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Detecting and Counting different Vehicles in the real
time Traffic Signal using deep learning

Stephen Angelo Kumar
x21220123

Abstract
Traffic congestion is a pressing global issue. This research proposes an ensemble

approach to improve traffic management using traffic cameras, real-time video ana-
lysis, time series forecasting, and rules derived from traffic patterns. The project
develops an algorithm to control green light duration and ensure efficient traffic
flow. The ensemble approach optimizes green time using deep learning techniques
for object detection and time series forecasting to predict traffic volumes. For
real-time object detection, YOLOv4 achieved the highest mean Average Precision
at 42.44%. The ensemble approach integrates video analysis and time series pro-
jections to dynamically manage traffic. This study demonstrates the potential of
combining computer vision and predictive analytics to optimize traffic signals and
reduce congestion.

1 Introduction

The widespread use of automobiles has revolutionized daily commutes. However, it also
raises concerns about traffic congestion and its environmental impact. As urban cen-
ters grow, congestion worsens. This has prompted the development of intelligent traffic
management systems. These intelligent systems monitor green light timings and analyze
traffic data. Their aim is to reduce congestion in high-traffic areas. Connected Traffic
Management Systems (CTMS) can significantly improve mobility and reduce environ-
mental impact.

Figure 1: Operation of the Connected and Automated Traffic System (3)

This essay explores the potential of emerging technologies like CNNs and surveillance
cameras for traffic management. It focuses on real-time video feeds in Bhubaneswar,
India, where urbanization and population growth have increased automobile usage. The
proposed intelligent system aims to alleviate congestion, improve efficiency, and prevent
environmental degradation. This would benefit both present and future generations
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Figure 2: Automatic Traffic Detection System (Courtesy: https://www.

aldridgetrafficcontrollers.com.au/products/video-detection)

1.0.1 Motivation

Urbanization and economic development have led to increased car usage, causing traffic
congestion and pollution. Intelligent traffic management systems are needed to regulate
flow and prevent congestion. This research aims to create a system using Convolutional
Neural Networks and surveillance cameras to monitor traffic, identify bottlenecks, and
predict future flows. The goal is to reduce commute times by 10%, fuel consumption by
5%, and carbon dioxide emissions by 7%, improving quality of life and contributing to
international efforts to reduce traffic congestion and promote environmentally friendly
urban transport networks.

1.0.2 Business Problem

Rapid urbanization and economic growth have led to the growth of smart cities and metro
towns, causing gridlock and challenges for businesses. Delays in workplace travel reduce
productivity, increase transportation costs, and cause inventory management issues. Sus-
tainable practices face environmental impacts from traffic congestion. Intelligent Trans-
portation Systems (ITS) can optimize traffic flow, reduce travel times, and limit environ-
mental impact, boosting productivity, sustainability goals, and employee satisfaction.
Implementing these solutions is crucial for long-term success and competitiveness in the
competitive world.

1.0.3 Impact of the Solution

Traffic congestion is a significant social, economic, and environmental challenge in low-
income regions. Adaptive traffic management, using AI, IoT, and big data, has been
proposed as a potential solution. Implementing this strategy can reduce delays, waste
time and money, and improve efficiency. By adjusting traffic patterns in real-time, it can
reduce congestion, increase mobility, and potentially save money. This approach can lead
to reduced congestion, increased mobility, and cost savings, ultimately benefiting society.

1.0.4 Research Hypothesis

In order to alleviate traffic congestion and improve transportation efficiency, drivers and
traffic management agencies need access to reliable and timely information on traffic flow.
The following concerns will serve as the basis for the study subjects that will be explored
in this article.
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RQ1: How can I maximise the effectiveness of the green light so that the flow of traffic
is not disrupted?

RQ2: How can we determine which cars are emergency responders and get the sys-
tem to act accordingly?

RQ3: Which deep learning method, when combined with computer vision techniques,
performs particularly well in real time?

RQ4: How can such a large quantity of data in the form of real-time videos be pro-
cessed in order to reach a conclusion regarding the optimal green light in a short length
of time?

Scholars have examined potential solutions for traffic management systems in smart cit-
ies, focusing on real-time traffic prediction and connected traffic management. To address
congestion, an analysis of Bhubaneswar’s traffic systems and Bengaluru’s challenges will
be conducted. The recommended scenario’s methodical approach and algorithm will be
outlined, along with steps to improve system dependability.

