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Naveen Kesavan
x19153163

Abstract

This research paper introduces an approach to address the challenge of effi-
cient grape counting in extensive datasets using computer vision and deep learning
techniques. The primary motivation behind this study is to develop a system cap-
able of accurately counting individual grapes within images, with specific emphasis
on aiding grape crop management in large agricultural areas within developing
nations. Leveraging convolutional neural networks and a meticulously annotated
dataset, our proposed system demonstrates remarkable proficiency in grape detec-
tion and categorisation. The system operates within a cloud-based infrastructure,
ensuring accessibility to users across diverse geographical locations. The real-time
processing capability of the cloud-based setup is particularly crucial for precision
agriculture applications, offering a feasible solution for managing extensive data-
sets. Notably, this automated grape counting mechanism is uniquely positioned
to benefit the farming community in resource-constrained settings. Rather than a
universal solution, it is tailored to address the needs of impoverished farmers in de-
veloping nations who collaboratively share computing resources within a communal
framework. By embracing deep learning for automatic fruit counting, this research
presents a promising avenue for enhancing agricultural practices. The system’s
ability to provide reliable and time-efficient grape counting methods holds signi-
ficant potential for driving improvements within the farming sector. This work
underscores the value of community-oriented solutions in addressing agricultural
challenges while harnessing the power of emerging technologies.

1 Introduction

Grape counting plays a pivotal role in various facets of vine yield estimation, serving as
a foundational method across agricultural, scientific, and ecological domains. Its signi-
ficance lies in enabling precise yield estimates, comprehensive evaluations, and informed
decision-making processes that collectively contribute to heightened productivity, sus-
tained longevity, and enhanced comprehension of grape-bearing plant systems. Conven-
tionally, the task of grape counting has been a manual endeavour, characterised by its
labor-intensive and error-prone nature, particularly when applied to large-scale agricul-
tural contexts. However, recent technological advancements have ushered in a new era of
automated grape counting methodologies, aimed at streamlining operations and augment-
ing efficiency. Automated fruit counting algorithms have gained prominence within the
agriculture sector, presenting a cost-effective avenue to enhance precision while curtail-
ing operational expenditures. Traditional fruit counting and detection methods demand



significant temporal and labor investments from farmers. Nonetheless, contemporary in-
vestigations have explored the feasibility of automating fruit recognition and counting
through the fusion of computer vision techniques and unmanned aerial vehicles (UAVs).
Notably, the advent of deep learning-based systems, encompassing semantic segmenta-
tion and object identification algorithms, has introduced the potential for automated and
accurate fruit counting. UAVs, equipped with cameras and sensors, have emerged as po-
tent tools for rapid traversal and high-resolution imaging of expansive farmland, thereby
facilitating efficient fruit counting and yield estimation.
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Harnessing computer vision methodologies alongside UAV technology for fruit recog-
nition and counting holds transformative potential for agriculture. This potential extends
to resource-constrained settings, wherein a communal approach to computing resources is
adopted to address grape counting challenges among economically disadvantaged farm-
ers in developing nations. This paper presents a novel communal solution tailored to
address grape counting needs within such contexts. Through a comprehensive explora-
tion of sensors-based strawberry counting as a representative automated fruit counting
mechanism (depicted in Figure , the subsequent sections of this report delve into the
intricacies of data collection, storage, machine learning predictions, and visualisation,
ultimately contributing to the advancement of scientific understanding in this domain.

1.1 Problem Statement

The primary objective of this research paper is to tackle the issue of quantifying grape
bunches in three dimensions, specifically within vineyard environments. Existing meth-
odologies might not be viable for practical applications due to their dependence on con-
trolled lab conditions or specialised equipment. For instance, approaches such as Otsu’s
binarisation while rotating grape bunches or utilising a stereo camera with fluorescent



lighting have limitations in terms of background resource requirements and operational
duration. Conventional techniques for grape counting and detection lead to challenges
in crop management and yield estimation due to their inefficiency, inaccuracy, and labor
intensiveness.

To address these problems, there is a pressing need for the development of accurate,
efficient, and cost-effective automated technologies for grape counting and detection. An
innovative solution could involve the integration of unmanned aerial vehicles (UAVs)
and computer vision algorithms. Nonetheless, significant hurdles exist in handling vast
datasets and creating robust deep learning models capable of accommodating variations
in grape characteristics like appearance, size, and shape.

The overarching goal of this study is to assist farmers in enhancing crop management
and yield optimisation. This can be achieved by furnishing them with reliable and efficient
automated systems for grape counting and detection.

1.2 Motivation

The aim of this research is to develop a fully automated system for counting grapes, with
the intention of supporting farmers in developing and agriculturally focused nations. The
principal objective of the system is to enhance farmers’ productivity by assisting in pre-
dictive production, planning, and automated field analysis through the implementation
of intelligent cloud-based systems. This approach aims to reduce labor expenses, en-
hance convenience, and extend the system’s applicability. The integration of agricultural
automation, exemplified by automated grape counting, is anticipated to bolster out-
put precision and volume while reducing labor-related costs. Given that manual grape
counting demands considerable time and labor, the pursuit of automated alternatives is
of significant interest. These algorithms have the potential to dramatically accelerate
the counting process, enabling farmers to allocate their time and efforts to other tasks.
The accurate yield estimates generated by automated grape counting additionally sup-
port farmers in making well-informed decisions regarding production and marketing. In
essence, the agricultural sector can derive advantages from this technology, leading to
improved efficiency, increased farmer independence, and sustained economic growth.

