
Prep
rin

t
Data Drift for Automatic FAIR-compliant Dataset

Versioning in Large Repositories
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Abstract—Construed as a shift in the distribution or structure
of data over time, data drift can adversely affect the performance
of machine learning models and data-driven decisions. This study
examines two data drift metrics, denoted as dE,PCA and dE,AE ,
that are derived from unsupervised ML models: the reconstruc-
tion error-based metrics of Principal Component Analysis (PCA)
and Autoencoders (AE). To investigate the robustness of these
metrics, we have systematically accessed time-series datasets from
the European Data Portal. Our experiments have examined data
versioning through three basic events: creation, update, and
deletion. The results are summarised and aggregated for all
datasets, and unsupervised analysis based on Robust PCA and
AE has been performed to examine patterns within the impact of
dataset characteristics on data drift detection and computational
efficiency. Our results indicate that both metrics aligned closely in
performance with new records, suggesting consistent drift detec-
tion under normal conditions with FAIR compliance. However,
high-dimensional datasets posed challenges for both PCA and
AE models. Update events revealed discrepancies between the
two metrics, suggesting that non-linear shifts affected AE-based
metrics more than PCA-based ones. Deletion events demonstrated
the resilience of these metrics against data loss, but also revealed
variability in the reliability of the PCA model; i.e., data drift
metrics derived from PCA and AE can be effective but sensitive
to certain dataset characteristics.

Index Terms—Data drift, Machine Learning, FAIR principles,
Principal Component Analysis, Autoencoders, Data versioning,
Time series, Dataset Versioning

I. INTRODUCTION

Data-driven decision-making has become central to mod-
ern business and research practices. Machine learning (ML)
models, artificial intelligence (AI), and data analytics all rely
heavily on large datasets that continuously evolve due to
various factors such as changing user behaviours, seasonal
trends, or even errors in data collection. This evolution can
lead to what is known as Data Drift (a.k.a. dataset shift): a
change in the distribution or structure of a dataset that can
significantly impact the performance and reliability of ML
models [1].

It is widely acknowledged that versioning of datasets is
a complex activity as it involves detecting not only in-
trinsic divergences, including noise, variance, and dynamic
changes, but also dissimilarities due to data collected and
distributed in different encodings or mirrored onto different
platforms [2]. However, empirical reproducibility relies on

enabling researchers access to the exact version of a given
data set to corroborate results.

For this reason, detecting and managing data drift is crucial
for maintaining a detailed data versioning system that tracks
information changes to improve the accuracy and relevance
of the predictive models involved. Arguably, ignoring data
drift can arguably lead to decreased model performance,
misinterpretation of results, and flawed business or research
decisions. Hence, considering the high dynamic of the current
data versioning system, accurately tracking changes in data
drift might be not only interesting but also critical in the near
future. However, while various methods have been developed
to detect data drift, there is no one-size-fits-all solution.

This paper builds on our recent work, in which we proposed
three metrics to quantify data drift [3]. Although our initial
work focusses on the FAIR principles [4], this continuation
study aims to further explore the limitations and characteristics
of these data drift metrics by considering the impact of the
size of the data set and other factors while maintaining FAIR
compliance. Exploring different types of data drift events, in-
cluding creation, update, and deletion, we seek to gain a deeper
understanding of how these metrics behave and determine
how robust these metrics are under different scenarios and
what adjustments might be needed to improve their reliability.
Through these experiments, we will discuss ı) how dataset
dimensionality affects the sensitivity and reliability of data
drift metrics; ıı) the influence of different data structures on the
metrics’ performance, particularly in cases with data scarcity;
and, ııı) the differences in metrics’ computational efficiency.

The results of this study will not only provide a deeper
understanding of data drift and suggest potential pathways
for developing more robust data drift detection methods.
Ultimately, our goal is to contribute to a more standardised
approach to data versioning and drift detection, which can
benefit data scientists, researchers, and anyone working with
evolving data sets [5], [6].

In the following sections, we will first discuss related work
in the field of data drift detection and data versioning, then
outline our methodology for this study, followed by the results
of our experiments, and finally conclude with a discussion of
the implications of our findings and suggestions for future
research directions.



Prep
rin

t
II. RELATED WORK

Storage-orientated approaches to data versioning in large
repositories have mainly focused on reducing data dupli-
cation and improving storage techniques in the repository
itself[7], [8], rather than intelligently detecting data differ-
ences, that is, data drift ı) virtual where the distribution
of the dataset changes over time, but the underlying concept
remains—-the mapping from features to labels–remains; or
ıı) conceptual where the underlying abstraction changes [9].
In highly dynamic data-intensive environments, datasets can
evolve forming a continuous between virtual and conceptual
data drift [10].