2 Related Work

Traffic systems now integrate edge computing, cloud computing, and deep learning. Edge
devices filter and analyze data locally using deep learning models. The edge sends con-
densed insights to the cloud for aggregation. This hybrid architecture responds faster to
traffic conditions than centralized clouds alone.

2.1 Artificial Intelligence based Traffic Control Approaches Us-
ing Various Neural Network and machine learning algorithms

To improve traffic management, Alkinani et al. (2022) propose combining artificial and
empirical intelligence. Their system uses the XGboost algorithm to adapt to new traffic
conditions and learn from historical data in real-time. This enables detecting unusual
patterns and alerting authorities, improving efficiency and safety. Simulations showed
high accuracy, precision and recall, indicating scalability to different settings. By integ-
rating AI and empirical data, this work significantly advances traffic management.

Djenouri et al. (2023) highlight Graph Convolutional Neural Networks for capturing
spatial correlations in traffic data. They explain forecasting traffic flow is key for Intelli-
gent Transportation Systems and edge computing’s potential.

Popov et al. (2023) propose automated control systems and AI can better manage urban
traffic. They examine systems from several angles and use neural networks to develop an
intelligent traffic light manager.

Salem et al. (2022) proposed the Fusion-Based Intelligent Traffic Congestion Control
System for Virtual Networks (FITCCS-VN) using machine learning and vehicular net-
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Figure 3: ITSA Controller Agent

works to monitor traffic and efficiently distribute vehicles, aiming to relieve congestion in
smart cities. They found a 95% success rate, showing promise.

Haojia et al. (2022) developed a deep learning method to count vehicles in lanes from
videos in real-time with up to 99% accuracy. This enables precise traffic monitoring for
smart transportation.

Bilotta et al. (2022) proposed a novel convolutional bidirectional LSTM model to pre-
dict urban traffic flow 10-60 minutes ahead. Evaluated in Italy’s Sii-Mobility project, it
showed benefits for traffic management and sustainability.

Bhattacharya et al. (2022) used deep learning accounting for spatial and temporal cor-
relations to forecast traffic. This accurately predicted urban patterns.

Chiang et al. (2022) built short- and long-term travel time prediction models for a
Taiwanese highway using nine algorithms.

Harrou et al. (2022) developed a guided-attention hybrid deep learning model to im-
prove pedestrian and bicycle traffic flow forecasting.

Several studies addressed traffic congestion issues prior to implementing complex
smart traffic management systems (STMS). Tseng et al. (2018) focused on predicting
congestion using a Support Vector Machine-based Traffic Bottleneck model to forecast
slow traffic during peak hours. Allstrom et al. (2017) found advanced traveler inform-
ation and management systems are key for smart city traffic initiatives to enable better
management, less pollution, shorter commutes. They proposed a multi-step method for
intelligent traffic light control. Du et al. (2018) used deep neural networks to predict
future vehicle counts and volumes to understand traffic patterns. Bull & Thomson (2002)
studied the relationship between travel time, distance, and speed. Barnes et al. (2001)
developed a CNN-GRU hybrid model with attention to improve multi-modal traffic flow
forecasting, enhancing robustness and flexibility. The overarching goal of these stud-
ies is providing workable solutions to urban congestion challenges using state-of-the-art
algorithms and technology in traffic management.

2.2 Cloud assisted Internet of things intelligent transportation
system and the traffic control system in the smart city

Extensive work has aimed to improve traffic control and safety while reducing conges-
tion. Research has utilized computer vision to identify congestion from surveillance data.
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Agent-based systems and deep learning have also been studied. Dombalyan et al. (2017)
proposed a computer simulation strategy for traffic forecasting, evaluating factors affect-
ing transportation in two Russian regions. Dzhuruk & Zedgenizov (2018) developed a
novel regression-based approach to predict traffic volume, finding high volume locations
negatively impact neighborhoods.

Roozemond & Danko A (1999)(20) created Intelligent Interaction Traffic Signalling Agents
using AI to coordinate with infrastructure in real-time, improving efficiency. Roozemond
(1996) developed the Dynamic Traffic Management and Information System combin-
ing platforms for diverse users, increasing productivity, safety, cost-effectiveness, energy
efficiency, environment, and convenience. These bolster intelligent traffic management
infrastructure.

Umesh Kumar et al. (2022) proposed an Adaptive Traffic-management system using In-
ternet of Things and machine learning to detect abnormalities and adjust signals, shorten-
ing wait times, reducing congestion and accidents, and improving quality of life. Despite
limitations, this contributes significantly to literature on smart transportation systems,
demonstrating the potential of IoT and machine learning to enhance traffic management.