1.3 Research Outcome

Multiple crucial factors essential for the prosperity of agricultural practitioners and the
economic viability of their endeavours can be effectively addressed through the creation
of a computer vision-enabled, cloud-based deep learning framework designed for the pur-
pose of quantifying grapes. This innovative approach enables real-time and precise yield
forecasts, along with the early detection of potential issues such as crop diseases, pest
infestations, and nutrient deficiencies. These proactive interventions have the potential
to enhance agricultural productivity and decrease overall expenditures. Furthermore,
the pivotal practice of grape thinning plays a vital role in the grape production pro-
cess, significantly influencing grape size, flavour, and overall quality. The task of grape
quantification can be automated, providing farmers with improved grape bunch thin-
ning capabilities. This, in turn, optimises the grape yield per bunch, ensuring maximal
grape development and maturity. As a result, vineyard management stands to benefit,
ultimately leading to heightened profitability.



1.4 Business Objectives

A study is currently underway in the realm of contemporary agriculture, aimed at enhan-
cing grape production by synergising advanced technology with agricultural practices.
The central objective of this pioneering effort is to cultivate a sophisticated deep learn-
ing system, harnessing the capabilities of computer vision technology, focused solely on
the precise enumeration of grapes. This innovative technology holds promise for broad
accessibility and scalability, potentially becoming a valuable asset for farmers worldwide.
Its design has been thoughtfully tailored to seamlessly integrate within the expansive
realm of cloud computing. This inventive approach strategically leverages the untapped
potential of cloud infrastructure to forge an economical and readily deployable solution
adaptable to diverse devices, meeting the specific requisites of farmers, particularly in
underdeveloped regions characterised by sprawling agricultural lands and resource limit-
ations.

The significance of this transformative initiative is particularly profound in the rural
expanses of emerging economies, where agricultural productivity intimately influences
the sustenance of communities. The accurate assessment of yields has gained substantial
prominence within the agricultural narrative, as crops extend their dominion across vast
landscapes. The reverberations of this advancement extend extensively, affording farmers
a more precise evaluation of their harvest quality and consequently empowering them to
make decisions characterised by exactitude. Central to this groundbreaking notion are
drones, gracefully navigating the skies to capture multidirectional imagery of fields. This
visual mosaic is then compiled into a repository, ripe for insights into the hidden abund-
ance within every land parcel. Woven into the intricate tapestry of this deep learning
system are algorithms perpetually engaged in analysis and quantification, presenting an
intricate inventory of the opulent crops adorning the fields. The ramifications stretch
beyond a mere enumeration, relieving farmers of uncertainty’s burden through cost re-
duction and unbiased monitoring. This paradigm shift offers a crystalline perspective,
ushering them into a realm of unparalleled precision, where the authentic nature of their
harvests can finally be unveiled. The emergence of cloud-based computer vision heralds
a new era wherein agriculture evolves into a blend of art and science, contributing to
human sustenance and economic prosperity.

Four discernible stages significantly facilitate the classification of grapes. The initial
stage encompasses automated image acquisition via drones, mitigating the need for labor-
intensive manual efforts. Subsequently, the second stage entails real-time deep learning
regression, estimating grape counts and employing filters for ripeness classification, seam-
lessly presented on a real-time dashboard.

1.5 Research Question

With the preceding discussion taken into consideration, the present study identifies a set
of research inquiries that merit attention:

e Research Question 1 (RQ1): Could it be feasible to enhance the efficiency
and precision of grape detection and counting in agricultural contexts by refining
deep learning architectures, including semantic segmentation and object detection
algorithms?

e Research Question 2 (RQ2): To expedite fruit counting and yield estimation,
what measures can be taken to maximise the effective utilisation of unmanned aerial



vehicles (UAVs)? Furthermore, what are the key technical obstacles that necessitate
resolution to ensure results that are both accurate and dependable?

e Research Question 3 (RQ3): What variables wield substantial influence over
the precision and accuracy of algorithms employed for automated grape counting?
How can the potential issues stemming from these variables be alleviated to foster
dependable outcomes across a diverse array of environments and grape categories?

e Research Question 4 (RQ4): To streamline the management of extensive data-
sets produced by automated grape detection and counting systems, how can cloud-
based processing be optimised? Additionally, what strategies can be employed to
safeguard data privacy and uphold security standards within cloud-based environ-
ments?

Subsequent sections of this paper will expound exhaustively upon various studies per-
tinent to this subject matter. This will be succeeded by an in-depth exploration of
the methodology and the suggested implementation approach. Following that, detailed
results under distinct scenarios will be deliberated upon, culminating in comprehensive
findings.

2 Related Work

The literature review in this research paper critically examines the landscape of auto-
mated berry or fruit counting methodologies, positioning the current study within the
broader context of academic research. Automated berry counting is crucial for yield
estimation and crop management, especially in fruit farming, where manual counting
proves laborious and time-consuming. The convergence of computer vision and machine
learning has sparked the development of innovative algorithms in recent years. Auto-
berry, a drone-deployed algorithm, exemplifies this trend, demonstrating the potential
of automated counting methods. Various techniques have emerged for automated berry
counting, each with its strengths and limitations.