Although there are certain methods for identifying data drift,
there are some limitations despite its significant implications
for ML systems [11]. Traditional statistical hypothesis testing
methods are among the most commonly used, with techniques
such as the Kolmogorov-Smirnov test and Kullback-Leibler
divergence offering ways to quantify changes in distributions
[12], [13]. However, these approaches often require large
samples and can be computationally intensive, making them
less suitable for real-time detection. In contrast, ML-based
approaches focus on using models to capture the underlying
structure of the data and then monitoring for deviations
from this structure. Techniques such as Principal Component
Analysis (PCA) [14] and Autoencoders (AEs) [15] can capture
complex patterns and adapt to high-dimensional data. More
recent attempts include software libraries with methods to
measure the distance between data distributions [16].

On the other hand, existing work on data versioning tends
to focus on version control systems that can track changes but
often lack the granularity needed to manage evolving datasets.
Despite this, there is a growing need for a standardised
approach to data versioning that incorporates data drift metrics
and supports a more comprehensive understanding of how data
evolve over time [5], [6], [2].

A. Contribution

In the context of AI and scientific communi-
cation, the implementation of FAIR principles,
particularly in data versioning, is critical to
ensuring that datasets are not only accessible
and reusable, but also robust enough to support
the evolving requirements of AI technologies.
This study, by exploring the quantification and
management of data drift, directly supports the
development of more reliable AI applications
by ensuring data consistency over time, which
is crucial for the credibility and precision of
scientific communications.

Our initial research has introduced three metrics to measure
data drift using a combination of PCA and AEs [17], then
extended into a proof-of-concept study to demonstrate the
potential for a standardised FAIR-compliant data versioning
framework incorporating these metrics for time series [3], an
area where data drift has received significant attention due to

the increase in data streaming techniques [18]. However, sig-
nificant questions remain about the robustness and scalability
of these methods, especially in real-world scenarios where the
size, noise, and other factors of the datasets can vary.

The aim of this paper is therefore to address these questions
by exploring the limitations and performance of these data drift
metrics under different conditions using a significant number
of datasets from a large open data repository, the European
data portal. We seek to provide a more robust and adaptable
approach to detecting data drift and a clearer path toward
standardised dataset versioning.

III. METHODOLOGY

This study investigates data drift metrics to understand their
behaviour in various experimental setups. We built on previous
work that proposed data drift metrics based on PCA and AE.
Our focus here is on the two data drift metrics derived from
the reconstruction error in these models: dE,PCA and dE,AE .

We examine the robustness and reliability of these metrics
through experiments that simulate different types of data
evolution events: creation, update, and deletion. This allows
us to explore the impact of dataset size, noise, and other
factors on data drift metrics, as well as to assess computational
efficiency and repeatability.

A. Accessing datasets from the European Data Portal

The datasets used in our experiments are sourced from
the European Data Portal and are predominantly tabular in
nature, stored in CSV format. Each dataset consists primarily
of numeric data, which is crucial for the application of PCA
and Autoencoders, as these models require quantitative inputs
for the computation of metrics like mean squared error and
reconstruction error. In addition, the data sets are multidimen-
sional, containing multiple features that record various aspects
of the data subject matter.

To access and obtain datasets from the European Data
Portal [19], we used a customised Python script to query
the API of the portal, filter the results for relevant datasets,
and download the data for further analysis. The following
subsections describe the methodology used to acquire and
process these datasets.

1) Data acquisition. We used an API endpoint to acquire
datasets from the European Data Portal to allow for
structured queries based on various parameters such
as search terms, format, and scoring. The key steps
in this process included ı) Query Generation. A query
string was generated with specific parameters to identify
datasets available in CSV format. Our research has
focused on datasets with good scoring (above a certain
threshold) and also matching a search term (in this case,
“time series”); ıı) Data Retrieval: We used the requests
library to send HTTP GET requests to the API endpoint,
passing the generated query string described above as
a parameter. This allows us to retrieve information,
as metadata, about the datasets that match the search
criteria; and, ııı) Metadata Storage: The metadata from
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the API response are stored in JSON format for future
reference. In addition, the acquired metadata include
information about the datasets such as their scoring,
identifiers, country of provenance, and data distributions.

2) Dataset filtering and download. After retrieving the
metadata for the datasets, we applied additional filters
to ensure that the downloaded datasets met specific
criteria ı) Scoring Threshold: According to the API
documentation, there are four scoring categories. The
scoring value of 221 or above represents the minimum
threshold imposed by the first two superior scoring
categories, ensuring high-quality datasets; ıı) Dataset
Format: The script checked the format of each dataset,
keeping only the CSV files to maintain consistency in
data processing; and, ııı) Download Datasets: For each
data set that met the criteria, we obtained the access URL
from the metadata and downloaded the CSV files using
the “get()” method from the requests library. Following
our interest in generating a unique identifier for the
datasets, we title them using the Secure Hash Algo-
rithm 3 (SHA-3) algorithm that provides high collision
resistance. Moreover, the dataset download process was
run in a separate thread to allow parallel processing and
improved efficiency. This allowed the script to process
multiple datasets simultaneously, reducing the overall
download time.

