprehensive strategy for optimizing different aspects of re-
source allocation. Additionally, it is good delve into the realm of advanced techniques like
Seasonal ARIMA and ACF, PACF smoothening techniques to refine the predictions fur-
ther. By testing the proposed methodology with a broader range of application scenarios
and considering longer duration dataset, it is possible to gain more comprehensive under-
standing of its real-world applicability. Exploring dynamic resource management through
real-time adjustments and exploring how the approach interacts with auto-scaling mech-
anisms would add another layer of sophistication to the strategy. Ultimately, ongoing
research in this field holds the promise of revolutionizing how we manage cloud resources,
making applications more efficient, cost-effective, and responsive to changing demands.
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