2.1 Variations in Deep Learning Architectures for Fruit Detec-
tion and Counting in Computer Vision Applications

In the realm of deep learning-based methods, Roy et al. (2021) introduced the En-UNet
model, achieving superior accuracy in real-time apple peel segmentation compared to tra-
ditional UNet architecture. Jiang et al. (2023) enhanced dense crop recognition through
MIoP-NMS, yielding significant gains in banana tree detection accuracy. Kang and Chen
(2020) developed LedNet for rapid apple detection through multi-scale pyramid labelling,
while Mekhalfi et al.| (2020) offered a kiwifruit assessment method with streamlined count-
ing procedures and improved accuracy. The works of Buayai et al. (2020)), Ponce et al.
(2019), [Tu et al.| (2020)), |[Junos et al.| (2021), and others further enriched the field, present-
ing techniques ranging from grape counting to oil palm fruit harvesting. These studies
collectively underscore the advancements brought about by deep learning techniques and
their potential applications in various fruit counting scenarios.



2.2 Segmentation and Enumeration of Fruits and Seedlings us-
ing Autonomous Unmanned Aerial Vehicles (UAVs)

Automatic fruit counting using Unmanned Aerial Vehicles (UAVs) has gained traction as
a powerful approach. |Chen et al.| (2022)) harnessed multispectral photography and LiDAR
data to predict apple tree production, highlighting the potential of ensemble learning.
Barreto et al.| (2021]) showcased a UAV-based system for automated plant counting across
different crops, simplifying agricultural practices. The integration of UAVs with machine
vision, as demonstrated by |Vijayakumar et al. (2021)), promises more accurate citrus crop
yield forecasts and efficient resource utilisation. These studies underscore the efficacy of
UAVs in conjunction with machine vision for crop monitoring and counting, emphasising
their potential to revolutionise precision agriculture.

2.3 Real-time Monitoring and Edge-Deployed Cloud-Based Ap-
proach for Fruit Detection and Counting

Cloud-based real-time monitoring has also emerged as a critical paradigm in fruit detec-
tion and counting. Lyu et al| (2022)) proposed YOLOv5-CS for green citrus detection,
combining object detection and cloud-based processing to achieve high accuracy. |[Abbas
et al.| (2022) presented a cloud-enabled system for automated disease detection, enhan-
cing plant health monitoring for farmers. In a broader context, Neelesh Mungoli (2023)
delved into the potential of scalable, distributed Al frameworks in cloud computing, of-
fering insights into data storage, management, and training methods. Ningli Xu (2023)
evaluated state-of-the-art point cloud registration methods, enhancing understanding and
techniques in this domain. These studies collectively underscore the potential of cloud
computing in enhancing fruit counting, disease detection, and precision agricultural prac-
tices.

2.4 Summary

The amalgamation of deep learning, computer vision, and cloud computing has led to
a proliferation of innovative methodologies in fruit detection, counting, and disease dia-
gnosis. Leveraging tools like UNet, En-UNet, MIoP-NMS, and UAVs, researchers have
achieved remarkable accuracy across diverse environments. UAVs have emerged as a
transformative tool for crop prediction, counting, and harvesting. YOLOv5-CS and
cloud-enabled disease detection systems showcase high-precision models with significant
practical implications. This body of work collectively signals a new era of productivity,
sustainability, and data-driven decision-making in agriculture.

2.5 Research Contributions

The research review delineates avenues for advancing automated fruit counting through
deep learning and cloud-based data handling. The suggested avenues include the devel-
opment of advanced deep learning models capable of handling occlusions, improving data
collection and preprocessing techniques, and exploring cloud-based deployment of mod-
els. These contributions collectively address the need for improved accuracy, efficiency,
and scalability in automated fruit counting, promising to enhance precision agriculture
practices and empower stakeholders in the agricultural sector.
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The novelty aspects of this endeavor include:

1. Developing a dynamic pipeline capable of automatic adjustments depending on the

nature of the input data.

. Introducing an extensible API (Figure [2|) that seamlessly integrates with diverse

data acquisition systems such as UAVs and Static Cameras. This API aims to
capture images of grapes, assess the quantity of grapes, and subsequently update
the central database repository.

. A government funded communal approach to sharing cloud computing resources

and automated grape counting equipment offers several advantages over traditional
manual methods:

(a) Cost savings: Hiring workers to manually count grapes is expensive. For
1 acre vineyard, 10 workers for 5 days at 400 INR (4.50 euro) per day costs
20,000 INR (225 euro). In contrast, the upfront cost of automated systems
(cameras, drones, cloud servers) can be shared across many farmers, bringing
down the per-user cost significantly. The operating costs are also lower as no
manual labor is needed.

(b) Time savings: Manual counting is extremely time consuming, taking 5 days
for 1 acre in this example. Automated systems can count grapes in a matter of
hours, providing near real-time data to farmers. This allows timelier decision
making regarding yields, harvesting, sales etc.

¢) Accuracy: Human counters are prone to errors and variability. Automated
Y
systems provide consistent, reliable counts once properly trained. This sup-
ports data-driven decision making.

(d) Accessibility: Cloud-based systems can be accessed remotely via cheap mo-
bile devices, opening up grape counting technology to poor, small-holder farm-
ers. A communal approach also reduces barriers to entry.

(e) Scalability: Cloud infrastructure and automated systems can easily scale to
handle large vineyards at nationwide or global scale. Manual labor does not
scale as efficiently.

(f) Sustainability: Reduced need for massive manual labor forces is more sus-
tainable long-term. Automated systems also promote standardisation and
transparency in yield estimates.

In summary, a government supported communal model for automated grape count-
ing leverages economies of scale while providing farmers an affordable way to access
advanced technology and data. This drives efficiency, productivity and transpar-
ency in the agricultural sector. The long term benefits outweigh the initial setup
costs.

Methodology

3.1 Research Method

The challenges associated with grape counting encompassed the following aspects:
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1. Identifying an appropriate data source proved to be challenging due to the limited
availability of relevant data.