To alleviate traffic jams in smart cities, (7) proposed a Cloud-assisted Internet of
Things Intelligent Transportation System (CIoT-ITS). The system utilizes IoT-connected
sensors and cameras to track traffic patterns and enhance cloud-based data analysis. An
algorithm calculates traffic flow to optimize signal timing. When a jam is detected, it
alerts the nearest control center. Simulations showed the proposed system effectively
manages vehicle flow, outperforming conventional methods. This demonstrates an effect-
ive, reliable CIoT-ITS to address smart city traffic management challenges.

Liu et al(8). introduced a cloud-assisted IoT Intelligent Transportation System to man-
age smart city traffic. This trustworthy, cost-effective system monitors traffic, routes
it efficiently, optimizes cloud data analysis, and adapts traffic signals accordingly. The
research highlights the potential of emerging technologies like cloud computing and IoT
combined with intelligent algorithms to create smarter, more dynamic traffic management
systems for congested cities.

2.3 Edge Computing AI-IoT Integrated Energy-efficient Intel-
ligent Transportation System

Chen et al. (2022) reviewed literature on using AI for traffic management, noting many
methods require substantial processing. They proposed edge computing as a solution to
enable collaborative networks to better handle urban traffic issues by deploying respons-
ive servers in real-time.

Zhou et al. (2022)(19) integrated a deep convolution random forest neural network into
the vehicle network to increase smart city intelligence. This reduced delay costs, increased
unloading utility, and achieved 98.06% recognition accuracy compared to prior methods.

Chavan et al. (2022) introduced a distributed multi-agent system using edge AI and
IoT for energy-efficient smart city transportation. It aims to improve efficiency, reduce

5



emissions, and better serve commuters and agencies. Simulations demonstrated feasibil-
ity. Wan (16) proposed an edge computing system using spatio-temporal interest points
and multi-modal linear characteristics to eliminate redundant video data in intelligent
transportation. This improves efficiency while reducing the cloud computing burden.

Research on intelligent traffic control and management has explored various ap-
proaches to improve efficiency and reduce congestion, including:

• Intelligent Traffic Signaling Agents using control strategies, prediction models and com-
munication networks ((20)).
• Autonomous intelligent agents based on machine learning techniques, gaining more at-
tention than traditional hierarchical control structures ((5)).
• Smart traffic control implementation in cities using cloud computing, wireless networks
and smart grid technologies ((10)).
• Knowledge-based AI systems to provide diagnostic and control actions for traffic man-
agement ((6)).
• Short-term traffic prediction like deep neural networks to anticipate congestion (18)

These efforts demonstrate the potential of leveraging machine learning, data analysis
and communication technologies for optimizing and reducing congestion in transport-
ation networks. While several promising solutions have been explored, more work is
needed to incorporate them into standard traffic control systems. Research is progressing
in applying intelligent systems to traffic management, but real-world implementation and
integration remains an ongoing challenge.

2.4 Findings of the above papers

The reviewed papers cover recent research on traffic management systems using cutting-
edge technologies including IoT, deep learning, edge computing, and other machine learn-
ing techniques. Key motivations are reducing congestion, enabling accurate forecasting,
and optimizing signals. However, there are still gaps requiring further study:

• The broader impacts of traffic on the economy, environment, and society need in-
vestigation.

• Innovations tailored for rural areas are needed.

• Developing interpretable models could improve trust and transparency.

• Exploring alternative data sources like social media could enhance systems.

• Studying impacts on vulnerable road users could improve safety.

While promising technologies are emerging for traffic management, there remain op-
portunities to address systemic impacts, adapt solutions for diverse environments, and
ensure equity and ethical considerations are incorporated into next generation intelligent
systems. A holistic, inclusive approach is key.

6



2.5 Research Niche

This intelligent traffic system uses cameras, real-time video analytics, and forecasting
models. It monitors conditions, detects vehicles, and anticipates volume. The system
adapts signal timing based on congestion to maximize flow. This proactive approach
manages traffic dynamically through monitoring, prediction, and adaptive control.

3 Methodology

3.1 Research Method

Figure 4: System Architecture

The proposed Connected Traffic Management System architecture involves acquiring
real-time data to count objects as shown in Figure 5.To enable real-time processing, the
system leverages AWS EC2 instances and GPUs for accelerated video processing.

