

National College of Ireland

Bachelor of Science (Honours) in Computing

Software Development

2022/2023

Ruby Lennon

X19128355

x19128355@student.ncirl.ie

Food Planner App

Technical Report

1

Contents
Executive Summary ... 2

1.0 Introduction .. 2

1.1. Background ... 2

1.2. Aims... 3

1.3. Technology .. 4

1.4. Structure ... 6

2.0 System ... 7

2.1. Requirements .. 7

2.1.1. Functional Requirements .. 7

2.1.2 Data Requirements ... 25

2.1.3 User Requirements ... 25

2.1.4 Environmental Requirements ... 25

2.1.5 Usability Requirements ... 25

2.2 Design & Architecture ... 26

2.3 Implementation .. 30

2.3.1 User Management Feature (Login, Registration, Account Settings) 32

2.3.2 Ingredients List OCR Scanner Feature ... 36

2.3.3 Recipe Search Engine Feature ... 40

2.3.4 Recipe Manager Feature ... 42

2.3.5 Meal Planner & Shopping List Features .. 48

2.4 Graphical User Interface (GUI) .. 51

2.5 Testing ... 65

2.5.1 Unit Testing ... 65

2.5.2 Integration Testing .. 69

2.5.3 System Testing .. 72

2.5.4 End-To-End Functionality Testing ... 76

2.6 Evaluation ... 77

3 Conclusions ... 81

4 Further Development or Research ... 82

5 References .. 83

6 Appendices .. 85

6.1 Project Proposal .. 85

6.2 Reflective Journals .. 95

2

Executive Summary
The purpose of this report is to document the proposal, technology, requirements

specification, design and architecture, implementation, testing, evaluation, and conclusions

of the Android mobile software application, FoodPlannerApp. The FoodPlannerApp

application aims to solve the following problems: food waste, obscure food product

ingredients and unhealthy food habits due to hectic schedules. The project attempts to do

this through providing users with the following features: User Account Management, a Food

Ingredients Scanner, a Recipe Search Engine, a Recipe Manager, a Meal Planner, and a Food

Shopping List Generator. Each feature corresponds with one of the six application functional

requirements. The User Management feature allows users to create, manage and log in to

their user account. The Ingredients Scanner feature allows users to scan images for

ingredients text and receive the ingredients meaning. The Recipe Manager feature allows

users to create, read, update, and delete recipes. The Meal Planner feature allows users to

add recipes to their meal plan for a scheduled date which generates an ingredients shopping

list as part of the Shopping List feature. Technologies, tools, and services such as Machine

Learning, Optical Character Recognition, Google ML Kit Vision Text-Recognition API, Android

Studio, Android Mobile Application Development, Java Programming, Versioning Control, Git,

GitHub, Firebase Authentication, Firebase Realtime Database, and various Testing tools were

all utilised in the implementation of this project. The project was planned and developed

using an Agile Development approach. The projects correctness, security, performance,

usability, accessibility, and internationalization were evaluated using lint scans, performance

analysers, automated testing, and manual testing. The project was a success as all six

functional requirements within the scope of the project were developed and implemented

into a single working Android Mobile Application resulting in successful project completion.

1.0 Introduction

1.1. Background
The first problem that this project attempts to solve is food waste and its impact on the

environment and on household expenditure. According to the EPA (The Environmental

Protection Agency) Irish households threw away an estimated 221,000 tonnes of food in

2021. Food waste costs the average Irish household approximately €60 per month or €700

per year. It is estimated that food waste generates about 8% to 10% of global greenhouse gas

emissions. (EPA, 2023) The second problem that this project attempts to solve is confusing

obscure food product ingredients which causes difficultly for consumers to understand

ingredients listed on food labels and their nutritional value. For example, manufacturers can

avoid listing sugar and fats as the first ingredient by listing different forms of sugars and fats

with different names. ‘Dietary Free Sugars’ are sugars added during food production or sugars

naturally present in foods such as honey, syrup, and fruit juices. Higher intakes of free sugars

have been linked to dental caries and overweight. (Dasgupta, et al., 2023) In a report

published in the European Journal of Nutrition in 2019, it was found that 75% of Irish 3 year

old children surveyed were exceeding the World Health Organisation (WHO) guidelines for

free sugar intake. (Crowe, et al., 2019) The third problem that this project attempts to solve