2. The network architecture posed another challenge. Various models were trained
across different environments such as AWS, Google Colab, and local setups to assess
computational capabilities.

The resultant trained network was intentionally designed to be versatile, allowing it
to generate a pickle file or trained model file tailored to the dataset at hand. This
adaptability is crucial due to potential shifts in data nature, necessitating corresponding
changes in the model. Subsequently, the trained network was deployed on an AWS
servelﬂ To engage the deployed server, an interface like Postman was employed. Users
can submit images containing grapes for counting, which then generates the count of
units (Figure . Given our primary focus on gauging large-scale grape harvesting on
extensive fields or farms, the individual count of grapes holds lesser significance. Instead,
a colour-coded system was introduced to provide more insightful information to farmers:

Green: Exceeding 10,000 grapes
Yellow: Ranging from 1,000 to 10,000 grapes
Red: Fewer than 1,000 grapes

Home Workspaces v APl Network v Explore

i http://54.78.186.128:5000/pre

POST http://54.78.1

Figure 2: Extensible API

1. Data Collection Phase: The initial step of the proposed methodology involves
the acquisition of grape images through the utilisation of cameras and drones. These
instruments facilitate the systematic collection of images, which are subsequently
transmitted to local servers on a daily basis.

!Deployment on an AWS server: http://54.78.186.128:5000/predict


http://54.78.186.128:5000/predict

2. Image Preprocessing Stage: Subsequent to data collection, a vital preprocessing
stage ensues. This stage encompasses the enhancement of image quality and the
reduction of noise. Techniques such as resizing, normalisation, filtering, and seg-
mentation are applied to optimise the images for downstream analysis.

3. Construction of Dataset: Following image preprocessing, the dataset is organ-
ised into distinct subsets for diverse purposes. The dataset is partitioned into
training, validation, and testing sets. To introduce diversity and robustness, the
dataset undergoes augmentation through various transformations such as rotation,
flipping, and zooming.

4. Selection of Model Architecture:The selection of an appropriate deep learning
architecture is pivotal for the grape counting task. This selection process is driven
by a combination of greed-based criteria and the stability of the model, taking
into consideration the inherent trade-off between bias and variance. The identified
pipeline incorporates architectures like Convolutional Neural Networks (CNNs) and
transfer learning models such as DenseNets and VGGNets. The most optimal
architecture is subsequently deployed for real-time evaluation.

(a) Training Phase: The selected deep learning model is trained using the des-
ignated training dataset. Refinement of hyper-parameters, including learning
rate, batch size, optimiser, and loss function, is undertaken to achieve peak
performance.

(b) Validation Phase: The evaluation of the trained model occurs using the
validation dataset. Metrics such as accuracy, precision, recall, and F1-score
are closely monitored to ensure that the model avoids overfitting.

(c) Testing Phase: Subsequently, the model’s performance is assessed on the
testing dataset to approximate its efficacy in real-world scenarios.

5. Deployment Process: The deployment of the trained model takes place on a
cloud platform, with Amazon Web Services (AWS) as a prominent example. This
involves the establishment of an API endpoint capable of accepting input images and
generating an output count of detected grapes. Additionally, a rigorous assessment
of various cloud servers culminates in the selection of the most optimal configuration
for deployment.

6. Ongoing Monitoring and Maintenance: The final phase of the proposed meth-
odology entails continual vigilance over the deployed model’s performance. Regular
updates to the model are introduced to accommodate new data and environmental
shifts, ensuring its continued efficacy.

By adhering to this meticulously structured algorithm, the methodology achieves
comprehensive grape image analysis through systematic data collection, preprocessing,
model selection, deployment, and perpetual maintenance.

3.2 Research Resources — Data Science Models

Transfer learning is a machine learning and computer vision approach where a neural
network model that was trained on a large dataset for a different purpose is fine-tuned



using a smaller dataset that is related to the target task. To train a model for berry or
fruit counting, you may take a model that has been pre-trained on ImageNet, remove
the classification layer, and then train the model using a dataset consisting of images
of berries labelled with their counts. One of the most important factors in evaluating
whether or not transfer learning will occur is the similarity between the source and target
activity. It works well when there is a limited quantity of data, but additional approaches
may be needed if the tasks are too dissimilar.

Figure 3: Cherry Counting using Transfer learning Technique. The output will display
how the berry or fruit has been detected

The solutions first identify the objects which in these cases are either berries or grape
vines or fruits and draws a bounding boxes. As in the above Figure |3, the cherries are
identified individually and marked a bounding box. These bounding boxes then gets
counted and a statistical value is fixed based on the training of the model.

3.2.1 VGGNet

To use VGGNet for grape counting, we must first adopt the VGGNet pre-trained deep
neural network architecture (Figure {4). It was with the ImageNet Large Scale Visual
Recognition Challenge in mind that this architecture was first conceived. The approach
of adapting VGGNet for the task of grape counting makes advantage of transfer learning.
Obtaining a pre-trained VGGNet model, which is a version of the network already taught
to detect features using a large-scale dataset like ImageNet, is the first stage in the process.
The last layers of classification in the VGGNet have been replaced with a new layer
optimised for regression. This adjustment allows the model to make predictions about
continuous variables like the total number of grapes in a given image. A dataset for grape
counting should comprise several different grape species, as well as different lighting,
viewing angles, and backgrounds. Having reliable ground truth counts is crucial for both
training and grading reasons. During fine-tuning, only the newly added regression layer
is modified; all other pre-trained layers of the VGGNet remain static. The model is then
retrained on the grape dataset, but only the output layer’s weights are modified (the other
layers’ weights are left at their default values). To evaluate the model’s berry-counting
accuracy, it is applied to a separate validation or test dataset, where metrics like mean
squared error and mean absolute error are used. The goal of this exercise is to improve
the model’s efficiency by adjusting its hyper-parameters. Post-processing techniques can
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be employed to further refine the output if necessary.
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Figure 4: Architecture of VGGNet (VGG-16)

VGGNet and transfer learning make it feasible to do grape counting with only a
little quantity of labelled data by reusing the knowledge from a much larger dataset. An

accurate and efficient grape counting model might be constructed using this method as
its basis.

