
Configuration Manual: Automated Grape
Counting with Deep Learning on Big Data

MSc Research Project
Cloud Computing

Naveen Kesavan
Student ID: x19153163

School of Computing
National College of Ireland

Supervisor: Diego Lugones

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Naveen Kesavan
Student ID: x19153163
Programme: Cloud Computing
Year: 2021
Module: MSc Research Project
Supervisor: Diego Lugones
Submission Due Date: 14/8/2023
Project Title: Configuration Manual: Automated Grape Counting with Deep

Learning on Big Data
Word Count: 1630
Page Count: 12

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Naveen Kesavan

Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). ⇤
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

⇤

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not su�cient to keep
a copy on computer.

⇤

Assignments that are submitted to the Programme Coordinator o�ce must be placed

into the assignment box located outside the o�ce.

O�ce Use Only
Signature:

Date:
Penalty Applied (if applicable):

1

Configuration Manual: Automated Grape Counting
with Deep Learning on Big Data

Naveen Kesavan
x19153163

1 Introduction

This configuration manual provides detailed instructions for setting up and utilising a
machine learning model to estimate grape counts in images using various CNN architectures.
The manual covers data pre-processing, model selection, training, and evaluation.

2 System Requirements

Before you begin, ensure that you have the following requirements:

1. Python 3.x
2. TensorFlow and Keras libraries
3. Pandas, NumPy, Matplotlib, Seaborn

3 Datasets

The dataset contains image filenames (ImgName) paired with corresponding counts of berries
(berryCount). It's suitable for image-based regression tasks involving berry count estimation.

data = pd.read_csv('count - count.csv.csv')
data.head()

 ImgName berryCount
0 20170227_130321_HDR.jpg 15
1 20170227_130555_HDR.jpg 25
2 20170227_130817_HDR.jpg 35
3 20170227_131334_HDR.jpg 45
4 20170227_133249_HDR.jpg 51

4 Supporting images to CSV file

The provided code snippet displays the initial rows of a DataFrame, provides summary
statistics for the "berryCount" column, and generates a histogram with a KDE plot to
visualize the distribution of berry counts.

2

Display the first few rows of the DataFrame
print(data.head())
Summary statistics of the "berrycount" column
print(data["berryCount"].describe())

Histogram of the "berrycount" column
plt.figure(figsize=(8, 6))
sns.histplot(data=data, x="berryCount", kde=True)
plt.title("Distribution of Berry Count")
plt.xlabel("Berry Count")
plt.ylabel("Frequency")
plt.show()

The histogram shows that most people counted 75 berries, with a few outliers who counted
much more. The mean and median berry counts are 100 and 125, respectively, but the mode
berry count (75) is a more accurate measure of central tendency.

plt.figure(figsize=(8, 6))
sns.boxplot(data=data, y="berryCount")
plt.title("Box Plot of Berry Count")
plt.ylabel("Berry Count")
plt.show()

3

A box plot created using Seaborn displays the distribution of "berryCount" values from the
DataFrame, showing median, quartiles, and outliers, providing insight into the data's spread
and central tendency.

This graph shows that the berry count is somewhat evenly distributed, with a few counting a
much larger number of berries than most. The outlier at 235 berries suggests that there may
be some bias in the data, as it is unlikely that so many people would have counted such a
large number of berries. Mean berry count is 100. Median berry count is 125. Mode berry
count is 75.

5 Data pre-processing

data = pd.read_csv('count - count.csv.csv')
data['ImgName'] = data['ImgName'].str.strip("'")

The code reads a CSV file named 'count - count.csv.csv', removes single quotes from the
'ImgName' column values, effectively cleaning the filenames for further processing.

def preprocess_image(image_path):
 if not os.path.isfile(image_path):
 image_path = image_path.replace('.jpg', '.jpg.jpg')
 img = load_img(image_path, target_size=(224, 224))
 img = img_to_array(img)
 img = np.expand_dims(img, axis=0)
 img = tf.keras.applications.vgg16.preprocess_input(img)
 return img

4

Written function `preprocess_image` takes an image path, handles a potential file extension
issue, loads and resizes the image to (224, 224), converts it to an array, adjusts dimensions,
and applies VGG16-specific preprocessing. It returns the preprocessed image.

X = []#image
y = []#count
for i, row in data.iterrows():
 image_name = row['ImgName']
 image_path = image_dir + image_name
 img = preprocess_image(image_path)
 X.append(img)
 y.append(row['berryCount'])

The provided code iterates through the 'data' DataFrame, extracting 'ImgName' and
'berryCount' values. It constructs the full image path, preprocesses the image using
'preprocess_image', and appends the processed image to 'X' and the berry count to 'y'.

