~

"N National
College
Ireland

ANALYSIS OF DYNAMIC APPLICATION
LOAD BALANCING IN KUBERNETES
USING CDN

Research Project
MSc Cloud Computing

Nitu Kumari
Student ID: x21215995

School of Computing
National College of Ireland

Supervisor: Diego Lugones

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nitu Kumari
Student ID: x21215995
Programme: MSc Cloud Computing
Year: 2023
Module: Research Project
Supervisor: Diego Lugones
Submission Due Date: 14/8/2023
Project Title: ANALYSIS OF DYNAMIC APPLICATION LOAD BALAN-
CING IN KUBERNETES USING CDN
Word Count: 5624
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nitu Kumari

Date: 17th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

ANALYSIS OF DYNAMIC APPLICATION LOAD
BALANCING IN KUBERNETES USING CDN

Nitu Kumari
x21215995

Abstract

Rapid growth in web traffic has a negative impact on timely data transmission,
making it a significant issue. Web servers are becoming increasingly overburdened
due to a rise in the number of users and the quantity and size of content, as a
result of immense data consumption. Web service providers and enterprises de-
pendent on the Internet are impacted. Content delivery networks are a convenient
way to reduce server and network traffic and increase end-user response times. By
selecting the server that is geographically closest to the user, a Content Delivery
Network (CDN) accelerates hardware delivery, resulting in faster load times and a
more streamlined browsing or streaming experience. Concurrently, Kubernetes has
acquired popularity as a container orchestration platform that is used to manage
and extend applications. It effectively distributes incoming traffic across multiple
groups of independent servers hosting applications. Experts have investigated the
use of CDN and Kubernetes together, has improved load balancing and the user
experience. Kubernetes, load balancing techniques such as weighted round-robin
and IP hash and Content Delivery Networks can be used to maximize the benefits
of both approaches. CDNs reduce latency and enhance response times by bring-
ing content closer to users. Kubernetes prevents servers from becoming overloaded
during this process by dynamically distributing requests across pods, thereby as-
suring efficient resource utilization. The integration of these technologies enhances
efficiency and the overall user experience. The proposed combination of Content
Distribution Networks, Kubernetes, and efficient load balancing algorithms is in-
tended to increase resource allocation, load balancing capabilities, and user content
distribution. The purpose of this research is to investigate the complexities of this
well-designed process to develop a system that is straightforward to use.

Keywords - User experience, Content Delivery Networks (CDNs), Load balan-
cing, Kubernetes, Resource allocation, Response times, Latency, IP Hash,Weighted
round-robin algorithm.

1 Introduction

Cloud computing has drastically revolutionized business tasks since it makes it simple
to have instant access to computing resources Shafiq et al.| (2021]). Two significant tech-
nologies, such as cloud computing and containerization, are highlighted in the research
background material for their revolutionary effects. Users and organizations can now
access and utilize an extensive range of services based on their specific requirements be-
cause of the robust and flexible architecture of cloud computing. In order to successfully

scale the infrastructure for such massive loads, it is a usual practice in modern comput-
ing to deploy more servers Nagarajan| (2019). But in the context of cloud computing,
load balancing—the evenly distributed allocation of workload over numerous servers—is
a typical approach. Due to more individuals using the Internet and other online services,
web traffic has significantly increased recently.

Load balancing has developed into a critical technique for maximizing resource al-
location and distributing incoming requests among multiple servers in order to handle
increasing internet traffic and ensure a smooth user experience Afzal and Kavitha| (2019).
To maximize resource utilization and prevent server congestion, effective workload man-
agement across multiple servers requires the implementation of load balancing solutions.
Load balancing solutions play a crucial role in ensuring uninterrupted operations, optim-
izing resource efficiency, and delivering superior services in a cloud environment. These
solutions not only improve the scalability, dependability, and fault-tolerance of a web
application’s architecture overall, but also accelerate websites by distributing incoming
requests effectively Radhika and Duraipandian (2021)). Due to difficulties with load bal-
ancing and preserving optimal performance for high-traffic websites, a Content Delivery
Network (CDN) was developed as a potential remedy. The CDN consists of a large num-
ber of servers that have been intelligently distributed around various global locations.
This method greatly reduces network traffic, lowers latency, and improves the efficiency
of information distribution as a whole. Websites can improve user experience and address
load balancing issues in modern high-traffic web settings by using a CDN to give users
faster and more dependable access to content.

1.1 Content Delivery Networks (CDNs): Enhancing Web Per-
formance and User Experience

Numerous ”digital lifestyle” populations are increasing their daily content consumption
demands [Yang et al.| (2023). Effective material delivery has become essential for websites
with a lot of traffic due to the Internet’s rapid development and the rising desire for a
good user experience. Content delivery networks (CDNs) are currently seen as a potential
solution to handle multiple concurrent user requests and ensure fast and accurate content
delivery. By providing content from the server that is most convenient for the user’s
location, a CDN delivers a strategically fast-positioned network of servers that reduces
network congestion and delays. The ability of CDNs to distribute content to several
servers globally for faster delivery and more scalability is the reason for their widespread
appeal. The suggested routing method automatically allows users to directly get access
to the the content depending on their membership by exploiting the CDN’s capabilities,
maximizing the user experience and resource allocation Varma et al.| (2023).

To reduce latency and speed up the delivery of the requested content, the CDN
directs the user’s request to the closest edge server. Users receive content using this
neighborhood-based content delivery function from a server that is close to them, res-
ulting in an easy and smooth user experience. The scalability and durability of online
services are greatly improved by CDNs, in addition to accelerating response times. The
application can handle heavy traffic loads without performance deterioration during times
of high demand thanks to the ability of workloads to be dynamically distributed among
numerous edge servers via CDN. In order to maintain duplicate copies of the same piece
of content on different servers, CDNs also take advantage of content replication. This
redundancy ensures that even if one server goes down, material may still be accessed

from other servers, improving the overall stability of the online program. Users’ stream-
ing experiences are optimized for them via Content Delivery Networks (CDNs) using the
adaptive bitrate streaming approach, especially when watching multimedia content like
videos. In general, CDNs have become a vital part of the internet’s infrastructure, en-
abling businesses to effectively transmit material, improve user experience, and maintain
high performance even in the face of tremendous amounts of traffic. The user experience,
video streaming quality, and application performance of web apps that use CDNs are all
enhanced for the user.