3

is unhealthy food habits because of hectic schedules. In a report published by Bord Bia in

2020, due to a more time pressured lifestyle, only 30% of Irish adults surveyed prepared an

evening meal using only fresh and raw ingredients every day or most days which was a 12%

decrease from 2011. (Bord Bia, 2020) During the market research for the project many

individual applications were found for meal planning, creating shopping lists, recipes finders,

recipe managers, ingredients scanners and so on. What makes the ‘Food Planner App’

different than most food management applications is that it combines all these individual

features into one all-encompassing food planner application. All the individual features work

together to create a comprehensive solution for the user.

1.2. Aims
The ‘Food Planner App’ aims to solve the issue of food waste everywhere by supporting users

in reducing their food waste and carbon footprint through providing them with the Recipe

Search Engine feature which allows them to search for recipes containing ingredients they

already own. Supporting users in reducing their food waste should also help them to save

money. The ‘Food Planner App’ also aims to solve the issue of confusing food ingredients by

providing the Ingredients Scanner Feature which allows users to upload a photo of a food

product ingredients list and to receive a report of the ingredients and their meaning. The

‘Food Planner App’ aims to solve the problem with lack of meal planning due to busy

schedules by allowing the user to organise their recipes, create a meal plan and view a food

shopping list for each of their meals. The scope of the project is to develop a working Android

Mobile Application which meet the following six functional requirements: Users must be able

to create and manage a user account which will enable them to authenticate and use the

application features using the User Management feature. Users must be able to create, read,

update, and delete recipe records using the Recipe Manager feature. Users must be able to

scan images of food product ingredients lists to receive the ingredients meaning using the

Ingredients Scanner feature. Users must be able to search for public or owned recipes by

ingredients, cuisine, suitability, or name using the Recipe Search feature. Users must be able

to add recipes to their meal plan using the Meal Planner feature. Users must also be able to

view and update a shopping list for each of their scheduled meals using the Shopping List

feature. The project aims to develop the FoodPlannerApp making use of innovative

technologies such as the Machine Learning process of Optical Character Recognition (OCR),

Android Mobile Application Development and Backend Cloud computing services provided by

Google’s Firebase. The projects goals are to develop a working Mobile Application system

with a high priority placed on technology, requirements specification, design and

architecture, implementation, testing, evaluation, and maintainability.

4

1.3. Technology

Android Studio / Android Mobile Application Development

The project application was developed using Android Studio, the official Android App

Development Integrated Development Environment (IDE). Android Studio uses a Gradle-

based build system. The project was developed using Gradle Version 7.5. Android Studio

provides and supports testing tools and frameworks such as Espresso Test Recorder, JUnit 4,

and JUnit 5. These testing tools were used to automate the Unit tests, and some of the

Integration and System tests. Android Studio provides a Lint tool which identifies problems

with a projects structural code quality. The Lint tool checks a projects source files for potential

bugs and suggests optimization improvements for correctness, security, performance,

usability, accessibility, and internationalization. (Google For Developers, 2023) This Lint tool

was used in the evaluation of the project. Android Studio offers a Performance Profiler tool

to track an applications memory usage, energy usage and CPU usage. (Google For Developers,

2023) The Performance Profiler tool was used in the evaluation of the project. Android Studio

can run Android applications virtually on a laptop using an Android Virtual Device (AVD) or by

connecting a physical Android device in Developer Mode – both methods were used to run,

test, and debug the application.

Java

The FoodPlannerApp Android application was developed in Android Studio using Gradle Java

Development Kit Version 11. Java is a class-based and OOP (Object Oriented Programming)

programming language designed to be simple, high-level, robust, secure, and object-oriented.