X = np.concatenate(X, axis=0)
y = np.array(y)

Code concatenates the list of images 'X' along axis 0 and creates a NumPy array 'y' for labels.

X_train, X_eval, y_train, y_eval = train_test_split(X, y, test_size=0.2,
random_state=42)

The code splits the data (X, y) into training and evaluation sets (X_train, X_eval, y_train,
y_eval) using an 80-20 ratio and a fixed random state.

X_train = np.array(X_train)
X_eval = np.array(X_eval)
y_train = np.array(y_train)
y_eval = np.array(y_eval)

The code converts the training and evaluation data (X_train, X_eval, y_train, y_eval) from
lists to NumPy arrays for compatibility with machine learning algorithms.

X_eval = X_eval / 255.0

The code scales the pixel values of the training and evaluation data (X_train, X_eval) to the
range [0, 1] by dividing them by 255.

6 Data Augmentation

datagen = ImageDataGenerator(
 rotation_range=20,
 width_shift_range=0.2,
 height_shift_range=0.2,
 shear_range=0.2,
 zoom_range=0.2,
 horizontal_flip=True,

5

 fill_mode='nearest'
)

Data augmentation is crucial when dealing with limited training data. By applying
transformations like rotation, shifting, and flipping, it artificially diversifies the dataset,
helping models learn from varied examples, enhance generalization, and prevent overfitting
in scenarios with smaller datasets.

This code sets up an image data generator using the Keras `ImageDataGenerator` class. It
defines various data augmentation techniques for training images, including rotation, width
and height shifts, shearing, zooming, horizontal flipping, and filling mode. These
augmentations help increase the diversity of training data to improve model generalization.

7 Model used

7.1 Basic CNN

input_shape = (224, 224, 3) # Replace with your input shape

model = models.Sequential([
 layers.Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same',
input_shape=input_shape),
 layers.MaxPooling2D((2, 2)),
 layers.Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'),
 layers.MaxPooling2D((2, 2)),
 layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
 layers.MaxPooling2D((2, 2)),
 layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
 layers.MaxPooling2D((2, 2)),
 layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
 layers.MaxPooling2D((2, 2)),
 layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'),
 layers.MaxPooling2D((2, 2)),
 layers.GlobalAveragePooling2D(),
 layers.Dense(256, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.001)),
 layers.Dropout(0.5),
 layers.Dense(1),
])

Written code snippet defines a convolutional neural network (CNN) model using the Keras
Sequential API. The model consists of multiple convolutional layers followed by max-
pooling layers for feature extraction, and ends with global average pooling for spatial
aggregation. It also includes two fully connected (dense) layers with regularization and a
dropout layer to prevent overfitting. The final dense layer outputs a single value. The model
is designed for image classification tasks with an input shape of (224, 224, 3).

6

7.2 Shallow CNN

input_shape=(224,224,3)
model = models.Sequential([
 layers.Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same',
input_shape=input_shape),
 layers.MaxPooling2D((2, 2)),
 layers.Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'),
 layers.MaxPooling2D((2, 2)),
 layers.GlobalAveragePooling2D(),
 layers.Dense(256, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.001)),
 layers.Dropout(0.5),
 layers.Dense(1),
])

Written code creates a simple CNN model for image classification. It comprises
convolutional layers with pooling for feature extraction, followed by global average pooling.
Two dense layers with regularization and dropout are used for classification, yielding a single
output value.

7.3 DenseNet121

base_model = DenseNet121(weights='imagenet', include_top=False,
input_shape=(224, 224, 3))

This code initializes a DenseNet121 model using pre-trained weights from ImageNet. The
model is configured to exclude the top classification layers and accepts input images of size
(224, 224, 3).

for layer in base_model.layers:
 layer.trainable = False

This code snippet sets all layers in the `base_model` to non-trainable, effectively freezing
their weights.

model = tf.keras.models.Sequential()
model.add(base_model)
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.001)))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(1))

This code creates a Keras sequential model by stacking layers. It includes a base model, a
flatten layer, a dense layer with regularization and dropout, and a final dense layer.

7

For the models succeding this model has same code snippets as this but the initialization of
different model.