Figure 5: Region of Interest

A key step is defining the Region of Interest (ROI) for targeted object detection.
After focused object detection, the next stage is preparing the dataset for optimizing
green light timing. This involves detecting road density and counting vehicles present
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during the green light.

The system has three core components:

a) Object Detection Agent: Performs computer vision on video feeds to identify
vehicle types.
b) Congestion/Density Detection Agent: Analyzes vehicle counts to detect conges-
tion levels and hotspots.
c) Traffic Forecasting Agent: Applies algorithms to forecast traffic volumes and as-
sign weighting.

The traffic management system involves the following key steps:

Step 1) Acquire real-time video feeds at intersections using traffic cameras.
Step 2) Perform object detection on the feeds using a customized deep learning algorithm
to identify vehicle types like cars, rickshaws, bikes, buses, trucks, and pedestrians.
Step 3) Count vehicles over fixed intervals using the SORT algorithm. Formulate time
series dataset with vehicle counts per lane in 10 minute slots.
Step 4) Assign unique IDs to tracked vehicles and remove IDs after vehicles leave camera
view.
Step 5) Forecast short-term traffic per lane using time series algorithms. Detect density
to identify cohortion.
Step 6) Ensemble forecasting and density outputs using weighted averaging and rules-
based logic for adaptive signal timing.
Step 7) Retune algorithms if performance metrics not met.
Step 8) Optimize ensemble components to reduce congestion across intersection.

The system leverages video analytics, vehicle tracking, adaptive forecasting, and con-
gestion detection to intelligently optimize traffic light timing and minimize congestion.
The multi-step process allows responding in real-time to evolving traffic conditions.

4 Design & Implementation

The following object detection and tracking models will be utilized:

1. R-CNN - Performs region-based detection followed by classification. Uses select-
ive search for region proposals to improve speed ((14)(18)).

2. Fast R-CNN - Uses a single neural network for region proposal and classification to
improve performance ((14)).

3. Faster R-CNN - Uses a Region Proposal Network for faster region proposals ((14)).

4. YOLO - Frames object detection as a single regression problem for fast predic-
tion ((11)).
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5. SSD - Uses small convolutional filters to detect objects at various scales ((8)).

For vehicle counting, the SORT algorithm will be used which assigns unique IDs to
tracked objects (Bewley et al., 2016).

Figure 6: Region of Interest

As shown in Figure 6, these models enable real-time object detection and vehicle
counting on video feeds at the intersection. The ensemble of models balances accuracy
and computational efficiency for the traffic management system.

R-CNN – RCNN performs detection in a two-step process. First, it generates region
proposals using selective search to focus on particular image regions. This helps improve
speed compared to exhaustively searching the full image. It then extracts features from
the proposed regions and classifies them using a convolutional neural network. R-CNN
merges region proposals based on color spaces, textures and other attributes before classi-
fication. Overall, by combining selective region proposals with CNN-based classification,
R-CNN improves accuracy and efficiency compared to previous detection approaches ((14)
(18)).

Fast R-CNN – Instead of using a CNN separately on region proposals like R-CNN, Fast
R-CNN passes the entire image through a single CNN to generate feature maps. It then
applies selective search on the feature maps to identify regions of interest (RoIs). ROIs
are pooled to fixed size vectors using RoI pooling for classification by fully connected
layers ((17); (15); (13)).

Faster R-CNN – Faster R-CNN combines a region proposal network (RPN) with Fast
R-CNN for improved speed and accuracy. The RPN generates region proposals directly
from the feature maps, removing the selective search bottleneck. This streamlines train-
ing and increases efficiency ((12); (4)).

YOLO (You Only Look Once) is a real-time object detection algorithm that uses a
single convolutional neural network to make predictions. It frames object detection as
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a regression problem to predict bounding boxes and class probabilities directly from full
images in one evaluation. This enables fast processing speeds suitable for applications
requiring high frame rates where small accuracy tradeoffs are acceptable.

YOLO is fully convolutional, composed of only convolutional layers without pooling.
YOLOv3 introduces Darknet-53 for feature extraction, with 53 convolutional layers and
batch normalization and Leaky ReLU activation. It avoids pooling, instead using strided
convolution to downsample and retain low-level features. By eliminating the region pro-
posal stage and taking a unified approach, YOLO can perform rapid detection with
reasonable accuracy tradeoffs ((9); (2) ;(11)).