Client Client Client Chieni Client

Figure 1: Content Delivery Network

1.2 Load Balancing in Cloud Environments: Challenges and
Solutions

Application Servers
End Users Load Balancer

9

- Do

Figure 2: Importance Of Load Balancing

Figure 2 demonstrates that load balancing is required for distributed environments to
function effectively. As the cloud computing is growing rapidly, the increasing customer
demand for more services, and the ensuing integration, cloud load balancing has become
a fascinating and crucial area of research Darji and Nakrani (2021). It intends to use
a scalable network of nodes to transparently transmit, evaluate, and provide services.
Primarily, it distributes resources and stores information in an open environment. Con-
sequently, data storage is rapidly expanding. Website traffic has significantly increased as
a result of the enormous increase in Internet usage and the widespread adoption of web
services. Modern and busy websites must concurrently manage a large number of user

or customer requests, running in the hundreds or even millions, in order to offer correct
text, photos, videos, or data.

503

Service Unavailable

Application Clients /| End Users Int t
pplicatl ! mierns Web Servers

Figure 3: Server Overloaded Problem

Modern IT best practices frequently involve adding additional servers to the infra-
structure in order to efficiently manage these enormous volumes. Content Delivery Net-
works (CDNs) have emerged as a promising solution by enhancing cloud load balancing.
A CDN consists of geographically dispersed and strategically positioned servers. This
method increases information delivery efficiency while decreasing latency and network
congestion. By outsourcing content delivery from origin servers to peripheral servers,
content delivery networks (CDNs) improve response times, video streaming, and applic-
ation performance. This research investigation aims to manage the dynamic load of
Kubernetes by demonstrating the effectiveness of Content Delivery networks.

The goal is to optimize content delivery to consumers, improve resource allocation,
and enhance load balancing by combining the global reach and efficient load balancing
capabilities of a content delivery network (CDN). In order to improve online speed and
user experience in cloud environments, we intend to execute a comprehensive perform-
ance evaluation and analysis of the effectiveness of using CDNs for load balancing in
Kubernetes installations.

1.3 Research Question

What are the potential advantages of combining Content Delivery Networks (CDNs) with
Kubernetes for load balancing in web applications, and how can this combination enhance
web performance and user experience?

1.4 Research Objective

This research seeks to investigate and develop a novel method for dynamic load balancing
for web applications running on Kubernetes clusters. The purpose of the research is to
incorporate Content Delivery Network (CDN) technology into load balancing in order to
improve web application user performance and response times.

2 Related Work

This section provides a comprehensive analysis of the literature on ”Dynamic Load Bal-
ancing Using CDN in Kubernetes Environments.” Insights into various load balancing
techniques and approaches in the context of Content Delivery Networks (CDNs) and
Kubernetes settings are the goal of this research. By carefully examining earlier re-
search and studies, this is accomplished. The major objective of this literature review is
to discuss about the present state of load balancing strategies, including their benefits,
drawbacks, and difficulties. Additionally, it seeks to provide new avenues for investiga-
tion and advancement in this field by incorporating knowledge from pertinent academic
studies.

2.1 Content Delivery Networks (CDNs) and Load Balancing

The paper by Punit Gupta Guptal (n.d.) proposes an error-sensitive load balancing
method for Content Delivery Networks (CDNs) to improve scalability and dependability.
The study investigates the increase in network traffic and demand for content services
provided by the CDN. Utilizing load balancing, request routing, and resource replica-
tion improves CDN performance. It presents a generalized strategy for load balancing
to overcome existing limitations and proposes a fault-sensitive method to improve server
reliability. The article by S.P. Sitorus, E.R. Hasibuan, and R. Rohani investigates Sitorus
et al| (2021) load balancing strategies and their impact on Content Delivery Networks
(CDNs). Simulations are used to illustrate how various load balancing strategies improve
server service performance by reducing latency and packet loss. The study acknowledges
certain limitations, such as the fact that the simulated environment does not replicate
real-world conditions precisely. To precisely evaluate the effectiveness, additional compar-
isons with other algorithms are necessary. The research of Nakanishi et al. (2020) focuses
on optimizing content delivery in the cloud by analyzing enhanced video content quality
and increased traffic. The study proposes an effective method for content delivery that
accounts for network distance and dynamically configures the content cache on the edge
network using the BGP AS path. This Kubernetes-implemented strategy improves client
access while diminishing HTTP response time. Additional Internet testing is slated for
real-world applications. The paper Simi¢ et al.| (2023) compares collaborative advertising
with non-cooperative online document retrieval using a commercial CDN to demonstrate
the efficacy of content delivery in a CDN. Similar collaborative push performance while
update and replication traffic is reduced. According to this paper, granular replication is-
sues can be resolved by implementing cluster replication based on client proximity. Offline
and online incremental clustering methods are provided to accommodate user access pref-
erences. To encourage their use in CDN scenarios, the benefits of incremental clustering,
cluster-based replication, and online popularity prediction systems are highlighted.

2.2 Solutions offered by Kubernetes for Dynamic Load Balan-
cing

Zhang et al. (2018) |Zhang et al. (2018)) proposed a dynamic load balancing algorithm
to the Kubernetes Ingress Controller in order to resolve the deficiency of the integrated
load allocation scheme. Before allocating resources, this algorithm evaluates the CPU,
storage, and network bandwidth of each node, in addition to the importance and weight