7.4 MobileNet

base_model = MobileNetV2(weights='imagenet', include_top=False,
input_shape=(224, 224, 3))

7.5 ResNet50

base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224,
224, 3))

7.6 VGG16

base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,
224, 3))

8 Results

8.1 Basic CNN

The model's performance during training shows fluctuations in loss. Although validation loss,
they remain relatively high. The model may struggle to converge effectively and generalize
well to unseen data.

8.2 Shallow CNN

8

The training performance demonstrates fluctuating trends with gradually decreasing loss.
Validation loss also show decreasing patterns, indicating relatively consistent convergence
and generalization with slight fluctuations.

8.3 DenseNet121

The model's performance indicates fluctuating trends. Training loss show variations without a
consistent pattern. Validation loss also vary, sometimes decreasing, but with occasional
increases, suggesting potential difficulties in achieving stable convergence and
generalization.

8.4 MobileNet

The model's performance exhibits fluctuating trends. During training, loss decrease, while
validation loss also show variations but generally decrease. The model's convergence and
generalization are relatively consistent.

9

8.5 ResNet50

The model's performance shows that during training, the loss decreases across epochs.
However, the validation loss varies. While they decrease initially, they later start to increase,
indicating potential overfitting to the training data and lack of generalization.

8.6 VGG16

During training, the model's loss decrease across epochs, indicating improved performance.
Validation loss also decrease, suggesting better generalization to unseen data.

9 Table

MODEL USED PREDICTED RESULTS R2 SCORE MEAN SQUARED

ERROR

1.BASIC CNN

array([[6362.6826],
 [6848.4937],
 [6210.105
]], dtype=float32)

-0.4206785701386726 965.9676078131005

2.SHALLOW CNN

array([[5175.438],
 [5928.7393],
 [5794.306
]], dtype=float32)

0.05356790770979225 345.43048543763945

3.DENSENET121

array([[
94.306274],
 [109.73154
],
 [92.54378
]], dtype=float32)

0.49196465371662357 345.43048543763945

10

4.MOBILENET

array([[32.1656],
 [42.632225],

[26.335262]],
dtype=float32)

0.3885441439935621 415.7496022849119

5.RESNET50

array([[12.715395
],
 [
7.4005923],
 [18.195929
]], dtype=float32)

0.0371623657957415 654.6660066350746

6.VGG16

array([[-86.95285
],
 [
2.7101364],
 [-125.54404
]], dtype=float32)

0.4561065448918311 369.8116314126967

count=model.predict(X[:3])
count

The Predicted Values of no. of berries by the model.

print(y[:3])

[[15 25 35]
The Actual Value of the no. of berries.

10 Sample results

import numpy as np
import matplotlib.pyplot as plt
import os
from tensorflow.keras.preprocessing.image import load_img, img_to_array

Path to the directory containing your images
image_dir = "data/data" # Assuming your image directory is "data/data"

List all files in the directory
image_files = os.listdir(image_dir)

Randomly select 5 image files
selected_images = np.random.choice(image_files, size=5, replace=False)

Create a subplot for each selected image
plt.figure(figsize=(15, 8))
for i, image_file in enumerate(selected_images, 1):
 image_path = os.path.join(image_dir, image_file)
 image = load_img(image_path, target_size=(224, 224))
 image_array = img_to_array(image)

11

 image_array = np.expand_dims(image_array, axis=0)

 # Get the model's prediction (assuming a single output)
 prediction = model.predict(image_array)[0]

 # Choose color based on threshold
 box_color = 'green' if prediction >= 1 else 'red'

 plt.subplot(1, 5, i)
 plt.imshow(image)

 # Add a colored box at the bottom with white text
 plt.gca().add_patch(plt.Rectangle((0, 0), 224, 20, color=box_color,
alpha=0.7))

 # Display the predicted value with white text on top of the box
 plt.text(112, 10, "{:.2f}".format(prediction.item()), color='white',
 fontsize=10, ha='center', va='center')

 plt.xlabel(image_file.split('.')[0], fontsize=10)
 plt.axis("off")

plt.tight_layout()
plt.show()

Written Code loads images from the "data/data" directory, randomly selects 5 images, and
displays them in subplots. For each image, it predicts using a model and chooses green or red
based on the prediction threshold. It adds a colored box at the bottom with a predicted value
in white text. The chosen color represents prediction confidence, and the text is centered
within the box. Subplot titles are set to image filenames, and axes are turned off for cleaner
display.

10.1 Basic CNN

12

10.2 Shallow CNN

10.3 DenseNet

10.4 MobileNet

10.5 ResNet

10.6 VGG16