YOLO is designed to be invariant to input image size, though in practice a constant size is
used. The input is a batch of images, and the output is a list of predicted bounding boxes
and class probabilities. Each bounding box prediction contains the box coordinates, ob-
jectness score, and class probabilities. Using 1x1 convolutions, YOLO makes predictions
at the full feature map resolution before it. In YOLOv3, each cell predicts a fixed number
of bounding boxes B. These boxes may specialize in detecting certain objects. Each box
is described by 5+C attributes - the center coordinates, dimensions, objectness score, and
C class confidences. Rather than predict heights and widths directly, YOLOv3 predicts
offsets to default bounding boxes called anchors. It uses 3 anchors per cell, predicting 3
boxes. The network output is transformed into box predictions using the anchor boxes
as follows:

bbox pred = anchor box + exponent(output)

This scheme of predicting anchor offsets allows using predefined priors to normalize the
bounding box regression task. YOLO’s unified architecture enables fast prediction of
class probabilities and bounding box coordinates directly from full images in a single
pass.

The predicted bounding box coordinates bx, by, bw, bh are obtained by applying off-
sets from the network output tx, ty, tw, th to the prior anchor boxes cx, cy, pw, ph as
follows:

bx = (tx) + cx
by = (ty) + cy
bw = pw * exp(tw)
bh = ph * exp(th)

This transforms the anchor box priors using the predicted offsets to obtain the final
bounding box predictions. The objectness score represents the probability an object is
present in the box, passed through a sigmoid to get a value between 0 and 1. Class
confidence values depict the probabilities of the detected object belonging to each class.
Originally Softmax was used, but recently sigmoid activations were adopted to avoid the
assumption that classes are mutually exclusive. For example, with an input size of 416 x
416, YOLO predicts (52x52 + 26x26 + 13x13) x 3 = 10647 bounding boxes total. YOLO
transforms anchor boxes using predicted offsets and computes objectness and class prob-
abilities using sigmoid activations, enabling fast end-to-end prediction of bounding boxes
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and classes.

Single Shot Multibox Detector- SSD performs simultaneous object localization
and classification in a single neural network evaluation. Its architecture is based on
VGG-16, leveraging the model’s strong performance on high quality image classification
tasks where transfer learning is applicable. The fully-connected layers of VGG-16 are
discarded and replaced with additional convolutional layers (conv6 onwards). These aux-
iliary convolutional layers enable extraction of features at multiple scales, progressively
reducing dimensionality. By building on VGG-16 and adding multiscale feature maps,
SSD can predict bounding boxes and class probabilities directly from full images in a
single pass. The single-shot, unified architecture allows for real-time processing without
compromising too much on accuracy. SSD demonstrates how models pretrained on image
classification can be repurposed for performant object detection with minor architectural
modifications.(8)

The accuracy of the predicted bounding boxes can be assessed through comparison
with the ground-truth bounding boxes using a metric called Intersection over Union (IoU)
((1)).

Figure 7: Extensive Calculation of the IoU

The region of intersection between the projected bounding box and the ground truth
bounding box represents the area of interest. Meanwhile, the area of union between the
two bounding boxes encapsulates the combined area covered. By calculating the IoU,
which is the ratio of the intersection over union, we can quantify the accuracy of the
predicted bounding boxes against the ground truth.
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Non-Max Suppression works to eliminate bounding box redundancy after the YOLO
model predicts multiple boxes around the same object. It follows these main steps:

1. Select the predicted box with the highest confidence score as the starting point.

2. Calculate the Intersection over Union (IoU) overlap between that box and all other
predicted boxes.

3. Remove any boxes that have an IoU higher than a set threshold, indicating they
substantially overlap with the selected box.

4. Repeat steps 1-3, selecting the next highest confidence box and eliminating its high-
overlap neighbors.

5. Continue until no remaining boxes have a lower confidence score than the currently
selected box.

This iterative process removes duplicate and overlapping boxes, leaving only the highest
quality detections. Non-Max Suppression is thus a crucial post-processing step for gen-
erating clean bounding box predictions.

Figure 8: Non Max Suppression ((1)

4.1 Research Resources– Time Series Forecasting

Time series forecasts made using the ARIMA function are based on the autoregressive
integrated moving average model. ARIMA combines autoregression for incorporating
past values and moving average for including past errors. The tool fits time series data
by estimating future points from historical points and error terms. It also calculates the
values of several forecasting evaluation criteria.

Figure 9: ARIMA Forecast
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4.2 Cloud resources:

To deploy YOLO on AWS, first provision an EC2 instance with the compute resources
needed to run YOLO efficiently. Be sure to configure the security groups and networking
appropriately.