of incoming requests. It also takes the interdependencies between microservices into
account to optimize delivery. Qingyang Liu et al. (2020) used the same custom load
balancer |Liu et al. (2020)to take into account the request weight and the active state of
each node. In terms of requests per second (RPS), these techniques reduce prospective
expenses and enhance efficiency. Due to its container support and dynamic resource man-
agement, Kubernetes (K8s) is regarded indispensable for peripheral computing Nguyen
et al| (n.d.) by the authors of Q.-M. , T. Kim, L.-A. Phan, T. Nguyen. They address
issues with load balancing that impede query processing in geographically distributed
edge scenarios. They propose the sophisticated traffic balancer Resource Adaptive Proxy
(RAP) as a solution. RAP continuously evaluates nodes and worker pools to improve load
balancing, prioritizing local request processing for lower latency and greater throughput
in environments with a high demand for computation. RAP has potential as a load-
balancing option for Kubernetes in peripheral computing environments, according to the
findings of this study. The paper by T. T. Nguyen, Y. J. Yeom, T. Kim, D. H. Park,
and S. Kim provides information about the Horizontal Pod Autoscaler (HPA) engine
as well as Kubernetes’ capabilities and performance Nguyen et al. (2020). This study
investigates the impact of the difference between Prometheus Custom Metrics (PCM)
and Kubernetes Resource Metrics (KRM) on the behavior of HPAs. Research improves
Kubernetes load balancing by casting light on HPA performance and empowering users
to make knowledgeable decisions regarding load balancing strategies based on multiple
metrics. Using available assets. In the paper by C. C. Chang, S. R. Yang, E. H. Yeh,
P. Lin, and J. Y. Jeng, a standardized method for dynamic cloud resource provisioning
with Kubernetes deployment is outlined |Chang et al| (2020). Taking system resource
utilization and application quality of service (QoS) metrics into account, it addresses the
drawbacks of the current Kubernetes approach. The process of platform resource pro-
visioning is modularly constructed, making it easy to implement and replace algorithms
without affecting other modules. By using service-specific routing policies, Service Mesh
Istio was employed in the paper Shitolel (2023) to dynamically distribute traffic among
services.

2.3 Edge Computing Strategies for Load Balancing

X. Wei and Y. Wang describe load balancing techniques to efficiently distribute data
across clouds, increase data processing efficiency and reduce data access latency in their
paper [Wei and Wang] (2023)). They suggest load balancing solutions, such as offloading
and data replication, to reduce the need for storage on overburdened peripheral serv-
ers. This paper proposes a data sorting technique for periphery computing with data
ubiquitylation and a significant reduction in data access latency. Authors G. Xu, M.
Zhang propose a JCETD (Hybrid Cloud Edge Task Deployment) load balancing method
for hybrid cloud edge data centers Dong et al.| (2021). For rapid task deployment and
global load balancing, it employs reinforcement learning and pruning mechanisms. By
comparing the proposed solution to the current standard of care, both completion time
and reaction time are significantly reduced. Future work on conventional cloud comput-
ing will concentrate on intelligent task placement and other advances in load balancing.
The paper [Chen et al.| (2020) by authors Chen and Zheng proposes a load balancing
mechanism referred to as ”strategy w” to organize and distribute data in heterogeneous
edge computing environments. To ensure effective load balancing and resource utiliza-
tion, the primary objective is to fairly distribute data across edge nodes with varying

capacities. The method employs weighted Voronoi diagrams and weighted entropy for
load balancing. Taking into consideration heterogeneity and cooperation between edge
nodes, strategy w is a useful component for edge computing, according to the paper.

2.4 Summary of Literature Review

Reference | Framework| Approach | Advantages Limitations
Author Error- Request Enhanced Doesn’t
-Punit sensitive routing, Depend- provide
Gupta load bal- and re- ability extensive
ancing source rep- | ,CDN’s perform-
method lication server re- ance evalu-
for Content liability is ations
Delivery improved
Networks
Author Optimal BGP AS Reduced Performance
-Kento Na- | content path net- Response issue in
kanishi, delivery work dis- Time large-scale
Fumiya Su- | method tance scenarios
zuki
Author - Dynamic CPU, stor- | Prioritized | Less robust
Zhang, J., load bal- age, and Request
Ren, R ancing al- network Handling
gorithm for | bandwidth
Kubernetes | of each
Ingress node before
Control- allocating
ler resources
Author Resource Prioritize High Performance
-Q.-M. Adapt- local re- Through- issue in
Nguyen, ive Proxy quest pro- | put huge traffic
L.-A. (RAP) cessing
Phan, and
T. Kim
Author - Hybrid Cloud- Improved Scalability
Y. Dong, Cloud edge aware | Perform- Issue
G. Xu, M. | Edge strategy ance
Zhang Task De-
ployment
(JCETD)

The reviewed papers propose a variety of load balancing strategies to enhance the
efficiency of cloud computing environments. These techniques are designed for a vari-
ety of use cases, such as Content Delivery Networks (CDNs), Kubernetes-based container
clusters, and hybrid cloud peripheral data centers. The research highlights the importance
of load balancing for optimizing resource utilization, response times, and user experiences.
While the presented approaches demonstrate improved performance and scalability, fur-
ther research is required to address potential limitations and investigate more intelligent
load balancing strategies for cloud computing environments that are constantly evolving.

3 Methodology

The research technique is described in this section. In 3.1, the research flow is explained;
in 3.2, System Design; and in 3.3, various tools and technologies are discussed.

This research will employ content delivery network and load balancing techniques
to dynamically balance requests on Kubernetes clusters hosting web applications. This
research provides solutions for the Kubernetes issues of insufficient load balancing, mon-
itoring of service latency, and lack of security between services. SSL/TLS encryption is
utilized to ensure secure data transit between CloudFront edge locations and end users,
distributing incoming requests evenly across all available resources. The proposed solu-
tion provides higher efficiency and faster response times than conventional Kubernetes
configurations. This solution addresses previously unsatisfied needs within the Kuber-
netes ecosystem.

content visitor

content provider

Edge Server

Local DNS Server

Content Delivery Network

Figure 4: CDN Architecture

The figure shows the underlying structure of a content delivery network (CDN). The
architecture of a CDN encompasses the network itself, peripheral servers, content servers,
and user requests. DNS resolution directs user requests for web content to the nearest
peripheral server. The Edge Server examines its cache and, as soon as the content is
discovered (cache hit), distributes the content directly to the user. If the content is not
cached (cache error), requests are forwarded to the origin server, which stores the original
document. Common hardware can be replicated across multiple peripheral servers to ex-
pedite access, and load balancing algorithms maximize resource efficiency by distributing
incoming requests among them. Moreover, CDNs prioritize secure data transmission
via SSL/TLS encryption and continuously monitor and optimize delivery performance,
including content expiration and recall procedures. Website content with improved reli-
ability and quicker response times.

3.1 Research Flow

As shown in the above diagram the research process is divided into different phases, each
of which elevate the objectives of the research:

Data Collection: This first stage involves collecting user information using an open-
source VPN browser, specifically the IP address used to access the website.