(Oracle, no date)

XML

XML was used to define the User Interface (UI) layouts of the android application. XML

(Extensible Markup Language) describes the UI layout of the application using a text-based

document made up of XML tags, elements, and attributes. The XML files are then rendered

by the application when run to display a Graphical User Interface (GUI) to the user.

Google ML Kit Text Recognition API / Optical Character Recognition (OCR)

Google’s ML Kit is a mobile Software Development Kit (SDK) for providing Google's on-device

Machine Learning (ML) services to mobile applications (Android and iOS). Google Provides

Vision and Natural Language APIs. These APIs are based on Googles ML models. All ML Kit's

APIs run on-device meaning that the functionality is available offline. (Google For Developers,

2023) Google’s ML Kit Text Recognition v2 API recognises text from an input image. (Google

For Developers, 2023). Google’s ML Kit Text Recognition v2 API was used for the Ingredients

Scanner feature of the application.

5

Firebase Authentication

The app development platform, Firebase, provides the Firebase Authentication service used

for creating and authenticating application users using SDK and premade UI libraries. The

application uses Firebase Authentication as the application user authentication service.

(Google For Developers, 2023)

Firebase Realtime Database

Firebase provides the NoSQL cloud database, Firebase Realtime Database. Firebase Realtime

Database is used as the application database. Firebase Realtime Database is a cloud-hosted

database in which data is stored as JSON. Data in a Firebase Realtime Database is synced with

all connected clients in real time through a single instance which results in users automatically

receiving updated data in real time. (Google for Developers, 2023) The applications Recipe,

Meals and Ingredient data are stored in the Firebase Project Realtime Database. The stored

recipe data is used as part of the Recipe Manager and Recipe Search features, the ingredient

data is used to populate the ingredients dialog in the Recipe Search feature and used to return

ingredients meaning in the Ingredient Scanner feature. The meal data is used for the Meal

Planner feature and the meal ingredient data is used for the Shopping List feature.

GitHub / Git

GitHub is a software development and control platform which is built on the versioning

control software Git. (GitHub, no date) GitHub was used as the main project repository for

storing and managing the applications source code. When changes were made to the projects

source code, a branch would first be checked out. Code changes were then pushed to the

development branch using Git terminal commands. When the changes were ready to be

merged to the main branch, a pull request was created and then subsequently merged.

Espresso / JUnit 4 / JUnit 5

JUnit is a unit testing framework used in Java programming. JUnit 4 is a test framework used

to write repeatable tests. The JUnit 4 test framework is an instance xUnit architecture for unit

testing frameworks. (JUnit, 2021) JUnit 4 was used in conjunction with Android Espresso to

run automated UI tests. JUnit 5 is the next generation of JUnit after JUnit 4. JUnit 5 is made

up of the JUnit Platform, JUnit Jupiter, and JUnit Vintage. (Bechtold, et al., no date) JUnit 5

was used to create and run unit test.

6

1.4. Structure

Section Overview

Executive Summary This section addresses the key points of this technical report.

1.0 Introduction
This section addresses the Background, Aims and Technology of
the project and the Technical Report Structure.

1.1 Background
This section addresses the reasons why the project was
undertaken.

1.2 Aims This section addresses the projects aims and objectives.

1.3 Technology
This section addresses which technologies were used, and how
they were used, to achieve the projects aims.

1.4 Structure This section provides an overview of the report sections.

2.0 System
This section addresses the project Systems requirements, design
& architecture, implementation, graphical user interface,
testing, and evaluation of the project.

2.1 Requirements
This section addresses the functional, data, user, environment,
and usability requirements of the projects system.

2.1.1 Functional
Requirements

This section of the report addresses all the functional
requirements of the project system. For each functional
requirement a use case diagram, description & priority, and use
case has been included in this section.

2.1.2 Data
Requirements

This section addresses the project systems requirements in
relation to data.

2.1.3 User
Requirements

This section addresses the project systems requirements in
relation to users.

2.1.4 Environment
Requirements

This section addresses the project systems requirements in
relation to the system environment.