Next, install the YOLO dependencies and software on the EC2 instance. Transfer the
trained YOLO model and any necessary data to the instance as well.

Then, execute the YOLO model on the EC2 instance, passing it the input images or
video to analyze. The model will run inference and produce output bounding boxes and
predictions.

Finally, retrieve the predictions from the EC2 instance either by downloading the output
files or accessing them directly. The YOLO model is now deployed on AWS and ready
for practical use.

5 Evaluation

The study analyzes pre-trained models for detecting six common road objects: Car,
Person, Bus, Truck, Train, and Bicycle. It focuses on real-time object detection, focusing
on speed and accuracy. Performance metrics include Mean Average Precision (MAP),
log-average miss rate, and time taken by each model..The samples of the test set are
displayed below:

Figure 10: Number of objects per class in the dataset and Test Data Samples

5.1 Case Study 1 – Single Shot Detection Network (SSD Net)

The Single Shot Detection Network is trained on PASCAL Visual Object Classes 2014
and 2017, with 20 classes, including car, train, bicycle, person, and bus. The model
has no truck class, resulting in zero Average Precision (AP). The VOC dataset contains
images of various objects, and due to the low number of truck objects, they were renamed
”bus” for analysis purposes. Also, the True Positives and False Positives plot has been
presented in the diagram. We observe that the performance of the SSD net on detection of
bicycles is poor when the image bears front or rear view of bicycles while the performance
is relatively better when the image bears side view of bicycles. With the cars being
most commonly seen on roads the dataset images bear a maximum number of objects
belonging to the class “car”, hence, the AP is highest for the class. Also, the fraction of
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true positives is maximum for class “car”. Though the network identifies the car even
when not completely visible or when visible in different orientations, it fails to achieve the
same when the pixel size of the car is very low. As one can observe from the above image,
the SSD Net fails to identify many of the cars located far from the camera. Also, as seen
in the image below, the detector fails to identify the bus, which though is prominently
visible. This is due to the small pixel size of the object(s). The performance of the
network in detecting objects which are not well illuminated or have a color which is not
in contrast with the background, the detector fails to identify the objects. It is obvious
that any object with the color similar to its background can be camouflaged and not get
identified in the process. There are many such examples where the object is discernible
from the background when observed visually, yet not detected by SSD Net. We observe
from the above histogram plot that the mean time taken by the SSD Net to detect all
possible objects of classes it’s trained on, in a given image is close to 2.9s. The above plot
was obtained from detection time on the first 1000 images of Kitti Dataset. Thus, we
observe that, though the algorithm is relatively fast (relative to other models explored),
the detection accuracy and number of instances (detections) per image is also low.

Figure 11: SSD image detection,Histogram & detection results

5.2 Case Study 2 – You Look Only Once (YOLO) v3

The You Look Only Once version 3 network is trained on the COCO dataset, including
six classes: car, train, bicycle, person, truck, and bus. The average precision is plotted
on the first 50 images of the Kitti dataset. Also, the True Positives and False Positives
plot on first 50 images of Kitti dataset have been presented in the diagram. The YOLO
v3 algorithm’s performance on bicycle detection is poor when the image has a front or
rear view, but better when it has a side view, similar to SSD Net’s performance. It also
performs well in detecting buses, trucks, and trains, but misclassifies large vehicles as
buses. The algorithm detects people with high accuracy when the entire body is visible,
but poor in cases where only the upper half is visible. The probability of detection is
higher when bicycles are isolated, as it is easier to identify and locate individuals. The
model, YOLOv3 is better than SSD Net in detecting the objects as well as in predicting
the bounding box coordinates. The bounding box coordinates predicted by YOLOv3 are
close to perfect bounding boxes. Also. the model is able to identify the objects with
high confidence (¿0.7 probability), even those which are occluded partially. This can be
traced back to the possible training of the mode to detect and identify class objects with
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occlusion’s. We observe from the above histogram plot that the mean time taken by the
SSD Net to detect all possible objects of classes it’s trained on, in a given image is close
to 4.49s. The above plot was obtained from detection time on the first 1000 images of
Kitti Dataset. Thus, we observe that, though the algorithm is slow relative to SSD Net,
the detection accuracy and number of instances (detections) per image is higher than
that of SSD Net.