3.2.2 MobileNet

MobileNets are a family of neural network architectures developed specifically for use
in the field and in embedded systems (Figure |5)). These designs are highly efficient
and lightweight. Ordinary convolutions are broken down into depth-wise and point-
wise convolutions to create depth-wise separable convolutions. This drastically reduces
the amount of processing time and effort required, and simplifies the model without
sacrificing anything in the way of accuracy. This makes MobileNets well-suited for low-
power systems like smartphones and IoT gadgets. To get started using MobileNets for
grapes counting, we may choose a model that has already been trained on a large dataset
like ImageNet or COCO. If you do this, you may use MobileNets to tally the grapes.
Using a model that has been pre-trained to distinguish generic traits from photographs
can speed up the process of learning how to count grapes. A dataset of grapes image files
with associated counts should be compiled for training purposes. Make sure the dataset
includes several types of grapes, lighting conditions, and backgrounds so the model can
respond to a wide range of settings. While tuning the MobileNet, only the weights of
the newly added regression layer are updated; the weights of the other layers remain
unchanged. Try with different values for the model’s hyper-parameters like its learning
rate, batch size, and epoch count to see what gives you the best results when you apply
it to the grapes counting task. After the model has been fine-tuned, it should be tested
on a separate validation or test dataset and its performance measured using metrics like
mean squared error (MSE) or mean absolute error (MAE). This is crucial for evaluating
the model’s ability to anticipate fruit yields.

MobileNets is successful on mobile and embedded devices because of its small foot-
print. This allows for accurate grapes counting in real time with low computational
requirements. Using MobileNets’ transfer learning technique, you can capitalise on the
insights obtained from massive datasets by fine-tuning the model to the narrow task of
grapes counting using comparatively fewer labelled data. You'll be able to get the job
done more rapidly as a result of this. In cases when resources are scarce, MobileNets may
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Figure 5: Architecture of MobileNets (Dense MobileNets)

provide an accurate and efficient solution for grapes counting applications; however, this
assumes that the system has been thoroughly assessed and fine-tuned.

3.2.3 DenseNet

In this part, we show our work developing an automated grape counting system using the
DenseNet deep learning architecture (Figure @ Accurate grape counting is essential for
many uses in agriculture and grape harvesting, and we want to address this issue as part
of our research. To begin, we amassed a sizeable and diverse data set of grape images
including a wide range of species, lighting conditions, and perspectives. Each image has
been annotated with ground truth counts for the purposes of training and evaluation. To
take advantage of transfer learning, we used a DenseNet model that had previously been
trained on ImageNet. Because of this, we were able to conserve resources. Because of
this, the model could begin training with the ability to recognise generic images, which
sped up its education for the grape counting task. To arrive at an accurate forecast of
the grape count, we replaced the final classification layer with a regression layer during
the tuning phase. We put in a lot of work optimising the model’s hyper-parameters like
learning rate, batch size, and number of epochs to get the best possible results. The
evaluation was carried out using the performance measures of mean squared error (MSE)
and mean absolute error (MAE). Our trials showed that the DenseNet-based method was
effective, as it yielded grape count estimations that were highly consistent with manual
counts.

Our implementation of the grape counting system with DenseNet gives a practical
means of automating the necessary grape counting procedures. Our research has the
potential to shed new light on the intersection of agricultural automation and computer
vision. More progress will be made in grape counting and other areas as we explore new
research directions, such as exploring new architectures and methods for augmenting
data. Those are only a couple such instances.

3.2.4 ResNet

ResNet, an architecture for deep neural networks (Figure @, to carry out the robotic
grapes counting. Accurate and efficient techniques for counting grapes are the focus of
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Figure 6: Architecture of DenseNet

this study; such counting is useful in many areas of agriculture and grapes harvesting.
The study used a large and diverse dataset of grapes image pairings, each of which
had associated ground truth counts for use in training and evaluation. ResNet’s residual
learning framework will be used to finish the task because of its efficacy when dealing with
deeper designs. To speed up the model’s fine-tuning process, a pre-trained ResNet model
was modified using transfer learning so that it could make use of characteristics it had
already learnt. ImageNet was used to first train the model. In order to create a precise
forecast of the grapes count, we swapped out the final classification layer with a new
regression layer while keeping the pre-trained layers fixed. Several hyper-parameters, such
as the learning rate, batch size, and epochs, were tweaked to get the greatest performance
out of the model.

In conclusion, the ResNet-based approach offers a potentially valuable choice for auto-
mated grape counting. This study has important implications for agricultural automation
and computer vision, and it may find further use in other counting tasks. The potential
for growth and new discoveries in grape counting and related topics might be explored
in future research.

3.2.5 Fully Connected Layers

Here, we’ll go through how to use Transfer Learning to choose features for a three-
layer ANN (Figure [§)) trained on regression data in order to estimate grape counts. This
approach aims to improve grape count forecasts by making use of the knowledge gathered
from a pre-trained deep learning model.