2.1.5 Usability
Requirements

This section addresses the project systems requirements in
relation to the system’s usability.

2.2 Design &
Architecture

This section addresses the systems design, architecture and
components used.

2.3 Implementation
This section addresses the systems implementation and
describes the main code algorithms, classes and functions used.

2.4 Graphical User
Interface (GUI)

This section includes wireframes and screenshots of the final key
screens in the application.

2.5 Testing
This section addresses the testing tools, test cases, test plans,
and types of testing used in the testing of the project.

2.6 Evaluation
This section addresses how the system was evaluated and the
results.

3.0 Conclusions
This section addresses the projects advantages, disadvantages,
results, strengths, and limitations.

4.0 Further
Development/Research

This section addresses the direction the project would take with
additional time and resources.

5.0 References
This section contains the bibliography for all references cited
throughout the document.

6.0 Appendices
This section contains the Project Proposal document and
Monthly Reflective Journals.

7

2.0 System

2.1. Requirements

2.1.1. Functional Requirements
1. FR1 – User Management:

The software system must accomplish user authentication. This functional

requirement will allow the End User to register for a user account, login to their

user account, edit their account details and or delete their account. Google’s

Firebase User Authentication is the backend service that is going to be used for

the application user authentication.

2. FR2 - Ingredient List OCR Scanner:

The software system must accomplish text recognition OCR functionality. This

functional requirement will allow the End User to upload an image of a food

ingredients list and receive a breakdown of the food ingredients and their

meaning. Text from this image will then be extracted using Google’s ML Kit Vision

(Text Recognition) API. The ingredients definitions will be stored in and queried

from an external Google Firebase Realtime Database.

3. FR3 - Recipe Search Engine:

The software system must accomplish recipe search functionality. This functional

requirement will allow the End User to search for recipes by parameters such as

name, ingredients, cuisine, and suitability. In the Project Proposal I noted that I

may use web scraping to extract recipes from Google’s SERP. However, I am

considering an alternative solution where the recipe search engine queries user

created recipes from the application primary Google Firebase Realtime Database

instead. This will be decided once the development of this feature is started.

4. FR4 - Recipe Manager:

The software system must accomplish a recipe management system. This

functional requirement will allow the End User to create, read, update, and delete

private or public recipes. Public recipes will be visible to all users and retrievable

using the Recipe Search Engine. The recipes will be stored externally using a

Google Firebase Realtime Database.

5. FR5 - Meal Plan Manager:

The software system must accomplish a meal planner functionality. This functional

requirement will allow the End User to add and remove recipes to and from their

weekly meal plan. The meal plan information will be stored externally using a

Google Firebase Realtime Database.

6. FR6 - Shopping List Generator:

The software system must accomplish generating an automated shopping list. This

functional requirement will allow the End User to generate a shopping list

containing all ingredients required for all recipes in their meal plan. The food

shopping list information will be stored externally using a Google Firebase

Realtime Database.

Above are the system functional requirements listed in order of priority. The highest functional requirement for the

Food Planner App is the user authentication system as all other functional requirements are dependent on the user

being logged in to the application.

8

2.1.1.1. Use Case Diagram

9

2.1.1.2. Requirement 1: User Management (FR1)

2.1.1.2.1. FR1 - Description & Priority
User Management is the highest priority requirement in the overall system. The End

User must have a registered user account to log in to the application. All other

application features require a user to be logged in to the application. In this Use Case

the End User is the user using the application on their mobile device, and Firebase is

the backend service used for the user authentication. This User Management use case

covers user registration, user login and account deletion.

2.1.1.2.2. FR1 - Use Case

Scope

The scope of this use case is to allow the End User to register a new user account, login to

their user account, edit their account settings and delete their user account in the Food

Planner App system.

Description

This use case describes the user registration, user login, settings update, and account

deletion processes. Using the application, the End User will be able to register a new user

account, login to their existing user account, edit their account and or delete their account

and associated data. A user requires a user account to use all main features of the

application. The User Authentication service provider will be Firebase.