3) Validation and Processing. After downloading the
datasets, we applied validation and processing steps to
ensure data quality and compliance with our research ob-
jectives. ı) File Validation: Specific methods were used
to validate that the downloaded datasets were indeed
CSV files. If a file was corrupted or incompatible, it was
discarded; ıı) Time Series Identification: In this stage,
we checked whether the datasets contained valid date
formats to identify potential time series data. This in-
volved matching date patterns to ensure that the datasets
were suitable for our analysis; ııı) Data Processing and
Reorganisation: The validated datasets were processed to
obtain a sample of four data points, randomly selected to
check for date compliance. Datasets that contained valid
time series data were moved to a separate directory for
further analysis.

Following this approach, we systematically retrieved, vali-
dated, and processed a total of 223 datasets from the European
Data Portal. The final result was a collection of CSV files
containing time series data, ready for further analysis and
experiments, and ensuring a minimum level of quality to
save memory space and time that should have been used
otherwise in the latter stages to check the usability of the
downloaded datasets. In terms of the organisation of the time
series within these CSV files, each row corresponds to a time-
stamped record, with columns representing different variables
measured at each time point. This structure allows us to apply
systematically data drift detection techniques by analysing
changes in time steps, making the data particularly suitable

for our study on the robustness of data drift metrics.
However, harmonising the dataset models was still a further

step that resulted in a benchmark of 71 usable datasets for our
analysis displayed in Section IV. Yet, despite using a reduced
amount of datasets compared to the number and wide range of
time series available in a repository such as the European Data
Portal, our results illustrate a potential harmonisation solution
to work with different time series datasets. The methodology
presented in this paper arguably provides a robust framework
for accessing and working with large-scale datasets from on-
line repositories, ensuring consistency and quality throughout
the data drift calculation, paving the way toward automatic
standardised dataset versioning with FAIR compliance.

B. Data Drift Metrics

Our approach to quantifying data drift uses unsupervised
ML models, focussing on PCA and AE. These models offer
flexibility in analysing high-dimensional data without prede-
fined prediction targets. In the context of our experiments, the
term “cells” refers to the individual data points within the data
set matrix, where each cell represents a unique intersection of
a row and a column, that is, a specific numeric value at a given
time step for a particular variable. To assess the sensitivity of
our data drift metrics, we employed a permutation strategy
designed to disrupt the natural correlation patterns within the
dataset. Specifically, a designated percentage of cells, denoted
by p%, within each variable is randomly permuted.

This permutation is performed independently for each col-
umn, ensuring that the intrinsic structure of each variable is
altered to a predefined extent. This method of permutation
results in a new dataset variant where the original order
of data points in each column is disrupted, simulating a
scenario of potential data corruption or unanticipated changes
in data collection procedures. The rationale behind using this
permutation process is to evaluate how well the PCA and AE
models, which have been trained on the original unpermuted
dataset, can adapt to or recognise changes in the underlying
structure of the data set. The increase in Mean Squared Error
(MSE) during model reconstruction of the permuted dataset
provides a quantitative measure of the model’s sensitivity to
the induced data alterations, reflecting the robustness of the
data drift metrics under conditions of simulated data drift. The
following sections explained how we combined this strategy
with the two aforementioned unsupervised ML models.

1) E-drift Metric based on PCA: The PCA-based E drift
metric (dE,PCA) measures drift by assessing the Mean
Squared Error (MSE) between the reconstructed data and the
original data, using a PCA model. This metric is obtained
through a permutation strategy, in which different percentages
of cells are permuted from the primary source dataset (PS),
ranging from 1% to 100%, with increments of 10%. Each level
of permutation is repeated several times (typically 10 times)
to ensure robustness. The resulting MSE values are used to fit
splines that represent the relationship between the MSE and
the percentage of permutation, with a higher value indicating
greater data drift.
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2) E-drift Metrics based on Autoencoders: Similarly, the

AE-based E-drift metric (dE,AE) uses an AE to compute the
reconstruction error. The same permutation strategy is applied,
with MSE values derived from the reconstruction process.
The splines are fitted to determine the estimated percentage
of permutation that corresponds to the observed MSE. This
allows us to obtain a metric that ranges from 0 to 100,
indicating the level of drift between the PS dataset and the
Revision (R) dataset.

It is important to mention that alongside the
data drift metrics, metrics tE,PCA and tE,AE ,
referring to the computational times required to
compute the PCA and AE models, respectively,
have also been calculated, reflecting both the
complexity of the model calculations and the
overhead associated with handling larger or
more complex datasets.

C. Experimental Setup

To evaluate the robustness of these data drift metrics,
we have performed experiments that simulate three types of
data evolution event: creation, update, and deletion. Each
experiment was repeated multiple times to ensure consistency
and assess the impact of different variables on the metrics’
behaviour.