Figure 12: YOLOv3 image detection,Histogram & detection results

5.3 Case Study 3 – Mask Region-based Convolutional Neural
Networks

The Mask Region-based Convolutional Neural Networks trained on Common Objects
in Context (COCO) dataset. Below is the plot of Average Precision for Region-based
Convolutional Neural Network on the first 50, 210 and 1000 images of Kitti Dataset.
In this case, the class names were retained as it is unlike in the previous two model
implementations. Also, the True Positives and False Positives plot on first 50, 210 and
1000 images of Kitti dataset have been presented below: The Mask RCNN model has poor
performance in detecting bicycles, with the lowest true positives for the ”bicycle” class.
The algorithm’s performance in detecting buses is relatively poor, but it outperforms
other models in detecting trucks and trains. The best performance is found in detecting
people, with bounding box coordinates close to the annotated values. The highest AP
for the ”person” class is also the highest among the three models, making it suitable for
automated driving vehicles. However, the model’s main drawback is the high detection
time per image, which may affect streaming.

5.4 Case Study 4 – You Look Only Once (YOLO) v4

The You Look Only Once version 4 Network trained on Common Objects in Context
(COCO) dataset. It bears 80 classes out of which all the 6 classes of our interest are
included, i.e., car, train, bicycle, person, truck and bus. The COCO dataset bears images
of objects in various orientations and sizes. Below is the plot of Average Precision for
You Look Only Once version 4 on the custom annotated, first 50 training images of Kitti
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Figure 13: MASK RCNN image detection,Histogram & detection results

Dataset. Also, the True Positives and False Positives plot on first 50 images of Kitti
dataset have been presented in the diagram: We observe that the performance of the
YOLOv4 on detection of buses is better compared to other models in the list, though the
detection of trains is very poor. As reasoned previously, even in the case of YOLOv4, the
AP of class “car” is highest. The algorithm’s performance in detecting heavy duty vehicles
is still poor, whereas its performance in detecting trucks is better than detection of other
two classes (trains and buses) as can be TP-FP numbers for the classes in YOLOv4. The
model, YOLOv4 overcomes the issues faced in YOLOv3, which is non-detection of objects
far from the camera and occupying a small pixel space of the image and is able to detect
even objects of classes other than the class “car” with high confidence. The samples of
results obtained are displayed in the diagram, which support the same.Though this might
seem like a possible candidate for application in tracking and real time object detection
in traffic, the most crucial drawback of this model is the high time taken for detection per
image, which translates to high detection time per frame in streaming. We observe that
the performance of the YOLO v4 net on detection of bicycles is poor when the image
bears front or rear view of bicycles while the performance is relatively better when the
image bears side view of bicycles. With the cars being most commonly seen on roads the
dataset images bear a maximum number of objects belonging to the class “car”, hence,
the AP is highest for the class. Also, the fraction of true positives is maximum for class
“car”.

Figure 14: YOLOv4 image detection,Histogram & detection results
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5.5 Case Study 5 – Retina Net (ResNet50)

In this section, we describe the results obtained on testing the pre-trained Retina Net
model, trained on the Open Images Dataset. The model is trained on 500 different classes
of Open Images Dataset out of which all the 6 classes of our interest are included, i.e., car,
train, bicycle, person, truck and bus. Below is the plot of Average Precision for Retina
Net on the custom annotated, first 50 training images of Kitti Dataset. The class names
were retained as it is unlike in the previous two model implementations. Also, the True
Positives and False Positives plot on first 50, 210 and 1000 images of Kitti dataset have
been presented in the diagram. The Retina Net outperforms SSD Net and YOLO v3 in
detecting bicycles, possibly due to its use of stationary and non-stationary classes during
training. This helps the model identify features of a complete bicycle and distinguish
between stationary and seated bicycles, improving detection accuracy. The algorithm’s
performance in detecting buses and trains is relatively poor, while its performance in
detecting trucks is better. ResNet50 is comparable to YOLOv4, but its performance in
detecting low illumination and occlusion is poorer. Additionally, the model’s detection of
bicycles piled up is low, unlike YOLOv4, which performs better than Retina Net. Though
this might seem like a possible candidate for application in tracking and real time object
detection in traffic, the most crucial drawback of this model is the high time taken for
detection per image, which translates to high detection time per frame in streaming.