Use Case Diagram

Flow Description

The use case has three different basic flows:

• User Registration Task

• User Login Task

• User Edit Task

• User Deletion Task

10

Precondition

− Food Planner App must be successfully installed on the End User’s Android mobile

phone device.

− The End User’s Android mobile phone device mobile device must be connected to

the internet.

− The Firebase Authentication backend service must be available.

− User Registration Task Flow – End User must have valid email address that is not

associated with any existing user accounts on the system.

− User Login Task Flow – End User must have existing user account.

− User Deletion Task Flow – End User must have existing user account and be logged

in to said account.

Activation

USER REGISTRATION TASK

This flow starts when a logged-out End User navigates to the User Login screen in the

mobile application.

USER LOGIN TASK

This flow starts when a logged-out End User navigates to the User Login screen in the

mobile application.

USER UPDATE TASK

This flow starts when a logged in End User navigates to the User Details screen in the

mobile application.

USER DELETION TASK

This flow starts when a logged in End User navigates to the User Details screen in the

mobile application.

Main flow

USER REGISTRATION TASK

1. On the User Login screen, the user clicks the link to the User Registration screen.
2. The End User is redirected to the User Registration screen.
3. The End User enters text into the user registration form.
4. The End User clicks the Register button (See A1, A2, A3, E1, E2).
5. The End User new user account is successfully registered – a success message is

displayed on screen.
6. The End User is successfully logged in to the application and redirected to the

Home screen.
USER LOGIN TASK

1. On the User Login screen, the End User enters text into the user login form.
2. The End User clicks the Login button (See E1, E2, E3, A4).
3. The End User is successfully logged in to the application - a success message is

displayed on screen. The End User is redirected to the Home screen.

11

USER UPDATE TASK

1. The logged in End User uses the application navigation menu to navigate to the
User Settings screen.

2. On the User Settings screen, the End User adds a new password or email and clicks
the Update Password or Update Email button.

3. A confirmation box appears with options to Confirm or Cancel the account update
(See E4).

4. User clicks the Confirm button. (See E1, E2)
5. User account is successfully updated. User remains on the Edit Settings page.

USER DELETION TASK

1. The logged in End User uses the application navigation menu to navigate to the
User Settings screen.

2. On the User Settings screen, the End User clicks the ‘Delete Account’ button.
3. A confirmation box appears with options to Confirm or Cancel the account

deletion (See E5).
4. User clicks the Confirm button. (See E1, E2)
5. User account is successfully deleted. User is logged out and redirected to the login

page.

Alternate flow

A1 : Username is already associated with registered user.
1. An error notification is displayed on screen and the user registration is not

successful.
2. The End User types a valid username into the username field that is not already

associated with an existing user account.
3. The End User clicks the Register button again.
4. The use case continues at position 5 of the main flow.

A2 : Password and password confirmation do not match.
1. An error notification is displayed on screen and the user registration is not

successful.
2. The End User types a password and password confirmation into the form which

match.
3. The End User clicks the Register button again.
4. The use case continues at position 5 of the main flow.

A3 : Not all required registration form fields are completed.
1. An error notification is displayed on screen and the user registration is not

successful.
2. The End User types a valid username, password and password confirmation into

the form which match.
3. The End User clicks the Register button again.
4. The use case continues at position 5 of the main flow.

A4 : Not all required login form fields are complete.
1. An error notification is displayed on screen and the user login is not successful.
2. The End User types a valid username and password into the form.
3. The End User clicks the Login button again.
4. The use case continues at position 3 of the main flow.

A5 : The username is not valid.
1. An error notification is displayed on screen and the user login is not successful.

12

2. The End User types a valid username and password into the form.
3. The End User clicks the Login button again.
4. The use case continues at position 3 of the main flow.

A6 : Incorrect password is entered.
1. An error notification is displayed on screen and the user login is not successful.
2. The End User types a valid username and correct password into the form.
3. The End User clicks the Login button again.
4. The use case continues at position 3 of the main flow.