1) Creation Event: The creation event involved adding new
information to the PS dataset, simulating a dynamic dataset
scenario. We generated new observations using overlapping
windows of 5%, 10%, 25%, 50%, 75%, and 100% of the
remaining records in the Revision datasets, which had not
been seen to fit the PCA and AE models. With each iteration,
new batches of new records were added, while removing the
first record from the previous iteration. This allowed us to
explore how varying time resolutions and memory sizes impact
the data drift metrics. To create new observations for our
experiments, we simulated a scenario in which data contin-
uously accrue over time, mimicking real-world incremental
data collection. In practice, this approach involved presenting
subsets of data that had not been used to train the ML models,
in overlapping sequences. For example, with a window size
of n = 2, the procedure would start by introducing the first
and second records of the subset to the model, followed by
the second and third records, etc. This overlapping ensures
that each new data window introduced to the model differs
slightly from the previous one by precisely one observation.
This is particularly effective in highlighting how well data drift
metrics respond to subtle shifts in data patterns over successive
time points. This technique not only tests the sensitivity of
the models to new information, but also simulates a practical
environment where data drift might naturally occur due to
ongoing data accumulation.

2) Update Event: The update event involved changing
existing records in the dataset by modifying the scale of the
variables. We applied cubic root transformations to different
percentages of columns (5%, 10%, 30%, 50%, 70%, 80%, and

100%) to simulate changes in the underlying data structure.
This approach aimed to assess the sensitivity of the data
drift metrics to such transformations and to assess whether
substantial updates would trigger significant data drift values.

3) Deletion Event: The deletion event simulated data loss
by decimating signals and removing different percentages of
records from the PS dataset (5%, 10%, 20%, 30%, 40% and
50%). This allowed us to assess the resilience of unsupervised
ML models when faced with incomplete data and to determine
how information loss affects data drift metrics.

D. Data Preparation and Preprocessing

The first step before executing the Creation, Update, and
Deletion experiments, was to preprocess and fit the PCA and
AE models with the Primary Source datasets. In practical
terms, each data set X is considered a matrix with dimensions
N×K, where N represents the number of time steps (records)
and K is the number of variables measured at each time point.
Therefore, each record xt within the dataset constitutes a K-
dimensional observation vector, capturing the values of the K
variables at a specific time point t. For the purposes of our
experiments, the datasets were partitioned into training and
testing sets to evaluate the robustness and predictive capability
of our models in Creation experiments. Specifically, each
dataset was divided so that the first half of the records was used
to fit the PCA and AE models (training set, or Primary Source),
and the second half was reserved for testing the models’
performance in detecting drift (testing set, or Revision). This
setup ensures that each record, or row in the dataset matrix, is
treated as a separate, complete observation for model training
and testing, reflecting the typical structure of time series data
where each time step is crucial for understanding temporal
dynamics.

It is important to mention that prior to fitting the mod-
els the experiments, each feature in the dataset was scaled
individually to have zero mean and unit variance, a process
often referred to as standardisation or autoscaling. This ensures
that all features contribute equally to the analysis, preventing
features of larger scale from dominating the results.

For PCA, the models were fitted to explain more than 90%
of the variance. However, AEs require a more sophisticated
training routine. The ones used in our study are fully connected
deep neural networks with two main components: an encoder
and a decoder, both composed of two hidden layers and a
variable number of nodes. The activation functions used were
“relu” and “tanh” for the hidden layers, with linear activation
for the final output layer. This architecture aims to capture
complex non-linear patterns within the data for effective data
drift detection by compressing and reconstructing the input
data. This reconstruction error was used later as a measure
of data drift. Noise was added to the data to improve the
AE’s generalisation ability. This noise followed a normal
distribution with a mean of zero and a standard deviation
scaled by a factor (cϵ = 0.005), applied after autoscaling
the data. The AE was trained using a customised training
routine, including hyperparameter tuning through Keras Tuner,



Prep
rin

t
TABLE I: Features summarising the performance of the data drift metrics.

Feature Meaning

N Number of records (time steps, rows) of the dataset
K Number of records (time steps, rows) of the dataset

R2
PCA Goodness-of-fit (i.e.: explained data variance) of the PCA model fit with the Primary Source dataset
R2

AE Goodness-of-fit (i.e.: explained data variance) of the AE model fit with the Primary Source dataset
RdPCA Range of average dE,PCA across all levels of the experiment
RdAE Range of average dE,AE across all levels of the experiment
ΣdPCA Addition of average dE,PCA values for each experiment level, normalised by the number of levels (ensuring ∈ [0, 100])
ΣdAE Addition of average dE,AE values for each experiment level, normalised by the number of levels (ensuring ∈ [0, 100])

∆dAE−PCA Maximum value of the difference between the average values dE,PCA and dE,AE of each level of experiment.
∆tAE−PCA Maximum value of the difference between the average values tE,PCA and tE,AE of each level of experiment.

optimising for the lowest validation mean squared error. Early
stopping was used to prevent overfitting, and training stopped
if the validation loss did not improve for 10 consecutive
epochs. This approach not only enhances the generalisability
of the model, but also optimises computational efficiency.

