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1 Introduction 
 
This configuration manual provides detailed instructions for setting up and utilising a 
machine learning model to estimate grape counts in images using various CNN architectures. 
The manual covers data pre-processing, model selection, training, and evaluation. 
 
2 System Requirements 
 
Before you begin, ensure that you have the following requirements: 

1. Python 3.x 
2. TensorFlow and Keras libraries 
3. Pandas, NumPy, Matplotlib, Seaborn 
 
3 Datasets 
 
The dataset contains image filenames (ImgName) paired with corresponding counts of berries 
(berryCount). It's suitable for image-based regression tasks involving berry count estimation. 
 
data = pd.read_csv('count - count.csv.csv') 
data.head() 

 ImgName berryCount 
0 20170227_130321_HDR.jpg 15 
1 20170227_130555_HDR.jpg 25 
2 20170227_130817_HDR.jpg 35 
3 20170227_131334_HDR.jpg 45 
4 20170227_133249_HDR.jpg 51 

 
4 Supporting images to CSV file 
 
The provided code snippet displays the initial rows of a DataFrame, provides summary 
statistics for the "berryCount" column, and generates a histogram with a KDE plot to 
visualize the distribution of berry counts. 
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# Display the first few rows of the DataFrame 
print(data.head()) 
# Summary statistics of the "berrycount" column 
print(data["berryCount"].describe()) 
 
 
# Histogram of the "berrycount" column 
plt.figure(figsize=(8, 6)) 
sns.histplot(data=data, x="berryCount", kde=True) 
plt.title("Distribution of Berry Count") 
plt.xlabel("Berry Count") 
plt.ylabel("Frequency") 
plt.show() 
 

 
The histogram shows that most people counted 75 berries, with a few outliers who counted 
much more. The mean and median berry counts are 100 and 125, respectively, but the mode 
berry count (75) is a more accurate measure of central tendency. 
 
plt.figure(figsize=(8, 6)) 
sns.boxplot(data=data, y="berryCount") 
plt.title("Box Plot of Berry Count") 
plt.ylabel("Berry Count") 
plt.show() 
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A box plot created using Seaborn displays the distribution of "berryCount" values from the 
DataFrame, showing median, quartiles, and outliers, providing insight into the data's spread 
and central tendency. 

 
This graph shows that the berry count is somewhat evenly distributed, with a few counting a 
much larger number of berries than most. The outlier at 235 berries suggests that there may 
be some bias in the data, as it is unlikely that so many people would have counted such a 
large number of berries. Mean berry count is 100.  Median berry count is 125. Mode berry 
count is 75. 
 
5 Data pre-processing 
 
data = pd.read_csv('count - count.csv.csv') 
data['ImgName'] = data['ImgName'].str.strip("'") 
 
The code reads a CSV file named 'count - count.csv.csv', removes single quotes from the 
'ImgName' column values, effectively cleaning the filenames for further processing. 
 
def preprocess_image(image_path): 
    if not os.path.isfile(image_path): 
        image_path = image_path.replace('.jpg', '.jpg.jpg') 
    img = load_img(image_path, target_size=(224, 224)) 
    img = img_to_array(img) 
    img = np.expand_dims(img, axis=0) 
    img = tf.keras.applications.vgg16.preprocess_input(img) 
    return img 
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Written function `preprocess_image` takes an image path, handles a potential file extension 
issue, loads and resizes the image to (224, 224), converts it to an array, adjusts dimensions, 
and applies VGG16-specific preprocessing. It returns the preprocessed image. 
 
X = []#image 
y = []#count 
for i, row in data.iterrows(): 
    image_name = row['ImgName'] 
    image_path = image_dir + image_name 
    img = preprocess_image(image_path) 
    X.append(img) 
    y.append(row['berryCount']) 
 
The provided code iterates through the 'data' DataFrame, extracting 'ImgName' and 
'berryCount' values. It constructs the full image path, preprocesses the image using 
'preprocess_image', and appends the processed image to 'X' and the berry count to 'y'. 
 
X = np.concatenate(X, axis=0) 
y = np.array(y) 
 
Code concatenates the list of images 'X' along axis 0 and creates a NumPy array 'y' for labels. 
 
X_train, X_eval, y_train, y_eval = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
The code splits the data (X, y) into training and evaluation sets (X_train, X_eval, y_train, 
y_eval) using an 80-20 ratio and a fixed random state. 
 
X_train = np.array(X_train) 
X_eval = np.array(X_eval) 
y_train = np.array(y_train) 
y_eval = np.array(y_eval) 
 
The code converts the training and evaluation data (X_train, X_eval, y_train, y_eval) from 
lists to NumPy arrays for compatibility with machine learning algorithms. 
 