Using a three-tiered artificial neural network (ANN) and Transfer Learning for feature
selection, we hope to create a reliable grape count prediction model based on regression.
The strategy uses a deep learning model that has already been trained to increase feature
representation and prediction accuracy.
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3.3 Research Resources — Cloud Computing

The process of utilising AWS for grape counting involves the following sequential stages
(Figure [9):

=
- . | Routess
B, _Ml\' N
ITTF POST Reg |. J F
AWS

AP| Gateway Lambda Amazan SES

N

Figure 9: ANN for the Fully Connected layer

1. Image Collection: The initial step entails amassing an extensive dataset of grape
images encompassing diverse angles, lighting scenarios, and backgrounds.

2. Image Upload to S3: Post data collection, the acquired images can be seamlessly
transferred to an Amazon S3 repository. This facilitates effortless accessibility of
images through various AWS services.

3. EC2 Instance Setup: Subsequently, an Amazon EC2 instance is established to
execute the deep learning model. The choice of instance type is contingent upon
the computational prerequisites of the model.

4. Library Installation: Following instance activation, indispensable libraries and
dependencies, such as TensorFlow, Keras, and OpenCV, are installed.

5. Model Training: With the essential libraries in place, the YOLO model is trained
utilising the grape image dataset. This procedure can be executed using AWS Deep
Learning AMIs, which offer pre-configured environments tailored for deep learning
tasks.

6. Result Storage: The culmination of this process involves the retention of grape
counting outcomes. This can be accomplished by storing the results in either an
Amazon RDS database or an Amazon DynamoDB NoSQL database, affording the
opportunity for subsequent in-depth analysis.

7. Comprehensive Solution: Collectively, the utilisation of AWS for grape counting
presents a scalable and cost-effective solution for efficiently processing substantial
volumes of image data.

In summary, leveraging AWS for grape counting offers an adaptable and economically
efficient resolution for handling substantial quantities of image data.
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4 Implementation

4.1 Data Acquisition

The datasetﬂ utilised in this study, as illustrated in Figure encompasses a collection of
image filenames (denoted as 'ITmgName’) paired with their corresponding counts of berries
(referred to as 'berryCount’). This dataset captures quantities of berries or fruits depicted
in diverse images, rendering it amenable for tasks involving image-based regression or
classification focused on estimating berry or fruit counts. Exemplary representations of
images within the dataset are provided below.

data = pd.read csv( count - count.csv.csv')
data.head()
ImgName berryCount
0 20170227_130321_HDR.jpg 15
1 20170227_130555_HDR.jpg 25
2 20170227_130817_HDR.jpg 35
3 20170227_131334_HDR, jpg 45
4 20170227_133249_HDR jpg 51

Figure 10: Dataset Description

As exemplified in Figure [11, images of grapes have been selected for training the
models. A comprehensive analysis of the histogram (Figure unveils that the majority
of observations indicate a count of 75 grapes, albeit there are a few instances of outliers
with notably higher counts. The statistical metrics of the dataset reveal that the mean
and median grape counts are 100 and 125, respectively. However, it is the mode grape
count (75) that offers a more accurate measure of central tendency.

4.2 Data Pre-processing

The data pre-processing stage entails a critical series of operations to ensure the suit-
ability of the input data for subsequent modeling procedures. The designated function,
denoted as 'preprocess_image’, is devised to undertake these preparatory tasks. Given an
image path, the function expertly addresses potential file extension inconsistencies. Sub-
sequently, the image is loaded and resized to dimensions of (224, 224), followed by conver-
sion to an array format. Adjustments to dimensions are executed, and VGG16-specific
preprocessing is applied. The culmination of these operations yields the preprocessed
image, optimised for downstream analysis.

In line with the pre-processing protocol, the implemented code iterates through the
‘data’ DataFrame, extracting the 'ITmgName’ and 'berryCount’ values for each entry. The
complete image path is constructed, and the image is subjected to the 'preprocess_image’
function. The preprocessed image is then appended to the set denoted as 'X’, while the
corresponding berry or fruit count is appended to the set 'y’ .

?Dataset: https://periakiva.github.io/finding_berries/datasets.html
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Figure 11: Images of the grapes which will be rendered as the streaming video through

API

u

F
=]
i

Frequency
]

10 ¢

o 25 50 75 100 125
Barry Count

Figure 12: Distribution of the data

17

150

175

200




Furthermore, the pixel values of the training and evaluation data, represented by
"X _train’” and "X _eval’ respectively, undergo a normalisation procedure. This normalisa-
tion involves scaling the pixel values to reside within the range of [0, 1], which is achieved
by dividing the pixel values by 255.

To facilitate model training and evaluation, the dataset (X, y) is partitioned into dis-
tinct training and evaluation subsets, denoted as (X_train, y_train) and (X_eval, y_eval),
respectively. This partitioning is executed using an 80-20 split ratio, and a consist-
ent random state is employed to ensure replicability. Recognising the importance of data
augmentation in scenarios characterised by limited training data, the code integrates data
augmentation techniques. These techniques introduce diversity into the training dataset
by applying transformations such as rotation, shifting, flipping, and more. The augment-
ation process diversifies the dataset, enabling the models to learn from a wider array of
examples, thereby enhancing generalisation and mitigating overfitting. To operationalise
this, the code configures an image data generator utilising the Keras ‘ImageDataGen-
erator’ class. The augmentation techniques include rotation, width and height shifts,
shearing, zooming, horizontal flipping, and filling mode adjustments. The integration of
these augmentations augments the richness of the training dataset, thus fostering im-
proved model generalisation.