OBjeatve

Analyzinéhfffectiveness —
of CDN for load
balancing in Kubernetes

CDN implementation Data Replication

q rithms
Foudrrersiuigailey TLEIE - ideead

¢

Performance Evaluation

Setting up
Kubernetes cluster

Result

e
time Resmlxht of the

Checking Response ———» Conclusion

Figure 5: Flow of the research

Data Analysis: This step involves understanding load distribution patterns and identi-
fying improvement opportunities. This procedure aids in comprehending how CloudFront
integration affects load balancing.

Kubernetes Cluster:Kubernetes Cluster Management makes it feasible to dynam-
ically balance load with a CDN. It enables efficient resource allocation and coordination
to meet different needs.

Load Balancing Strategy:Using Kubernetes and CDN capabilities, the most ad-
vanced dynamic load balancing strategies are discovered at this point in the procedure.
The objectives are to effectively distribute incoming requests and enhance system per-
formance.

Data replication: Evaluation of the effects of data replication strategies on availab-
ility and resilience. The objective is to create data replication systems that are reliable
and can improve system dependability.

CloudFront integration: CloudFront’s integration into the system enables efficient
load distribution and content delivery. This section investigates how CloudFront affects
load balancing and overall system performance.

Performance Evaluation: To determine whether the suggested solution is practical,
in this step, rigorous performance testing and comparisons with current load balancing
algorithms are conducted. The evaluation seeks to determine progress and confirm the
effectiveness of the suggested remedial action.

Result: The performance evaluation’s results are displayed and analyzed. The re-
search’s successes and conclusions about load balancing efficiency and system performance
are presented in this phase.

Conclusion: In the concluding phase, search results are summarized and based on
the results, inferences are drawn. In addition to recommending the optimal configuration

for a load balancer, the significance of the proposed solution is also examined.

The research methodology intends to methodologically handle load balancing prob-
lems in cloud/Kubernetes setups while utilizing Content Delivery Networks for efficient
and dynamic load distribution. The research objectives are achieved with the assistance of
each phase, which also offers comprehensive data on the effectiveness of the recommended
course of action.

3.2 System Design

Eks Cluster

Cloud Front %
g Pod 1
gt
Nearest Edge Lodation to
the user
UsA Load Ingress Service

Balancer

Website
S, rHjNA L 8 s s> @ .
ocation
T l ! Ip Hash/ Weighted Round Robin @
]
L—

When user 1st time access
the website it goes to nearest Cache Pod 2
Gl i Note : inside the eks cluster we implement ingress controller and in the rules we

cache before going to origin
L J define which algo we want either its iphash or weighted round robin

Figure 6: System Design

To maximize the transmission of web content utilizing Content distribution Networks
(CDNs) and load balancing methods within a Kubernetes cluster, the following phases
comprise the design methodology for this research project.

3.2.1 User Input and DNS Resolution

A user’s request for a domain name is forwarded to the DNS server of their local ISP,
which converts it into an IP address. The DNS server then queries the CloudFront DNS
server.

3.2.2 CloudFront DNS Response

The DNS response provided by CloudFront depends on the location of the user. The
CDN edge server is represented by the IP address of the edge location that is physically
closest to the user.

3.2.3 CDN cache checks for content

After obtaining the DNS response, the CDN edge server checks the content cache for the
requested file. If the content is already in the cache, the user receives it immediately,
which reduces response time and results in a cache hit.

10

3.2.4 Integration of Load Balancer Algorithm and Kubernetes

If the requested data is not in the cache (a cache miss), the user request is transmitted to
the Kubernetes cluster via the services. Here, load balancing algorithms such as IP hash
and weighted round robin are utilized to optimally distribute incoming traffic among the
Kubernetes nodes.

3.2.5 User response and data retrieval

The Kubernetes cluster’s containers evaluate user requests and generate the necessary
responses. The process of acquiring the data concludes with the transmission of the
user’s response via the CDN interface server.

3.2.6 Cache and Data Storage

When receiving repeated requests for the same piece of content, the CDN edge server
stores the information in its cache. This caching method enhances the user experience
by reducing response times for repeated requests for identical content.

By employing this design strategy, the proposed solution intends to reduce latency,
improve reaction times, and enhance the overall performance of the online application,
thereby effectively delivering content to users from various geographic locations. By
combining CDNs, Kubernetes clusters, and load balancing algorithms, we can overcome
the difficulties of dynamic load balancing, enhance data replication, and maximize the
advantages of using cloud infrastructure for hosting web applications

3.3 Tools and Technologies Used

In this research, Elastic Kubernetes Service (EKS) on AWS was used to run the research
using Linux-based instances of type e2 t3.medium. The EKS cluster consists of two
nodes. The web application for the research was made using JavaScript and HTML.The
following tools and technologies are employed:

3.3.1 Kubernetes

Kubernetes is utilized to coordinate the deployment, scaling, and operation of contain-
erized applications. The complexity of production deployments required a substantial
amount of human resources. Due to the necessity of fixing node problems and manu-
ally configuring services, scalability was challenging. By offering the necessary tools for
managing immutable infrastructure, Kubernetes (K8S) solves these problems.

Kubernetes Componenets

A. Master Node

The cluster’s management node, or master node, aids in managing deployments, ac-
cessing the API, and other related duties. In addition to an agent that interacts with
the master, container runtime (Docker, rkt, etc.) may be handled by a number of worker
nodes.

Here API server endpoint https://1405BC66D16554F52C7TD7BEF2092BEST.gr7.us-
east-2.eks.amazonaws.com allows to connect to the master node.