X_eval = X_eval / 255.0 
 
The code scales the pixel values of the training and evaluation data (X_train, X_eval) to the 
range [0, 1] by dividing them by 255. 
 
6 Data Augmentation 
 
datagen = ImageDataGenerator( 
    rotation_range=20, 
    width_shift_range=0.2, 
    height_shift_range=0.2, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True, 
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    fill_mode='nearest' 
) 
 
Data augmentation is crucial when dealing with limited training data. By applying 
transformations like rotation, shifting, and flipping, it artificially diversifies the dataset, 
helping models learn from varied examples, enhance generalization, and prevent overfitting 
in scenarios with smaller datasets. 
 
This code sets up an image data generator using the Keras `ImageDataGenerator` class. It 
defines various data augmentation techniques for training images, including rotation, width 
and height shifts, shearing, zooming, horizontal flipping, and filling mode. These 
augmentations help increase the diversity of training data to improve model generalization. 
 

7 Model used 

7.1 Basic CNN 
 
input_shape = (224, 224, 3)  # Replace with your input shape 
 
model = models.Sequential([ 
    layers.Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same', 
input_shape=input_shape), 
    layers.MaxPooling2D((2, 2)), 
    layers.Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'), 
    layers.MaxPooling2D((2, 2)), 
    layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'), 
    layers.MaxPooling2D((2, 2)), 
    layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'), 
    layers.MaxPooling2D((2, 2)), 
    layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'), 
    layers.MaxPooling2D((2, 2)), 
    layers.Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'), 
    layers.MaxPooling2D((2, 2)), 
    layers.GlobalAveragePooling2D(), 
    layers.Dense(256, activation='relu', 
kernel_regularizer=tf.keras.regularizers.l2(0.001)), 
    layers.Dropout(0.5), 
    layers.Dense(1), 
]) 
 
Written code snippet defines a convolutional neural network (CNN) model using the Keras 
Sequential API. The model consists of multiple convolutional layers followed by max-
pooling layers for feature extraction, and ends with global average pooling for spatial 
aggregation. It also includes two fully connected (dense) layers with regularization and a 
dropout layer to prevent overfitting. The final dense layer outputs a single value. The model 
is designed for image classification tasks with an input shape of (224, 224, 3). 
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7.2 Shallow CNN 
 
input_shape=(224,224,3) 
model = models.Sequential([ 
    layers.Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same', 
input_shape=input_shape), 
    layers.MaxPooling2D((2, 2)), 
    layers.Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'), 
    layers.MaxPooling2D((2, 2)), 
    layers.GlobalAveragePooling2D(), 
    layers.Dense(256, activation='relu', 
kernel_regularizer=tf.keras.regularizers.l2(0.001)), 
    layers.Dropout(0.5), 
    layers.Dense(1), 
]) 
 
 
Written code creates a simple CNN model for image classification. It comprises 
convolutional layers with pooling for feature extraction, followed by global average pooling. 
Two dense layers with regularization and dropout are used for classification, yielding a single 
output value. 
 

7.3 DenseNet121 
 
base_model = DenseNet121(weights='imagenet', include_top=False, 
input_shape=(224, 224, 3)) 
 
This code initializes a DenseNet121 model using pre-trained weights from ImageNet. The 
model is configured to exclude the top classification layers and accepts input images of size 
(224, 224, 3). 
 
for layer in base_model.layers: 
    layer.trainable = False 
 
This code snippet sets all layers in the `base_model` to non-trainable, effectively freezing 
their weights. 
 
model = tf.keras.models.Sequential() 
model.add(base_model) 
model.add(tf.keras.layers.Flatten()) 
model.add(tf.keras.layers.Dense(256, activation='relu', 
kernel_regularizer=tf.keras.regularizers.l2(0.001))) 
model.add(tf.keras.layers.Dropout(0.5)) 
model.add(tf.keras.layers.Dense(1)) 
 
This code creates a Keras sequential model by stacking layers. It includes a base model, a 
flatten layer, a dense layer with regularization and dropout, and a final dense layer. 
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For the models succeding this model has same code snippets as this but the initialization of 
different model. 

7.4 MobileNet 
 
base_model = MobileNetV2(weights='imagenet', include_top=False, 
input_shape=(224, 224, 3)) 
 

7.5 ResNet50 
 
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 
224, 3)) 
 

7.6 VGG16 
 
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 
224, 3)) 
 

8 Results 

8.1 Basic CNN 
 

   
The model's performance during training shows fluctuations in loss. Although validation loss, 
they remain relatively high. The model may struggle to converge effectively and generalize 
well to unseen data. 
 