Figure 15: RetinaNet image detection,Histogram & detection results

5.6 Case Study 6 – Testing on Real Time Data

Before testing the algorithm on BSCL data, there were two important things to be taken
care of - retraining and increasing speed of processing. Since the pre-trained model
cannot detect custom Indian vehicles, it has to be retrained for detecting vehicles like
auto-rickshaws, motorbikes, etc. Secondly we have to speed up the process immensely by
taking GPU into account, making the algorithm fit for real time scenarios and traversing
through large volume of data for analysis. For the first problem, data was annotated
from frames provided by BSCL and fed into the system for retraining using Darknet. To
speed up the process, custom PyTorch algorithm was written which gave an outstanding
18 fps detection (which is approximately 34 times faster than only CPU usage). There
was a considerable improvement in object detection of Indian vehicles after retraining:

The mAP found using the pre-trained model was 24.31%. The important class to ob-
serve is rickshaw. The pre-trained best model selected from the analysis didn’t performa
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Figure 16: Performance using pre-trained model on BSCL Dataset

as expected. Hence we present the re-trained module of YOLOv3 on Indian streets. The
mAP = 31.04% which is much improved from the previous case.

Figure 17: Performance of Retrained model (Indian – YOLOv3)

5.7 Case Study 7 – Time Series for Green Time signal

The data that is used here is of 15th September 2019. This is a per second dataset which
is the representation of the number of vehicles coming to one roadside at Rupali Square
Bhubaneswar. Although this is a sample dataset which is used for building the time series
forecasting model, the real dataset is going to be used in the real time from the Object
Detection YOLOv3 with SORT algorithm. Sample Plot Sample Result Plot
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The result is from different models and the complexity of the model that is being done
is reviewed in the following sections.

6 Discussion

6.1 Object Detection Model Evaluation

This research evaluated six object detection models on the KITTI dataset for traffic
monitoring: SSD, YOLOv3, Mask R-CNN, YOLOv4, RetinaNet, and a custom YOLOv3
model.
YOLOv4 achieved the best balance of accuracy and speed. With 42.44% mean Average
Precision, it outperformed other models except Mask R-CNN. It detected cars effectively
with 79.3% AP. However, YOLOv4’s bicycle detection was lacking. This could be im-
proved by training on more bicycle data.
Mask R-CNN had the highest accuracy at 46.7% but was too slow for real-time use, tak-
ing over 4 seconds per image. This highlights the tradeoff between accuracy and speed.
RetinaNet was less accurate and slower than YOLOv4. Its main advantage was stable
processing times.
The simple SSD model was very fast but lacked accuracy. The custom YOLOv3 model
performed much better than the pre-trained version, showing the importance of custom-
ization.

6.2 Cloud Computing for Scalable Real-Time Processing

To enable real-time processing of video streams from many edge cameras spread across
the city, the system leveraged cloud computing on AWS EC2 instances with GPU ac-
celeration. This provided the scalable processing power needed for low-latency analysis,
which would be difficult with dedicated hardware alone. The hybrid edge-cloud architec-
ture allowed initial computer vision at the edge before aggregated data was sent to the
cloud for coordination.

6.3 Limitations

Some limitations exist. The models were only evaluated on 50 KITTI images. Larger
and more diverse datasets could provide more confidence.
Testing on video rather than images could give a better sense of real-world performance.
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Deploying on embedded systems would reveal true speed and accuracy metrics.

7 Conclusion and Future Work

YOLO is a fully convolutional network (FCN) with 75 convolutional layers, skip connec-
tions, and up sampling layers. It uses a convolutional layer with stride 2 to down sample
feature maps, preventing loss of low-level features. YOLO is invariant to input image
size, but for batch processing, fixed height and width images are needed. YOLOv3 with
a GPU (Nvidia Tesla K80) is preferred for computation.

7.1 Salient Features

1. Works fast, extremely suitable to real time application.
2. Algorithm can identify custom Indian vehicles like auto rickshaws, motorbikes etc.
3. Deployment on edge devices.
4. Comes with edge/video analytics.
5. Optimization of traffic lights via Reinforcement Learning.

7.2 Future Work

Some areas for future work include:

1. Detecting emergency vehicles and incorporating priority logic into the system.
2. Exploring ways to further optimize system performance and accuracy.
3. Connecting multiple traffic signals to enable city-wide optimization.
4. Testing the system on video data for more real-world validation.
5. Deploying the system on embedded hardware at scale.

7.3 Concluding Statement

Research shows reinforcement learning algorithms improve traffic flow at intersections,
enabling policy mapping without rule-based rules or events. This system demonstrates
the potential of an integrated edge-cloud approach for real-time traffic monitoring and
adaptive signal control to reduce congestion.
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