B. Node

In a Kubernetes cluster, the worker machines execute containers. Container Runtime,
Kubelet, and Kube-proxy are all active on each node. Kubelet, an essential Kubernetes

11

https://1405BC66D16554F52C7D7BEF2092BE87.gr7.us-east-2.eks.amazonaws.com
https://1405BC66D16554F52C7D7BEF2092BE87.gr7.us-east-2.eks.amazonaws.com

aws

23 services | Q Search
= EKS > Clusters » eks-cluster-test

eks-cluster-test

H @ ohov DevnNitul2 v

G‘ Delete cluster

@ Your current IAM principal doesn’t have access to Kubernetes objects on this cluster.
This may be due to the current user or role not having Kubernetes RBAC permissions to describe cluster resources or not having an entry in the cluster's auth config map. Learn more [

v Cluster info info

Kubernetes version Info Status Provider
127 @© Active EKS
Overview Resources Compute Networking Add-ons Authentication Logging Update history Tags
Details

OpenlD Connect provider URL Created

API server endpoint
https://1405BC66D16554F52C7D7BEF2092BES7.gr7.us-
east-2.eks.amazonaws.com

Certificate authority

(3J Cloudshell _ Feedback _Language

https://oidc.eks.us-east-
2.amazonaws.com/id/1405BC66D16554F52C7D7BEF2092BES7

Cluster IAM role ARN

© 2023, Amazon Web Services, Inc. or its affiliates.

August 2, 2023, 21:00 (UTC+05:30)

Cluster ARN
arn:aws:eks:us-east-2:708645370762:cluster/eks-cluster-test
Terms

Privacy Cookie preferences |

Figure 7: EKS Cluster and master node details

component, manages the cluster’s distinct nodes (servers). It is installed on every node
and functions as a node agent to ensure that the Pods and Containers specified in the
cluster configuration are initiated and maintained properly.

Ohiov Devhiizv i

B 4 O

5 Services | Q

= EKS D> Clusters » eks-cluster-test » Node group: eks-node-group ®

(o]

eks-node-group

Your current IAM principal doesn't have access to Kubernetes objects on this cluster.
This may be due to the current user or role not having Kubernetes RBAC permissions to describe cluster resources or not having an entry in the cluster's auth config map. Learn more [

Node group configuration info

Kubernetes version AMI type Info Status

127 AL2_x86_64 © Active
AMirelease version Info Instance types Disk size
1.27.3-20230728 t3.medium 2068

Details Nodes Health issues 0 Kubernetes labels Update config Kubernetes taints Update history Tags

Details

Node group ARN Autoscaling group name Capacity type Subnets

(9 arn:aws:eks:us-east- eks-eks-node-group-2ac4db79-85cd-0e57-587d- On-Demand subnet-0666d6be28749e50a [4
2:708645370762:nodegroup/eks-cluster-test/eks- 885ad05cde85 [4 subnet-03882db9e58¢7fd98 [
node-group/2ac4db79-85cd-0e57-587d- Desired size subnet-04d77d7b914c76743 [4

Node IAM role ARN subnet-0e18880d9906776b3 [

©2023, Amazon Web Services, Inc. or s affiliates.

885ad05cde85 2 nodes

Feedback Privacy Terms Cookie preferences [

[Cloudshell

Language

Figure 8: Node Group Details

3.3.2 CloudFront

AWS offers CloudFront, a service for worldwide CDN infrastructure. Using the web
service Amazon CloudFront, static and dynamic online material, including.html,.css,.js,
and picture files, may be provided to consumers more quickly. The highest potential
performance for content delivery is provided by intelligently routing a user’s request for
content to the edge point with the lowest latency.

e CloudFront gives the user the requested content right away if it is already available
at the closest edge point.

12

CloudFront » Distributions » E3COY5LXISBKOW7

E3COY5LXIBKOW?7 View metrics |

General Origins Behaviors Error pages Geographic restrictions Invalidations Tags

Details

Distribution domain name ARN Last modified
d3calxo09vmyjn.cloudfront.net arn:aws:cloudfront::708645370762:distribution/E3COY5LXI8K August 2, 2023 at 5:21:05 PM UTC
ow7

Settings Edit

Description Alternate domain names Standard logging
nitu.cryptotre m off

Price class Custom SSL certificate Cookie logging
Use all edge locations (best performance) @ nitu.cryptotrendline.com [Off

Supported HTTP versions Security policy Default root object
HTTP/2, HTTP/1.1, HTTP/1.0 TLSV1.2_2021

[Cloudshell ~ Feedback Language azor ic affilia ivacy ~ Terms Cookie preferences

Figure 9: CloudFront Distribution on AWS

e CloudFront receives the content from a preset origin source, such as an Amazon
S3 bucket, a MediaPackage channel, or an HT'TP server designated as the authoritative
source for the content, if it cannot be discovered at the closest edge point.Refer figure 12
showing CloudFront Distribution on AWS.

3.4 Load Balancing Algorithms
3.4.1 IP Hash and Weighted Round Robin

The load balancing methods utilized in the suggested architecture to distribute user
requests among the Kubernetes pods are IP hash and weighted round-robin (WRR). The
way each algorithm is used is as follows:

IP hash: Based on the client’s source IP address, an IP hash load balancing algorithm
determines which pod should handle the request. The algorithm uses the client’s IP
address to build a hash value and assigns it to a pod that is available for use. By
guaranteeing that requests arriving from the same client are consistently routed to the
same pod, this establishes session affinity and enables stateful applications to function
without interruption.

Weighted Round-Robin (WRR): Weighted round-robin adds weights to each pod
based on its performance or capacity as an additional load balancing strategy. A greater
portion of the incoming requests are sent to pods with higher weights. The procedure
rounds-robins the available pods while taking into account their predetermined weights.
It can be especially helpful when some pods have greater processing capacity than others
to spread the task efficiently.

The suggested approach includes these load balancing approaches to maximize re-
source utilization and enhance web application performance in Kubernetes setting. While
WRR allows for the most efficient request allocation based on the capacity of the pods,
IP hash assures session affinity for stateful apps.

13

EXPLORER 000 nginx-ingress.yaml X

\ OPEN EDITORS nginx-ingress.yaml|
X nginx-ingress.yaml apiVersion: networking.k8s.io/v1
“ CODE ress
<> index.html X
) y-app-ingress
nginx-deployment.yaml
nginx-ingress.yaml

nginx-service.yaml| ngi ity: "cookie"

oy: "$remote_addr"
subset: "ip_hash"
ht: "nginx=1"

: nitu.cryptotrendline.com

Figure 10: Implementation of Algorithms through Annotation

4 Design Specification

For dynamic load balancing on Kubernetes, the CDN has been integrated with the load
balancing algorithms IP hash and Weighted Round Robin. As described in the previous
sections, AWS CloudFront is used as a Content Delivery Network because it offers minimal
latency in content delivery. IP hash and Weighted Round Robin are utilized to distribute
demand across Kubernetes Pods using the demand Balancing Algorithms. AWS EKS is
utilized to provide a highly available and resilient Kubernetes infrastructure.