Exceptional flow

E1 : The End User’s device is disconnected from the internet.
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

E2 : The Firebase Authentication backend service is unavailable.
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

E3 : The username is not associated with an existing user account.
1. An error notification is displayed on screen and the user login is not successful.
2. User must complete User Registration Task.
3. The Use Case ends.

E4 : The End User clicks the Cancel button.
1. The user account setting is not updated.
2. The Use Case ends.

E5 : The End User clicks the Cancel button.
1. The user account is not deleted.
2. The Use Case ends.

Termination

USER REGISTRATION TASK

The Use Case ends when the End User has successfully registered a new user account, are

successfully logged in, and are redirected to the application Home screen.

USER LOGIN TASK

The Use Case ends when the End User has successfully logged in to their user account and

are redirected to the application Home screen.

USER UPDATE TASK

The Use Case ends when the End User has successfully updated their account settings.

The user remains on the Account Settings screen.

USER DELETION TASK

The Use Case ends when the End User has successfully deleted their user account and are

redirected to the Login screen.

Post condition

The system goes into a wait state.

13

2.1.1.3. Requirement 2: Ingredients List OCR Scanner (FR2)

2.1.1.3.1. FR2 - Description & Priority
The Ingredient List OCR Scanner is the second highest functional requirement of the

overall system. It is one of the core features of the application. This feature allows the

End User to upload an image of a food Ingredients list to the application. Text from

this image will then be extracted using Google’s ML Kit Vision Text Recognition API.

The End User will then receive a breakdown of the ingredients and their meaning.

2.1.1.3.2. FR2 - Use Case

Scope

The scope of this use case is to allow the End User to use the Food Ingredients List OCR

Scanner in the Food Planner App system.

Description

This use case describes the actions taken by the End User to successfully use the Food

Planner App Food Ingredients List OCR Scanner. Using the application, the End User can

upload an image of a food ingredients list and then receive a report containing a list of the

ingredients and their meaning. Google’s ML Kit Text Vision Recognition API is used to

recognise and extract the ingredients text from the image.

Use Case Diagram

14

Flow Description

Precondition

− Application must be successfully installed on the End User’s Android mobile

phone device.

− The End User must have a registered user account and be logged in to the

application.

− The End User’s Android mobile phone device mobile device must be connected to

the internet.

− ML Kit Text Recognition API must be compatible with End Users mobile phone

device.

Activation

This use case starts when an End User navigates to the Ingredients List Scanner screen.

Main flow

1. The End User opens the application on their mobile device. (See A1)
2. The End User is located on the Home screen.
3. The End User clicks the Ingredients Scanner button.
4. The End User is redirected to the Ingredients List OCR Scanner screen.
5. The End User clicks the Select Image button (See A2, A3)
6. The End User clicks the Read Ingredients button (See E1, E2, E3).
7. The ingredients text is extracted from the image. The ingredients are looked up in

the database. For each ingredient listed, if there is a description of the ingredient
listed in the database, then it will be displayed to the user on the screen. (See E4)

Alternate flow

A1 : End User is logged out.
1. The End User is redirected to the User Login screen.
2. The End User enters a valid username and password into the user login form.
3. The End User clicks the Login button.
4. The End User is successfully logged in to the application.
5. The use case continues at position 2 of the main flow.

A2 : End User selects Choose Existing Image from Library option.
1. End User’s phone image gallery opens.
2. The End User select an existing image from their image gallery.
3. The use case continues at position 6 of the main flow.

A3 : End User selects Take Photo Using Camera option.
1. End User’s phone Camera app opens.
2. End User takes a photo using camera app.
3. The use case continues at position 6 of the main flow.

Exceptional flow

E1 : The End User’s device is disconnected from the internet.
1. An error notification is displayed on screen and the text recognition is not

executed.
2. The Use Case ends.

E2 : Google ML Kit Text Recognition API is unavailable.
1. An error notification is displayed on screen and the text recognition is not

executed.
2. The Use Case ends.