After obtaining the values dE,PCA, dE,AE , tE,PCA and
tE,AE for each iteration of each level of the experiments,
the results were aggregated. This was done to achieve a
comparable structure of information that encapsulates the
results obtained for each dataset. To do so, we had to do
some feature engineering and selection, picking the optimal
parameters summarising the data drift and computation time
values obtained at each level of the experiments performed
in each versioning scenario. In this particular case, optimality
was defined by the insight brought by the parameters but also
by the level of variability. The existence of some outliers
forced us to perform the latter unsupervised analysis using
robust techniques that prevented the generation of artefact
clusters due to the existence of anomalous points. With this
goal in mind, a summary dataset was created, containing the
following information for each dataset: the number of rows of
the Primary Source (N ), the number of features of the Primary
Source (K), the goodness of fit of the PCA model for PS
(R2

PCA), AE goodness-of-fit for the PS (R2
AE), and several

metrics expressing the variation of and between dE,PCA,
dE,AE , tE,PCA, and tE,AE , across all levels of experiments
(see Table I). Once the results were aggregated, these sum-
mary datasets were preprocessed to ensure consistency and
comparability of the experiments.

E. Unsupervised analysis

This work aims to critically assess the performance of
dE,PCA and dE,AE metrics and determine their applicability
in real-world scenarios where datasets evolve and differ in
size, structure, and scale. This means providing a quantitative
foundation for evaluating the stability and reliability of the
proposed metrics and offering a more systematic approach
to understanding data drift in diverse datasets. Given the
expanded range of data sets used in this study compared to
our previous work, robust PCA [20], [21] was used to analyse
the summary data sets derived from the creation, update and
deletion experiments. This technique allowed us to explore re-
lationships between datasets showing similar behaviours and to

interpret the underlying variables correlated to these groupings
of datasets, establishing potential relationships between dataset
characteristics and data drift metrics, as well as computational
times.

IV. RESULTS

The following figures depict the results of the PCA run on
the matrices that aggregate the results for the Creation, Update,
and Deletion events. Two different plots will be used to inform
the results obtained, presenting two distinct visualisations. On
the one hand, the loading plot serves as a map to interpret
the variables’ correlations, and it will be used to showcase
the contributions of each variable to the first two principal
components. Each point represents a variable, with its position
indicating the relative contribution to the PCA axes. Score
plots represent correlation maps between observations, where
each point corresponds to an observation (i.e. a dataset in this
case), positioned according to its coordinates on the first two
principal components.

A. Creation events

Loading plots shown in Figure 1a, show that the most
significant variance in PC1 is associated with ΣdE,AE and
ΣdE,PCA (i.e., the normalised sum of the average data drift
values from the creation experiments). This means that in these
experiments, both metrics show a major alignment. In addition,
their high values on the 1st PC loadings and close to zero
values for the 2nd PC indicate orthogonality between the data
drift metrics and the rest of the variables, more related to the
datasets’ characteristics. This suggests that data drift values,
in this case, agree for all types of dataset, regardless of their
features.

The loadings of the second PC indicate that the variance
in PC2 is related to the goodness of fit of the models, the
sample size of the dataset (N ), and the number of variables.
The alignment of the positive PC2 values of both R2 for PCA
and AE and N indicates that datasets with more time steps
will present better quality than the primary source dataset,
bringing more information to fit both models. In addition, the
negative loading of K (number of characteristics) indicates
that achieving better R2 values becomes equally challenging
for both PCA and AE models, since their goodness of fit is
negatively correlated with the dimensionality of the dataset



Prep
rin

t(a) Loading plot with the 1st and 2nd PCs on the x and y-axis, respectively. (b) Score plot with the 1st PC on the x-axis and of the 2nd PC on the y-axis.
Fig. 1: First two components of the robust PCA model obtained with the Creation events experiments. The plot on the left represents the
loading plot, which illustrates the contributions of variables to these two main components. The right plot is the score plot, with each point
representing an observation, labelled by its corresponding value of variable N, indicating the number of time steps (rows) of each dataset.

K. Finally, it is interesting to mention that the number of
ov variables K seems to be positively correlated with longer
computation times by the AEs compared to the computation
time required by the PCA models.