Instance Type t3.medium

Number of Nodes 2

Operating System Linux

Total vCPU 4

Total Memory 8 GB

Cost $0.0418/hr per node

Figure 11: AWS EKS cluster details

In this case, data replication is employed. The IP hash ensures that requests from
identical clients with identical IP addresses are consistently routed to the same server.
WRR allocates each server in the pool a weight based on its performance or capacity.
However, when a server’s capacity is exceeded or it is down for maintenance, it may be
necessary to redirect queries to other servers. Session persistence is achieved through
replication of sessions, replicating session data across multiple servers. Consequently,
the session information is replicated on each server in the load balancing pool. When
a request is sent to another server, the receiving server can access the session data and
continue the session uninterruptedly. This method facilitates effective load distribution,
scalability, and session continuity in distributed environments.

14

5 Implementation

During the implementation phase, a Content Delivery Network (CDN) was integrated
with the dynamic load balancing system for Kubernetes-based web applications in order
to implement the suggested solution. Configuring load-balancing algorithms and estab-
lishing the Kubernetes cluster were the concluding phases of the implementation process.
The outcomes of the implementation of this proposed methodology are as follows:

5.1 Kubernetes Cluster Setup

On the AWS Elastic Kubernetes Service (EKS) platform, a Kubernetes cluster was cre-
ated as the first step in the implementation procedure. Two nodes comprised the cluster
in US East(Ohio): the master node and the worker node. The selection of AWS EKS
was based on its capacity to facilitate Kubernetes cluster administration.

5.2 Web Application Development

The web application is developed using HTML and JavaScript, and its interface displays
the user’s IP address when they attempt to access a webpage. For user interaction and
collecting the data the frontend of the application played a crucial role.

5.3 Data Collection and VPN Usage

In order to simulate user access from multiple locations and IP addresses, a browser-based
VPN was utilized. This allowed for the simulation of user access scenarios from various
geographic regions, allowing for a more comprehensive evaluation of the load balancing
system’s effectiveness.

5.4 Integration with AWS CloudFront

AWS CloudFront, a globally distributed content delivery network, was integrated in order
to improve data delivery with decreased latency. This required configuring CloudFront
to cache and distribute content efficiently, thereby enhancing the overall response times
of the application .

5.5 Load Balancing Mechanism

Utilizing the Kubernetes Ingress resource, the implementation included load balancing
mechanisms. This was accomplished by defining routing rules and load balancing al-
gorithms within the Ingress.yaml configuration file. Annotations within the Ingress
configuration made it easier to choose load-balancing algorithms such as IP Hash and
Weighted Round Robin.

5.6 Performance Metrics and Monitoring

In order to evaluate performance and effectiveness of the proposed methodology ,AWS
CloudWatch was used. The metrics involves CPU utilization, response time .The monit-
oring was carried out across different scenarios.

15

The implementation phase detailed the configuration of the Kubernetes cluster en-
vironment, integration with a content delivery network (CDN), web application develop-
ment, data collection through a browser-based VPN, the creation of data replicas, and the
establishment of load balancing algorithms.The configuration was intended to increase
response time and provide users with a good browsing experience.

6 Evaluation

The Evaluation section is going to depict the investigations that have been conducted
in this research. All the experiments are done on the AWS cloud platform, where the
Elastic Kubernetes service is employed for building the Kubernetes Cluster. Nodes and
four subnets are defined, with two being public and the other two being private subnets,
respectively. The Kubernetes cluster is positioned in the Ohio US-East-2 region, and its
version is 1.27. The CloudFront service is distributed globally. The cluster’s configuration
entails two nodes, and a Node group is utilized to establish a connection with the Master
Node. A Virtual Private Network is established throughout the implementation process
to support the Cluster. The EC2 instance employed here is of the t3.medium instance

type.
6.1 Experiment 1

€ > C & nituayptotrendiinecom % * * 0 g

B° AzureDisk Storage... [l PwClogin [l PWC-Workspace O.. @ NewTab M Gmail B¥ Maps R Azure Traffic Mana.. . Top Docker Intervie.. (@ docker rm all contai.. \{V Latest Azure DevOp... @ active directory »
'K [0 | Elements Console Sources Network >> ©53 (81| @ i X
® @ Y Q OPrreservelog | O Disablecache Nothrotting v 5 | &
5

Filter O Invert O Hide data URLs

All | Fetchy/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other

(O Has blocked cookies () Blocked Requests (] 3rd-party requests

Name Status Type Initiator Size Time Waterfall
B nitucryptotrendiine.com 304 docu... Other 2658 222 ms | "I

= pexels-photo-531767j.. 200 webp | (index) (me. oms

O ?ormat=json 200 xhr | (index)42 2228 159 ms |

Figure 12: WebApplication Accessed for the first time from US-East-2 Region

In Experiment 1 The first experiment generated user access from the East Region of
the United States. Initiating a session to access the Web Application was required. The
response time during this initial access was logged to serve as an initial point of reference
for future comparisons.

As shown in the illustrations, the observed response time is 222ms. In further exper-
iment, I therefore investigated the use of a Content Delivery Network (CDN) to reduce
response time.

16

e [0 Elements Console Sources Network > ©5 @1 @ :

X
® @ Y Q ([Drreservelog [J Disablecache Nothrotting ¥ T | 1 {8
4

Filter [Invert [Hide data URLs
All | Fetch/XHR J5 CSS Img Media Font Doc WS Wasm Manifest Other
() Has blocked cookies [_] Blocked Requests (] 3rd-party requests

I 200 ms 400 ms 600 ms 800 ms 1000 ms 1200 ms 1400 ms 1600 n
Name Status Type Initiator Size Time Waterfall a
B nitu.cryptotrendline.com 304 docu... Other 2658 222ms N
= pexels-photo-531767,... | 200 webp | [(index) (me... Oms
[?format=json 200 xhr (index):42 222B 159 ms .