4.3 Modelling Implementation

The core of the modeling phase involves the construction of a convolutional neural net-
work (CNN) architecture tailored to the demands of the problem domain. The model
is designed to undergo multiple layers of convolution followed by max-pooling, aimed at
extracting discriminative features. The process culminates with global average pooling,
which facilitates spatial aggregation. The architecture also encompasses two fully connec-
ted (dense) layers, fortified with regularisation mechanisms, alongside a dropout layer to
counteract overfitting effects. The ultimate dense layer generates a single output value.
The model configuration is oriented towards image classification tasks, characterised by
an input shape of (224, 224, 3).

The model architecture comprises sequential stacking of various layers, each contrib-
uting to the intricate process of feature extraction and classification. Key components
encompass a base model, a flatten layer, a dense layer equipped with regularisation and
dropout strategies, and the final dense layer responsible for generating the ultimate out-
put. This template serves as the foundation for subsequent model iterations, albeit with
adjustments in initialisation specifics to accommodate the desired model variations.

5 Evaluation

In this research study, a comprehensive evaluation of various convolutional neural net-
work (CNN) architectures is conducted using three distinct evaluation metrics: Intersec-
tion over Union (IoU), Mean Average Precision (mAP), and Mean Squared Error (MSE).
These metrics have been selected to holistically assess the performance of the models in
object detection tasks while considering accuracy, precision, and convergence. Intersec-
tion over Union (IoU) is utilised to quantify the degree of overlap between predicted
bounding boxes and actual ground truth boxes. This measure captures the accuracy
of the spatial localisation of objects within the images. The IoU score is calculated by
dividing the intersection area by the union area of the bounding boxes. Mean Average
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Precision (mAP) is a widely accepted metric that balances precision and recall across
different IoU thresholds. This metric provides insight into the models’ ability to accur-
ately detect objects of varying sizes and spatial configurations. By calculating the average
precision over different IoU thresholds and taking the mean across all object classes, mAP
offers a comprehensive view of detection performance. Mean Squared Error (MSE)
is employed to quantify the extent of deviation between the predicted object counts and
the actual counts. This metric allows an assessment of the models’ accuracy in predict-
ing the number of objects present in an image. The choice of evaluation metric depends
on the specific task requirements, including the desired accuracy level and the trade-off
between precision and recall. By leveraging these metrics, the research seeks to provide
a thorough understanding of the models’ capabilities and limitations in object detection
scenarios. The study conducts experiments using six different CNN architectures: Basic
CNN, Shallow CNN, DenseNet, MobileNet, ResNet, and VGGNet. Each architecture is
evaluated based on the aforementioned metrics to discern their strengths and weaknesses.
Written Code loads images from the ”data/data” directory, randomly selects 5 images,
and displays them in subplots. For each image, it predicts using a model and chooses
green or red based on the prediction threshold. It adds a colored box at the bottom with
a predicted value in white text. The chosen color represents prediction confidence, and
the text is centered within the box. Subplot titles are set to image filenames, and axes
are turned off for cleaner display.
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Figure 13: From left to right respectively: Training and Validation loss of Basic CNN,
Shallow CNN, DenseNet, MobileNet, ResNet and VGGNet

5.1 Experiment / Case Study 1: Basic CNN

The training performance of the Basic CNN demonstrates erratic behavior in loss (Fig-
ure , and validation loss remains persistently high (Figure . This suggests that the
model struggles to converge efficiently and generalise to unseen data (Figure .
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Figure 14: From left to right respectively: Prediction Scatter Plot loss of Basic CNN,
Shallow CNN, DenseNet, MobileNet, ResNet and VggNet

Figure 15: Prediction of Basic CNN
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5.2 Experiment / Case Study 2: Shallow CNN

Figure 16: Prediction of Shallow CNN

The Shallow CNN exhibits a training pattern of gradually decreasing loss (Figure With
relatively consistent validation loss trends (Figure [14). This points towards better con-
vergence and generalisation capabilities compared to the Basic CNN (Figure .

5.3 Experiment / Case Study 3: DenseNet

Figure 17: Prediction of DenseNet

The DenseNet architecture presents fluctuating performance trends, with training
loss exhibiting variations lacking a clear pattern (Figure [13]). Validation loss similarly
varies (Figure , indicating potential challenges in achieving stable convergence and
generalisation (Figure [L7).

5.4 Experiment / Case Study 4: MobileNet

Figure 18: Prediction of MobileNet

The MobileNet model displays fluctuating trends in performance, but with decreas-
ing loss during training (Figure . Validation loss also exhibits variations but generally
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follows a decreasing trajectory (Figure . This suggests a comparatively stable conver-
gence and generalisation process (Figure .

5.5 Experiment / Case Study 5: ResNet

Figure 19: Prediction of ResNet

The ResNet’s training performance shows decreasing loss over epochs (Figure ,
while validation loss experiences initial decrease followed by subsequent increases (Fig-
ure . This hints at the possibility of overfitting to training data and insufficient
generalisation (Figure [19).

5.6 Experiment / Case Study 6: VGGNet

T |

Figure 20: Prediction of VGGNet

The VGGNet’s training performance showcases decreasing loss over epochs (Fig-
ure , indicating enhanced performance. Validation loss also demonstrates a decreasing
pattern (Figure , suggesting better generalisation capabilities (Figure .

5.7 Discussion

From an academic perspective (Table , the research underscores the importance of se-
lecting appropriate CNN architectures for object detection tasks. The findings emphasise
that while certain models exhibit promising training trends, their ability to generalise to
unseen data varies significantly. These insights can guide future research into refining
CNN architectures for improved convergence and robust generalisation.