15

E3 : No text is detected in selected image.
1. An error notification is displayed on screen and the user login is not successful.

The End User is prompted to reupload a different image.
2. The End User uploads a valid image of a food ingredients list.
3. The End User clicks the Read Text button again.
4. The use case continues at position 6 of the main flow.

E4 : Remote Firebase Cloud Database is unavailable.
1. An error notification is displayed on screen and the action is not executed.
2. The Use Case ends.

Termination

The Use Case ends when the user has successfully uploaded an image of a food ingredients

list and received a report of the ingredients and their meaning.

Post condition

The system goes into a wait state.

16

2.1.1.4. Requirement 3: Recipe Manager (FR3)

2.1.1.4.1. FR3 - Description & Priority

The Recipe Manager is the third highest priority requirement in the overall system.

The Recipe Manager feature allows the user to create, read, update, and delete

custom recipes. In this use case the End User is the user using the application on their

mobile device, Firebase is used as the database provider which will store the recipe

records externally. The application Recipe Search feature is dependent on the recipe

manager functionality.

2.1.1.4.2. FR3 - Use Case

Scope

The scope of this use case is to allow the End User to create, view, update and delete

recipes using the Food Planner App system.

Description

This use case describes the actions taken by the End User to create, view, update and

delete custom recipes using the Recipe Manager functionality in the Food Planner App.

The recipe records created will be stored externally in a Cloud Firebase remote database.

Use Case Diagram

Flow Description

The use case has three different basic flows:

• Create Recipe Task

• Update Recipe Task

• Delete Recipe Task

17

Precondition

- The Food Planner Application must be successfully installed on the End User’s Android

mobile phone device.

- The End User must have a registered user account and be logged in to the application.

- The End User’s Android mobile phone device mobile device must be connected to the

internet.

- Remote Firebase Cloud Database service is available.

- Update Recipe Task – There must be at least 1 existing recipe which can be selected

by the End User to be updated.

- Delete Recipe Task – There must be at least 1 existing recipe which can be selected by

the End User to be deleted.

Activation

This use case starts when a logged-in End User navigates to the Recipes List screen.

Main flow

CREATE RECIPE TASK

1. On the Recipes List screen, the End User clicks the + icon which redirects the End

User to the Recipe Creation page.

2. The end user fills out the form on the recipe creation page. (See A1, A2)

3. The End User clicks the Create Recipe button. (See E1, E2, A3)

4. A success message is displayed on screen and the recipe is successfully created.

The user is redirected to the Recipe Details page of the recipe just created.

UPDATE RECIPE TASK

1. On the Recipes List screen, the End User clicks an existing recipe on screen and

selects the Edit Recipe button.

2. The End User is redirected to the Update Recipe screen.

3. On the Update Recipe screen, the user fills out the new recipe information.

4. The End User clicks the Update Recipe button. (See A4, E1, E2)

5. The Recipe is successfully updated, the user is redirected to the Recipe List screen,

the user clicks the recipe and clicks the View Details button. The user can view the

updated details on the Recipe Details page.

DELETE RECIPE TASK

1. On the Recipes List screen, the End User clicks an existing recipe on screen and

selects the Edit Details button. The End User is redirected to the recipe edit

screen.

2. The End User clicks the Delete Recipe button.

3. A confirmation box appears with options to Confirm or Cancel the recipe deletion.

(See E3)

4. User clicks the Confirm button. (See E1, E2)

5. Recipe is successfully deleted. User is redirected to the Recipe List screen and the

recipe is no longer listed on this screen.

18

Alternate flow

A1 : User creates private recipe.
1. The end user sets the recipe as private.
2. Recipe will be created as private and only accessible to the owner.
3. The use case continues at position 3 of the main flow.

A2 : User creates public recipe.
1. The end user sets the recipe as public.
2. Recipe will be created as public and can be accessed by anyone.
3. The use case continues at position 3 of the main flow.

A3 : Not all required Create Recipe form fields are completed.
1. An error notification is displayed on screen and the recipe creation is not

successful.
2. The End User completes all required fields.
3. The End User clicks the Create Recipe button again.
4. The use case continues at position 4 of the main flow.