Figure 13: Response Time when WebApplication Accessed for the first time from US-
East-2 Region

6.2 Experiment 2

‘e [o Elements Console Sources Network > 053 B1 @ ! X
® @ Y Q ([Jrreservelog [Disablecache Nothrotting ¥ T | 1 8
L2

Filter () Invert () Hide data URLs

All | Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other
[J Has blocked cookies () Blocked Requests [_] 3rd-party requests

I 200 ms 400 ms 600 ms 800 ms 1000 ms 1200 ms 1400 ms 1600rr|
Name Status | Type Initiator Size Time Waterfall a
&) nitu.cryptotrendlinecom 304 docu... Other 2678 154ms Il
= pexels-photo-531767,... 200 webp | (index) (me... 0Oms
[ormat=json 200 xhr (index):42 2228 170 ms] |

Figure 14: Response Time WebApplication Accessed for the second time from US-East-2
Region

17

Experiment 2 involves the utilization of a Content Delivery Network (CDN). To optimize
content delivery and reduce latency, a content delivery network (CDN) with Load Bal-
ancing algorithm was integrated with Kubernetes. AWS CloudFront is used along with
[Phash and Weighted Round Robin .The effect of CDN integration on response times
and system performance as a whole was analyzed.The observed response is 154ms.

6.3 Experiment 3

In the third experiment, the efficiency of the load-balancing mechanism was evaluated.
The ability of the load balancer to equally distribute incoming traffic across the nodes
of the Kubernetes cluster was analyzed. The response time of the load balancer was
monitored in order to evaluate its effectiveness under varying traffic loads.During a point
in time, the target response time was recorded as 0.001 seconds upon first access. The
response time for the web application decreased to 0.0008 seconds upon further access.
This decrease in response time indicates a significant reduction in latency, demonstrating
the efficiency of the implemented strategies, such as the utilization of a Content Delivery
Network (CDN) and load balancing mechanisms.

<« C @ us-east-2consoleawsamazon com/ec2/home?region=us-east-2#LoadBalancerloadgalancerAm=amaws elasticloadbalancing us-east-2708645370762 loadbalancer/app/ingressn.. @ 12 % @y % O @

M Gmail 2 Maps RBE Azure Traffic Mana.. @ docker rm all contai.. \{} Latest Azure DevOp. @, Applications | Amaz... # Listsand Tuplesin.. @ #31: Python Decora, Join an Azure VM t.. 36 How can | starttol

Target Response Time 1 minute v Average ¥ 1h 3h 12h 1d 3d Tw Custom G v X

2023-08-10 00:17 UTC

Seconds 1. Q ingress-nginx-controller-lb 0.00106261111

View in metrics [Close

Figure 15: Response Time

18

<« C @ us-east-2.console.aws.amazon.com/ec2/home?region=us-east-2#LoadBalanceroadBalancerAm=am:aws:elasticloadbalancing:us-east-2:708645370762 loadbalancer/app/ingressn.. & 12 % (g # 0O [I

M Gmail B Maps RBE Azure Traffic Mana.. @ docker rm all contai.. \{V Latest Azure DevOp, @ Applications | Amaz.. A Listsand Tuplesin.. @ #31: Python Decora... Join an Azure VM t.. 36 How can | starttol »

Target Response Time 1minute v || Average ¥ th 3h 12h 1d 3d 1w Custom E Cl|l v X

2023-08-10 00:19 UTC

Seconds 1. @ ingress-nginx-controller-Ib 0.000753

View in metrics [[Close

Figure 16: Response Time

6.4 Experiment 4

Experiment 4 shows CPU utilization, an additional experiment designed to evaluate CPU
utilization across the Kubernetes cluster’s nodes. In this analysis, CPU utilization was
measured and contrasted on both nodes. On the respective nodes, it was determined
that the CPU utilization rates were 1.68 and 1.75 percent, as shown in figure . As
the difference between the two nodes remains minimal, this observation indicates that
computing resources are distributed evenly.

pa¥ @ Ohio v Dev_Nitu12 v
Cloudwatch Metrics
D
CPU Utilization: Average .. Th 3h 12h 1d 3d Tw Custom Number v ‘ Actions ¥ H C ‘ im v ‘ Queries
®
1-68 % 1-750/0 Help

@ -03cca039797099894 i-0c72294bd1494fa87 <

Figure 17: CPU utilization of Nodes

6.5 Discussion

In the comprehensive evaluation, the AWS Elastic Kubernetes Service (EKS) environ-
ment, which included AWS cloud, CloudFront CDN, and Kubernetes, was investigated.
The Kubernetes cluster, strategically located in the US East region, operated on version
1.27, and was enhanced by a global CDN infrastructure. The cluster consisted of two
nodes connected to the master node via a Node group. In addition to the default Virtual
Private Cloud (VPC), a second VPC with four subnets in the same availability zone
was introduced. The node server was a t3.medium instance of Amazon Web Services.

19

Experiment 1 established a baseline by creating user access from the US East region and
measuring the initial Web Application response time of 222 milliseconds. The second ex-
periment examined CDN integration, specifically CloudFront, which improved response
times by optimizing content delivery and decreasing latency. Experiment 3 examined the
efficiency of the load-balancing mechanism in distributing incoming traffic across cluster
nodes. Monitoring the response time of the load balancer demonstrated a point with a
target response time of 0.001 seconds, which then reduced to 0.0008 seconds with sub-
sequent access. This significant reduction in latency demonstrates the effectiveness of the
implemented strategies. Experiment 4 examined CPU utilization across nodes, indicating
a balanced distribution of computational resources with 1.68% and 1.75% on respective
nodes.

The evaluation demonstrated an effective integration, which improved response times,
minimized latency, and optimized resource allocation. In accordance with the objectives
of the research, this method produced dependable and effective performance in cloud-
based Kubernetes environments.

7 Conclusion and Future Work

In conclusion,using Kubernetes and CDN integration, the present research examined
dynamic load balancing in cloud environments. The proposed solution made use of AWS
EKS with two t3.medium nodes, and experiments were conducted utilizing Browser VPN
to generate user access data from multiple locations. The results demonstrated that the
integration of CDN facilitated the caching of content on adjacent edge servers, resulting
in decreased response times and increased latency. To achieve the intended response
time, the load balancer managed incoming traffic effectively. The findings underscored
the significance of combining Kubernetes and CDN in order to achieve optimal load
balancing and enhance the performance of web applications.