From a practitioner standpoint, the study offers valuable guidance for selecting CNN
architectures based on task-specific requirements. By understanding the strengths and
weaknesses of each architecture, practitioners can make informed decisions to achieve
optimal object detection performance in real-world scenarios.
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Table 1: Performance Comparison.

Model Used R? Score Mean Squared Error
Basic CNN -0.42 965.96
DenseNet121  0.49 345.43
MobielNet 0.38 415.74
ResNet50 0.037 654.66
VGG16 0.45 369.81

5.8 Answering Research Questions

e Research Question 1 (RQ1): Could it be feasible to enhance the efficiency
and precision of grape detection and counting in agricultural contexts by refining
deep learning architectures, including semantic segmentation and object detection
algorithms?

Answer: Deep learning models employing transfer learning architecture in con-
junction with Fully Connected layers aim to automate grape counting, thereby
minimising the need for manual labor. These deep learning models will take the
form of regression models, initially segmenting individual grapes on vines and sub-
sequently determining the identified bounding boxes. The cumulative count of
grapes will be derived from this process. This approach is versatile, as the pipeline
functions smoothly across various counting scenarios, including:

Grapes: Tested
Population: Tested
People: Tested

e Research Question 2 (RQ2): To expedite fruit counting and yield estimation,
what measures can be taken to maximise the effective utilisation of unmanned aerial
vehicles (UAVs)? Furthermore, what are the key technical obstacles that necessitate
resolution to ensure results that are both accurate and dependable?

Answer: Within this context, the proposed resolution involves developing an API
using Flask (Figure[2)), serving as the current framework, which can be adaptable to
alternative technologies for seamless integration with the data acquisition process.
This API will facilitate automated grape quantity calculations. In cases where the
automated calculation falls short of accuracy, manual intervention will be imple-
mented selectively, establishing a feedback loop essential for enhancing the learning
process of the model.

e Research Question 3 (RQ3): What variables wield substantial influence over
the precision and accuracy of algorithms employed for automated grape counting?
How can the potential issues stemming from these variables be alleviated to foster
dependable outcomes across a diverse array of environments and grape categories?

Answer: The crucial elements to consider are:

1. The type of data, including its source from various plantations. This is signi-
ficant because the specific plants present can affect the detectability of grapes
by the automated image acquisition platform.
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2. The choice of device employed for conducting the image acquisition process.

n

Error = Z(Actuali — Forecast;)

=1

Error will function as a multiplicative factor.
Final Prediction = o * Actual Prediction
Where « is directly proportional to Error.

e Research Question 4 (RQ4): To streamline the management of extensive data-
sets produced by automated grape detection and counting systems, how can cloud-
based processing be optimised? Additionally, what strategies can be employed to
safeguard data privacy and uphold security standards within cloud-based environ-
ments?

Answer: Local computer lacked the capacity to effectively train the expansive
architectures of transfer learning models. Consequently, a more capable solution was
needed, and this was successfully addressed through the utilisation of both Google
Cloud Platforms and AWS platforms. Additionally, given the substantial volume of
real-time incoming data, a robust storage solution was imperative. This requirement
is met by leveraging AWS storage. Furthermore, for efficient model training, GPU-
based servers were employed, significantly enhancing model computations and real-
time predictions. These servers also facilitate the creation of endpoints, which
can be seamlessly integrated into numerous systems, enabling parallel processing.
To ensure data security, a distinct login is assigned to each user, preventing data
sharing among users and thus safeguarding the data.

6 Conclusion and Future Work

In summary, this study underscores the importance of meticulous assessment of CNN
architectures through comprehensive metric analysis. The systematic juxtaposition of
model performance enhances the collective comprehension of object detection techniques,
facilitating progress in both academic and practical contexts.

Among the various neural network architectures examined, the DenseNet model ex-
hibited superior performance when deployed within AWS’s real-time cloud infrastructure.
Its successful application to grape counting not only showcases its remarkable precision in
detecting and quantifying grapes, but also accentuates the capacity of cloud computing
to bolster scalability and productivity.

The synergistic integration of DenseNet and AWS embodies cutting-edge advances
in amalgamating machine learning and cloud technologies, marking a pivotal stride in
optimising agricultural methodologies. This advancement holds substantial potential for
accurate yield estimation, quality control, crop management, harvest optimisation, cost
reduction, time efficiency, and research refinement. The promising trajectory of preci-
sion agriculture shines brighter as we harness the synergy of artificial intelligence and
cloud computing. This symbiosis promises refined resource allocation and precise yield
prognostication, nurturing berries and other crops season after season. The continuous
accumulation of dataset images captured by drones or comparable means will continu-
ally refine upcoming models, forging a collective solution for the benefit of farmers in
developing nations.
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However, commercialisation of this solution is not the optimal route. Instead, it is
advisable for the government to sustain and support the resources as an open-source ser-
vice, catering to the needs of economically disadvantaged farmers. This strategy ensures
perpetual enhancements and prevents exploitation stemming from inadequate computer
literacy. Given that computations are only required thrice annually, the government can
efficaciously leverage existing cloud infrastructure like AWS for remote execution, rather
than investing in on-premises systems.

In terms of future endeavours, an intuitive web application stands as an extension
of this project, disseminating automated and efficient grape counting results to farmers
via SMS or local community centres. With an expanded dataset, the project’s horizon
extends toward identifying fungi that curtail yields by a third during winter seasons,
promising further agricultural advancement.
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