The score plot in Figure 1b shows that, in fact, there are
three more differentiated groups of datasets whose dispersion
along the 2nd PC correlates with lower N values. However,
as mentioned before, the cluster located on the left side of
the plot still maintains high values of N of a similar order
of magnitude to the cluster located close to the centre of the
score plot. The labels are shown in Figure 2, which shows
the normalised values dPCA in all creation event experiments,
indicating that this division of clusters along the 1st PC
corresponds to different levels of variability captured in the
Revision datasets of the experiments. Yet, as mentioned before,
the variables’ loadings indicate that such differences in the
data drift values do not respond to the limitations of the
proposed data drift metrics when working with datasets of
certain characteristics. Thus, it seems reasonable to assume
that revisions from datasets located in the left cluster presented
lower drifts from the Primary Source than the ones located at
the centre of the score plot.

It is worth mentioning that these findings also suggest that
ML models, PCA and AE, seem to face the same limitation
when fitting datasets of similar characteristics. According to
these results, low N and high K data sets could threaten
the reliability of data drift metrics. Further insight on the
sensitivity of these metrics should be done, assessing their
limitations and ideally proposing other candidates to deal with
datasets with such characteristics.

B. Update events
The loading plots in Figure 3a reveal that PC1 is mainly

associated with the maximum differences in data drift metrics

Fig. 2: Score plot for the creation events results.

and computation times between AEs and PCA. The high load-
ings for the maximum differences between the average data
drift values and their average computation times (∆dAE−PCA

and ∆tAE−PCA, respectively) suggest that PC1 is driven by
the point of greatest disagreement between these two metrics,
indicating that data sets with large discrepancies in data drift
and computation times dominate this principal component.
Furthermore, the positive loading for the number of records
N and the negative loading for the number of features K,
also suggest that data sets with more time steps but fewer
features may exhibit larger discrepancies between AE and
PCA. However, this last remark could be explained by the
simple fact that datasets with lower dimensionality (i.e., lower
K), will be more sensitive to shifts in the scale of their



Prep
rin
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Fig. 3: First two components of the robust PCA model obtained with the Update events experiments. The left plot represents the loading plot,
illustrating the contributions of variables to these two principal components. The right plot is the score plot, with each point representing an
observation, labeled by its corresponding value of variable ∆dAE−PCA, indicating the maximum difference between the average data drift
values obtained by each approach at each experiment level.

variables, as they will have a higher impact on the overall
correlation pattern described by the new shifted version of the
dataset.

Furthermore, observing PC2, it can be seen that the AE’s
goodness of fit (R2

AE) is again negatively correlated with the
dimensionality of the dataset K. However, in this case, even
if PCA’s goodness of fit (R2

PCA) and the number of records
(N ) are still positively correlated to R2

AE according to PC2,
AEs seem to be more affected by the dimensionality of the
dataset, as both R2

PCA and N present loadings closer to zero
in this case, in comparison to the relationship exhibited in
the loading plot from Creation experiments (Figure 3a). The
combination with other variables in this analysis appears to
widen the sensitivity of AE and PCA to the dimensionality of
the dataset, making the latter slightly more robust.

In addition, loadings on the second PC also seem to indicate
that R2

AE is negatively correlated with the normalised sum of
dE,AE values, which means that the datasets whose Primary
Source was modelled more accurately presented lower dE,AE

values. On the other hand, the first PC expresses an antag-
onistic dynamic for PCA models. The negative loadings of
R2

PCA and dE,PCA indicate that the data sets whose primary
source was modelled more accurately presented higher values
of dE,PCA. The reason behind this might be the difference
in each model’s linear and nonlinear nature. Since AEs can
model non-linear relationships, performing non-linear scale
shifts on the variables might not distort completely the cap-
tured correlations. In contrast, since PCA relies on linearity
assumptions when linear relationships are broken by inducing
non-linear transformations, dE,PCA might be more sensitive
towards them. This would mean that AEs might be more
flexible to certain data shifts, which could be beneficial if

such changes are expected on the natural dynamics of datasets,
but could be counterproductive otherwise, making the dE,AE

metric less sensitive to the changes in these new versions.
Finally, datasets with fewer features but more time steps

seem to yield greater discrepancies between both data drift
metrics, both in terms of their values and in computation
times. This, alongside the aforementioned results, suggests that
update events, such as scale shifts, highlight the differences
between both data drift metrics, pointing out a direction to
conduct further assessment and an in-depth analysis of the
particular cases that could be problematic for each approach.

The score plot in Figure 3b indicates that there are dis-
tinguishable groups, but the presence of a dataset with a
difference between the average values dE,AE and dE,PCA of
∆dAE−PCA = 94, is probably the most noticeable aspect.
This dataset represents an outlying behaviour that combines
a high dimensionality (K = 48) and a bad AE fitting for
the Primary Source (R2

AE = 0.3646). This outlying case
illustrates a scenario that could be challenging for the use
of dE,AE’. Consistency in model goodness-of-fit is essential
for ensuring the reliability of data drift metrics, and further
analysis should focus on assessing the underlying factors
causing discrepancies and exploring ways to maintain reliable
data drift metrics even when handling datasets with potential
scale shifts.