The proposed solution can be optimized further in future work by fine-tuning load-
balancing algorithms and exploring more sophisticated approaches to manage variable
workloads. In addition, investigating the effect of various CDN configurations on per-
formance could result in improved resource utilization and enhanced user experience.

8 URL

YouTube - https://youtu.be/kgdlXvDSx4U
WebApplication - https://nitu.cryptotrendline.com/

References

Afzal, S. and Kavitha, G. (2019). Load balancing in cloud computing — a hierarchical
taxonomical classification, Journal of Cloud Computing 8(22).
URL: https://link.springer.com/article/10.1186/s13677-019-0146-7

Chang, C. C., Yang, S. R., Yeh, E. H., Lin, P. and Jeng, J. Y. (2020). A kubernetes-based

monitoring platform for dynamic cloud resource provisioning.

20

https://youtu.be/kgdlXvDSx4U
https://nitu.cryptotrendline.com/

Chen, S., Chen, Z., Gu, S., Chen, B., Xie, J. and Guo, D. (2020). Load balance awared
data sharing systems in heterogeneous edge environment, 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS), pp. 132-139.

Darji, J. and Nakrani, T. (2021). Analysis of load balancing in cloud computing: Chal-
lenges and algorithms, Advanced and Emerging Applications in Big Data and Machine
Learning, Universal Academic Books Publishers and Distributors.

Dong, Y., Xu, G., Zhang, M. and Meng, X. (2021). A high-efficient joint ’'cloud-edge’
aware strategy for task deployment and load balancing, IEEE Access 9: 12791-12802.

Gupta, P. (n.d.). Reliability aware load balancing algorithm for content delivery network,
Conference Paper.
URL: https://www.researchgate.net/publication /283093121

Liu, Q., Haihong, E. and Song, M. (2020). The design of multi-metric load balancer
for kubernetes, 2020 International Conference on Inventive Computation Technologies
(ICICT), IEEE, pp. 1114-1117.

Nagarajan, M. (2019). What is load balancer and how it works.
URL: https://medium.com/@itlsMadhavan/what-is-load-balancer-and-how-it-works-
f7796a230034

Nakanishi, K., Suzuki, F., Ohzahata, S., Kato, T. et al. (2020). A container-based content
delivery method for edge cloud over wide area network, 2020 International Conference
on Information Networking (ICOIN).

Nguyen, Q.-M., Phan, L.-A. and Kim, T. (n.d.). Load-balancing of kubernetes-based
edge computing infrastructure using resource adaptive proxy, School of Information
and Communication Engineering, Chungbuk National University .

Nguyen, T. T., Yeom, Y. J., Kim, T., Park, D. H. and Kim, S. (2020). Horizontal pod
autoscaling in kubernetes for elastic container orchestration, Sensors 20(20): 4621.

Radhika, D. and Duraipandian, M. (2021). Load balancing in cloud computing using
support vector machine and optimized dynamic task scheduling, 2021 9th International
Conference on Reliability, Infocom Technologies and Optimization (Trends and Future

Directions) (ICRITO), pp. 1-6.

Shafiq, D. A., Jhanjhi, N. Z. and Abdullah, A. (2021). Load balancing techniques in
cloud computing environment: A review, School of Computer Science Engineering
(SCE), Taylor’s University, Subang Jaya, Malaysia.

URL: https://expert.taylors.edu.my/file/rems/publication/10956688251. pdf

Shitole, A. S. (2023). Dynamic load balancing of microservices in kubernetes clusters
using service mesh.

URL: https://norma.ncirl.ie/5943/1/abisheksanjayshitole. pdf

Simi¢, M., Stojkov, M., Sladi¢, G. and Milosavljevi¢, B. (2023). Crdts as replication
strategy in large-scale edge distributed system: An overview, Faculty of Technical Sci-

ences, Novi Sad .
URL: http://www.eventiotic.com/eventiotic/files/Papers/URL/390587e1-82c6-4a9e-
bef2-627701df841c.pdf

21

Sitorus, S. P., Hasibuan, E. R. and Rohani (2021). Analysis performance of content
delivery network by used rateless code method, SINKRON: Jurnal Teknik dan Ilmu
Komputer 7(4).

Varma, A., Varma, G. V. S., Varma, G. V. S. A., Varma, G. V. N. A. and Varma, G. V.
N. A. (2023). Dynamic user routing for paid and free users in web applications using

content delivery network (cdn), International Journal for Research in Applied Science
and Engineering Technology (IJRASET) 11(7).

Wei, X. and Wang, Y. (2023). Popularity-based data placement with load balancing in
edge computing, IEEE Transactions on Cloud Computing 11(1): 397-411.

Yang, H., Pan, H. and Ma, L. (2023). A review on software defined content delivery
network: A novel combination of cdn and sdn, IEEE Access 11: 43822-43843.

Zhang, J., Ren, R., Huang, C., Fei, X., Qun, W. and Cai, H. (2018). Service depend-
ency based dynamic load balancing algorithm for container clusters, 2018 IEEFE 15th
International Conference on e-Business Engineering (ICEBE), IEEE, pp. 70-77.

22

	Introduction
	Content Delivery Networks (CDNs): Enhancing Web Performance and User Experience
	Load Balancing in Cloud Environments: Challenges and Solutions
	Research Question
	Research Objective

	Related Work
	Content Delivery Networks (CDNs) and Load Balancing
	Solutions offered by Kubernetes for Dynamic Load Balancing
	Edge Computing Strategies for Load Balancing
	Summary of Literature Review

	Methodology
	Research Flow
	System Design
	User Input and DNS Resolution
	CloudFront DNS Response
	CDN cache checks for content
	Integration of Load Balancer Algorithm and Kubernetes
	 User response and data retrieval
	Cache and Data Storage

	 Tools and Technologies Used
	Kubernetes
	CloudFront

	Load Balancing Algorithms
	IP Hash and Weighted Round Robin

	Design Specification
	Implementation
	Kubernetes Cluster Setup
	Web Application Development
	Data Collection and VPN Usage
	Integration with AWS CloudFront
	Load Balancing Mechanism
	 Performance Metrics and Monitoring

	Evaluation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Discussion

	Conclusion and Future Work
	URL