8.2 Shallow CNN 
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The training performance demonstrates fluctuating trends with gradually decreasing loss. 
Validation loss also show decreasing patterns, indicating relatively consistent convergence 
and generalization with slight fluctuations. 

8.3 DenseNet121 
 
The model's performance indicates fluctuating trends. Training loss show variations without a 
consistent pattern. Validation loss also vary, sometimes decreasing, but with occasional 
increases, suggesting potential difficulties in achieving stable convergence and 
generalization. 
 

                   
 

8.4 MobileNet 
 

            
The model's performance exhibits fluctuating trends. During training, loss decrease, while 
validation loss also show variations but generally decrease. The model's convergence and 
generalization are relatively consistent. 
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8.5 ResNet50 

  
The model's performance shows that during training, the loss decreases across epochs. 
However, the validation loss varies. While they decrease initially, they later start to increase, 
indicating potential overfitting to the training data and lack of generalization. 
 

8.6 VGG16 
 

       
During training, the model's loss decrease across epochs, indicating improved performance. 
Validation loss also decrease, suggesting better generalization to unseen data. 
 
9 Table 
 
MODEL USED PREDICTED RESULTS R2 SCORE MEAN SQUARED 

ERROR 

1.BASIC CNN 
 

array([[6362.6826], 
       [6848.4937], 
       [6210.105 
]], dtype=float32) 

-0.4206785701386726 965.9676078131005 

2.SHALLOW CNN 
 

array([[5175.438 ], 
       [5928.7393], 
       [5794.306 
]], dtype=float32) 

0.05356790770979225 345.43048543763945 

3.DENSENET121 
 

array([[ 
94.306274], 
       [109.73154 
], 
       [ 92.54378 
]], dtype=float32) 

0.49196465371662357 345.43048543763945 
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4.MOBILENET 
 

array([[32.1656  ], 
       [42.632225], 
       
[26.335262]], 
dtype=float32) 

0.3885441439935621 415.7496022849119 

5.RESNET50 
 

array([[12.715395 
], 
       [ 
7.4005923], 
       [18.195929 
]], dtype=float32) 

0.0371623657957415 654.6660066350746 

6.VGG16 
 

array([[ -86.95285  
], 
       [   
2.7101364], 
       [-125.54404  
]], dtype=float32) 

0.4561065448918311 369.8116314126967 

 
 
 
count=model.predict(X[:3]) 
count 
 
The Predicted Values of no. of berries by the model. 
 
print(y[:3]) 
 
[[15 25 35] 
The Actual Value of the no. of berries. 
 
10 Sample results 
 
import numpy as np 
import matplotlib.pyplot as plt 
import os 
from tensorflow.keras.preprocessing.image import load_img, img_to_array 
 
# Path to the directory containing your images 
image_dir = "data/data"  # Assuming your image directory is "data/data" 
 
# List all files in the directory 
image_files = os.listdir(image_dir) 
 
# Randomly select 5 image files 
selected_images = np.random.choice(image_files, size=5, replace=False) 
 
# Create a subplot for each selected image 
plt.figure(figsize=(15, 8)) 
for i, image_file in enumerate(selected_images, 1): 
    image_path = os.path.join(image_dir, image_file) 
    image = load_img(image_path, target_size=(224, 224)) 
    image_array = img_to_array(image) 
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    image_array = np.expand_dims(image_array, axis=0) 
     
    # Get the model's prediction (assuming a single output) 
    prediction = model.predict(image_array)[0] 
     
    # Choose color based on threshold 
    box_color = 'green' if prediction >= 1 else 'red' 
     
    plt.subplot(1, 5, i) 
    plt.imshow(image) 
     
    # Add a colored box at the bottom with white text 
    plt.gca().add_patch(plt.Rectangle((0, 0), 224, 20, color=box_color, 
alpha=0.7)) 
     
    # Display the predicted value with white text on top of the box 
    plt.text(112, 10, "{:.2f}".format(prediction.item()), color='white', 
             fontsize=10, ha='center', va='center') 
     
    plt.xlabel(image_file.split('.')[0], fontsize=10) 
    plt.axis("off") 
 
plt.tight_layout() 
plt.show() 
 
 
Written Code loads images from the "data/data" directory, randomly selects 5 images, and 
displays them in subplots. For each image, it predicts using a model and chooses green or red 
based on the prediction threshold. It adds a colored box at the bottom with a predicted value 
in white text. The chosen color represents prediction confidence, and the text is centered 
within the box. Subplot titles are set to image filenames, and axes are turned off for cleaner 
display. 
 

10.1 Basic CNN 
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10.2 Shallow CNN 

 
 

10.3 DenseNet 

 
 

10.4 MobileNet 

 
 

10.5 ResNet 

 
 

10.6 VGG16 

 