C. Deletion events

The first thing to mention about the deletion experiments
is that the results presented such low variability that the
robust PCA model considered their elimination to carry out
the analysis, given the low variability they presented. Even
if striking, this result can be better understood if the results
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Fig. 4: First two components of the robust PCA model obtained with the Deletion events experiments. The left plot represents the loading
plot, illustrating the contributions of variables to these two principal components. The right plot is the score plot, with each point representing
an observation, labeled by its corresponding value of variable N, indicating each dataset’s number of features (columns).

of our previous work are checked. In our previous proof-
of-concept results, both dE,PCA and dE,AE metrics showed
high robustness against information loss, with values of null
data drift almost persistently for all percentages of deleted
information from the Primary Source.

For this reason, the loading plot in Figure 4a shows only
the correlation between the dimensions of the dataset and
the goodness-of-fit of both ML models fitted to the primary
sources. However, this case is also interesting to analyse. The
high loading for R2

PCA on the first PC and its orthogonality
to the rest of the variables (with values close to zero for the
first PC) implies that the goodness of fit of the PCA models
is the main source of variability in the results of the deletion
experiments and that this variability within R2

PCA does not
appear to be strongly correlated with the dimensionality of
the data sets or follow the same pattern as the goodness of fit
obtained by the AEs (informed by R2

AE). In contrast, this does
not seem to be the case for R2

AE values, which appear to be
more sensitive to these characteristics of the dataset, increasing
their reliability with the number of records (positive correlation
with N , aligned in the second PC) and decreasing with higher
dimensions (negative correlation with K according to the 2nd
PC).

However, the loadings of the 1st component clearly attribute
higher variability among R2

PCA values. This has a direct
implication on the reliability of PCA models, which would be
expected to be more variable than that of AE models. Even if
this variability cannot be attributed to the dimensions of the
dataset, it might be interesting to further assess which dataset’s
features might correlate with variations on PCA’s performance.
In practical terms, this means that, in the case of using the
dE,PCA metric, assessing the Primary Source’s goodness-of-fit
would be critical, regardless of the dataset’s features, and, on

the other hand, using the dE,AE metric with datasets of a small
number of records and high dimensionality could weaken the
reliability of the dE,AE metric.

D. General discussion

The results compared the performance of two candidates for
data drift based on two different unsupervised ML models.
The difference in handling non-linear shifts between PCA
and AE is predominantly due to their inherent mathematical
constructions. As a linear technique, PCA is primarily effective
in capturing the major linear variances within the data, but it
fails to model nonlinear relationships effectively.

In contrast, AEs are designed to capture non-linear depen-
dencies thanks to their layered neural network-based structure.
Their performance in high-dimensional settings is significantly
affected due to their complexity and the higher risk of over-
fitting. As the dimensionality of the dataset increases, the AE
must learn more parameters, which can lead to model over-
fitting unless sufficient regularisation strategies are employed.
This sensitivity to high dimensionality can be attributed to the
model’s capacity to capture intricate patterns, which, while
beneficial for capturing complex nonlinear relationships, also
makes the model prone to fitting noise present in the data. To
mitigate these issues, techniques such as dropout, reduction
in dimension before training, and increasing the amount of
training data can be considered. Each of these strategies helps
reduce the effective complexity of the model or the noise in
the training data, leading to stronger performance in high-
dimensional scenarios.

Practically, this implies that PCA might be more suitable
for datasets where the underlying data relationships are lin-
ear or approximately linear due to its simplicity and less
computational cost. However, AEs are preferable in scenarios
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where data exhibit complex non-linear patterns, albeit at
the cost of increased computational resources and a higher
propensity for overfitting. In choosing between these methods,
practitioners should consider the nature of the dataset and the
specific requirements of their application, such as the need
to capture non-linear relationships versus the computational
efficiency and simplicity of the model. It is also advisable
to employ techniques such as cross-validation to evaluate the
performance of each model on the dataset before finalizing the
approach.

The implications of our findings extend beyond the mere
characterisation of data drift. Our experiments highlight the
need for robust metrics that can adapt to various types of
data change, ensuring the consistency and reliability of the
data over time. By systematically evaluating how data drift
metrics respond under different creation, update, and deletion
conditions, we provide a foundational understanding that can
guide the development of standards for dataset versioning
practices, which are integral to implementing FAIR principles
across diverse data ecosystems. We envision that adopting such
standardised practices will lead to better governance of data
assets across various sectors. To this end, the framework we
depict should include guidelines to ı) Assess the stability of
data drift metrics across different dataset characteristics and
update cycles; ıı) Implement automated tools that use these
metrics to flag significant deviations or drifts in data, prompt-
ing re-evaluation of data models; ııı) Develop a comprehensive
metadata management system that documents each versioning
event along with the associated drift metrics, facilitating easier
traceability and accountability in data management.

