
Configuration Manual

MSc Research Project

Programme Name

Stephen Angelo Kumar
Student ID:21220123

School of Computing

National College of Ireland

Supervisor: Diego Lugones

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Stephen Angelo Kumar

Student ID: x21220123

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Diego Lugones

Submission Due Date: 18/09/2023

Project Title: Configuration Manual

Word Count: 1042

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: STEPHEN ANGELO KUMAR

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Stephen Angelo Kumar
x21220123

1 Introduction

This project detects objects in traffic camera images using YOLOv3, a fast neural network
for localization and recognition. The goal is to leverage a pre-trained YOLOv3 model
to identify cars, pedestrians, cyclists, and other objects in the KITTI traffic camera
dataset. KITTI contains real-world driving footage, providing diverse road scenes. Object
detection has key applications in autonomous vehicles, traffic analysis, and safety systems.
This project will run YOLOv3 inference on KITTI images, visualize detections, and
evaluate performance. The results will demonstrate YOLOv3’s ability to quickly and
accurately detect objects of interest in traffic images. Overall, this project establishes a
basis for deploying real-time object detection in traffic video analysis using a state-of-
the-art deep learning model.

2 Prerequisites

2.1 Software

Python 3.x, OpenCV 4.x or later, Darknet framework, Additional Python packages like
matplotlib, numpy etc.

2.2 Hardware

AMD EPYC Processors support for efficient model training and inference,

2.3 Dataset

KITTI object detection dataset images and annotations, Camera images containing
road/traffic scenes, Annotation files with object bounding boxes, Classes: car, pedestrian,
cyclist etc., Training and validation splits, Images should be extracted and preprocessed.

3 Enviroment Setup

3.1 Install Python Packages:

- Create and activate a Python 3.7+ virtual environment
- Install OpenCV using pip install opencv-python
- Install other packages like matplotlib, numpy, pandas etc.

1



3.2 Download and Compile Darknet

- Clone the Darknet repo: git clone https://github.com/pjreddie/darknet
- Enter the darknet directory and edit the Makefile to enable GPU and CUDA
- Build Darknet by running make

3.3 Get Pre-trained Weights and Config

- Download YOLOv3 weights file from GitHub
- Get yolov3.cfg configuration file from the darknet repository
- Save weights and cfg file in the darknet directory

3.4 Verify Installation

- Run darknet detector test to validate Darknet build
- Load a sample image and confirm YOLOv3 model detects objects

4 Implementation

4.1 Import Modules:

Import the necessary modules

- Sets data path and yolo path variables to locate image dataset and YOLO model
files.
- Defines confidence threshold of 0.5 and NMS threshold of 0.3 for model detection.
- Uses glob to get image and annotation file paths from data path. Images and annota-
tions will be used to run YOLOv3 model and evaluate detections.

2



-Prints the Current Working Directory.

-Prints the length of annotations

-This code uses matplotlib to load and display a PNG image. The image at index 1
from the ’images’ list is loaded and shown without axis ticks and labels.

- Clones the Darknet repository from the provided GitHub URL.

- Changes the current working directory to ’darknet’.

- Runs the ’make’ command to compile the Darknet code file.

3



Going back to the content folder.

Downloads YOLOv3 pre-trained weights and configuration file using wget.

Downloads ’coco.names’ file from the given URL using wget.

This code creates a directory ’Yolo Results’, sets up paths for YOLOv3 detection
using COCO model, reads class names, loads pre-trained weights, and generates random
colors for visualization.

In this code snippet, a YOLO neural network model is loaded using the OpenCV
library. The ‘cv2.dnn.readNetFromDarknet‘ function is used to read a YOLO model
from its configuration file (‘cfg‘) and corresponding pre-trained weights (‘weights‘). The
‘detection time‘ list is initialized to store the time taken for each detection operation.
This code sets up the YOLO model for further object detection operations.

4



This code iterates through a list of image file paths. For each image, it reads and
processes the image using OpenCV’s Deep Neural Network (DNN) module and a pre-
trained YOLO model. Detected objects with confidence above a threshold are extracted,
and non-maximum suppression is applied to remove redundant detections. Bounding
boxes are drawn on the image and saved along with detection information in a text file.
The processed image is saved to an output folder.

The code reads image files from a specified folder using the ‘os‘ library, displays the
first image using ‘matplotlib‘, and provides a title while removing the axis labels for
visualization.

Launched an EC2 instance on AWS to host the model and data for inference. After
SSH into the server, the main folders are:

input - Contains raw video files to run object detection on. For example, trafficcam.mp4.

datadata - Stores extracted frames from the input videos in JPEG format.

cfgcfg - Holds the YOLOv3 model configuration file.

weightsweights - Contains pre-trained weights for the YOLOv3 model.

5



sortresults- Output folder where object detection results on frames are saved.

The main command to run is:

python3 extract.py –video input/trafficcam.mp4 –cfg cfg/yolov3 –weights yolov3.weights

This extracts all frames from trafficcam.mp4 into the data folder as JPEGs. Then it
runs YOLOv3 object detection on each frame using the cfg and weights files. The detec-
tions are saved as bounding box images in sortresults.

This pipeline allows new traffic camera videos to be continually processed on EC2 using
the YOLOv3 model. The sortresults folder provides the output with object detections
visualized on each frame. Storing the data and results on S3 could enable more scalable
processing.

Figure 1: Ec2 instance

6



5 Results

After running object detection on the video frames, the results are saved as JPEG images
in the sortresults folder on the EC2 instance.

We can view an individual detection result image by accessing a URL like:

http://18.202.26.142:5000/traffic/results/frame 50.jpg
This will display frame 50 with the bounding boxes drawn around detected objects.

To compile the frame images into a final output video, we can trigger the compilation
process:

http://18.202.26.142:5000/traffic/compile
This will combine all the separate frame results into an MP4 video written to com-
piled/video XXX.mp4.

Finally, we can stream the compiled video:

7



http://18.202.26.142:5000/traffic/playVideo/video XXX.mp4
When accessed, this URL will download the MP4 video with object detections to the
local machine.

8


	Introduction
	Prerequisites
	Software
	Hardware
	Dataset

	Enviroment Setup
	Install Python Packages:
	Download and Compile Darknet
	Get Pre-trained Weights and Config
	Verify Installation

	Implementation
	Import Modules:

	Results