These recommendations are designed to foster a more
standardised approach to handling evolving datasets, thus con-
tributing to the integrity and utility of data in AI applications
and beyond.

V. CONCLUSION

In this work, we have assessed the reliability and variability
of the data drift metrics for a FAIR-compliant standard for data
versioning. These metrics are derived from PCA and AE, and
we have evaluated their performance by simulating creation,
update, and deletion events. Our approach used robust PCA to
analyse the aggregated results to identify significant patterns,
trends, and outliers and inform best practices for data drift
detection.

Firstly, analysis of creation events revealed that both data
drift metrics (dE,AE , dE,PCA) showed a major alignment,
indicating consistency between different datasets. The PCA
loading plot showed a positive correlation between the nor-
malised sum of the average data drift values, suggesting that
these metrics coherently represent the underlying drift in these
experiments. In addition, our results also suggest that datasets
with more time steps generally exhibit better model fitting,
providing a more stable baseline for detecting data drift.
However, both PCA and AE models struggle with higher
dimensionality, indicating a challenge for datasets with more
features being measured.

Secondly, update events highlighted potential discrepancies
between the two data drift metrics and their computation
times. The maximum differences between the average data
drift values and their computation times are relevant sources of
variability, suggesting substantial differences in these metrics
between data sets. This may indicate that update events can
reveal deeper complexities and sensitivities within these data
drift metrics. In addition, AE’s goodness-of-fit presented a
strong negative correlation with the dataset’s dimensionality,
suggesting that higher dimensionality may pose challenges
to the AE’s stability and accuracy. In contrast, PCA models
seem to be more robust in these cases, demonstrating a
more consistent behaviour when faced with nonlinear shifts
or variations in dataset scale.

Finally, deletion events show limited variability in the
results, leading to a robust PCA analysis that ignores all
comparative metrics between data drift values or execution
times with AEs and PCA models. This result aligns with
earlier findings that both data drift metrics demonstrated
robustness against information loss. However, the resulting
PCA model still indicated higher variability within the PCA
model goodness-of-fit, suggesting that accurate PCA fitting
might not always be ensured and that the reasons behind this
variability did not seem strongly correlated with the dataset
dimensions. However, the analysis also suggests that smaller
datasets present a greater challenge to the reliability of the
PCA model, pointing to potential problems with limited data.
However, correlations of N and K with AE’s goodness-of-
fit suggest a stronger impact of dimensionality on dE,PCA

reliability, reinforcing the need for caution when dealing with
high-dimensional, low-sample datasets.

In summary, these results highlight the perfor-
mance of the data drift metrics derived from
PCA and AE. Although they can be effective in
capturing underlying data shifts, they are sensi-
tive to certain dataset characteristics and model
fitting issues. Datasets with lower dimension-
ality and higher time steps tend to produce
more consistent data drift metrics, while those
with higher dimensionality pose challenges,
especially for AEs. The goodness of fit for both
the PCA and AE models plays a crucial role
in determining the stability of the data drift
metrics, indicating that careful model fitting
and tuning are essential for reliable results.

Our findings underscore the importance of integrating FAIR
principles in dataset versioning to enhance the reliability and
applicability of AI models in scientific communications. By
ensuring that data drift is accurately measured and managed,
we contribute to the broader goal of making AI technologies
more adaptable and effective in handling real-world data vari-
ations, presenting a clear pathway towards more standardised
and robust scientific tools. Given these findings, future work
will focus on refining data drift metrics to address identified
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limitations, such as sensitivity to the dimensionality of the
dataset and model-fitting challenges. Based on the results
presented, several potential avenues for future research such
as ı) Hybrid Metrics: Given the strengths and weaknesses of
PCA and AE observed in handling different data characteris-
tics, a hybrid approach could be explored combining PCA
efficiency with AE’s non-linear modelling capacity. Using
ensemble methods that aggregate the results of multiple drift
detection models could also improve the stability and accuracy
of drift measurements. However, while this approach might
help mitigate the specific shortcomings of individual models,
it would also raise more questions about how to interpret
the contradictory conclusions obtained by each metric; ıı)
Application of Deep Learning Techniques: Exploring deep
learning architectures, such as Attentional or Recurrent Neural
Networks, which are well suited for pattern recognition in
time-series data, could provide new insights into more effec-
tive ways of detecting and quantifying data drift, especially in
dynamically changing environments; and, ııı) Real-time Drift
Detection Algorithms: Developing real-time data drift detec-
tion algorithms should be highly beneficial, particularly for
applications requiring immediate response, such as dynamic
pricing models or real-time systems monitoring.

These suggestions are designed not only to address the
limitations found in our current metrics but also to push the
boundaries of research in data drift detection, ensuring that
data management systems remain robust against the evolving
nature of data environments. This is particularly interesting
in the context of our current SMARDY research project [22],
which is developing a marketplace for research datasets where
the detection of data drift has proven to be crucial.
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