A4 : Not all required form Update Recipe form fields are completed.
1. An error notification is displayed on screen and the recipe update is not

successful.
2. The End User completes all required fields.
3. The End User clicks the Update Recipe button again.
4. The use case continues at position 5 of the main flow.

Exceptional flow

E1 : The End User’s device is disconnected from the internet.
1. An error notification is displayed on screen and the action is not executed.
2. The Use Case ends.

E2 : Remote Firebase Cloud Database is unavailable.
1. An error notification is displayed on screen and the action is not executed.
2. The Use Case ends.

E3 : The End User clicks the Cancel button.
1. The recipe is not deleted.
2. The Use Case ends.

Termination

CREATE RECIPE TASK

The Use Case ends when the End User has successfully created a new recipe and is

redirected to the Recipe List screen where the newly created recipe is listed.

UPDATE RECIPE TASK

The Use Case ends when the End User has successfully updated a recipe and is redirected

to the Recipe List screen.

DELETE RECIPE TASK

The Use Case ends when the End User has successfully deleted a recipe and is redirected

to the Recipe List screen and the deleted recipe is no longer listed.

Post condition

The system goes into a wait state.

19

2.1.1.5. Requirement 4: Recipe Search (FR4)

2.1.1.5.1. FR4 - Description & Priority
The Recipe Search functionality is the fourth highest priority requirement in the

overall system. The End User must be able to search for public Recipes using different

search parameters. In this use case, the End User is the user using the application on

their mobile device. The recipes will either be extracted from Google SERP using web

scraping techniques or from the application primary Firebase Realtime Database. The

decision between web scraping or extracting user recipes from a Firebase Realtime

Database will be decided once the development begins. This use case outlines the

Firebase Realtime Database solution where the application Recipe Search feature is

dependent on the recipe manager functionality. The main objective of the Recipe

Search feature is to allow the End User to search for recipes based on ingredients they

already own to cut down on their food waste.

2.1.1.5.2. FR4 - Use Case

Scope

The scope of this use case is to allow the End User to search for existing public recipes by

using different search parameters in the Food Planner App system.

Description

This use case describes the actions an End User must make to search for public recipes

using the application recipe search functionality.

Use Case Diagram

20

Flow Description

Precondition

- Food Planner Application must be successfully installed on the End User’s Android

mobile phone device.

- The End User must have a registered user account and be logged in to the application.

- The End User’s Android mobile phone device mobile device must be connected to the

internet.

- Remote Firebase Cloud Database service is available.

- There must be existing public recipes that can be returned in the search results to the

End User.

Activation

This use case activates when the End User navigates to the Recipe Search screen.

Main flow

1. One the Recipe Search screen, the End User enters search parameters.

2. The End User clicks the Search button. (See A1, E1, E2, E3)

3. Recipes matching the search queries entered are listed in the Search Results list.

Alternate flow

A1 : No Recipes match the search queries.
1. No recipes are returned in the Search Results list.
2. User refines or changes search parameters.
3. The use case continues at position 2 of the flow.

Exceptional flow

E1 : The End User’s device is disconnected from the internet.
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

E2 : Remote Firebase Cloud Database is unavailable.
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

E3 : There are no public recipes on the system.
1. No search results are returned.
2. The Use Case ends.

Termination

The Use Case ends when the End User receives a correct search result for their recipe

search.

Post condition

The system goes into a wait state.

21

2.1.1.6. Requirement 5: Meal Plan Manager (FR5)

2.1.1.6.1. FR5 - Description & Priority
The Meal Plan Manager is the fifth highest priority requirement in the overall system.

Using the Meal Plan manager, a user will be able to add or remove recipes to and from

their meal plan. In this use case the End User is the user using the application on their

mobile device and Firebase is used as the database provider which will store the user

meal plan records externally. The Meal Plan Manager feature is dependent on the

recipe manager functionality.

2.1.1.6.2. FR5 - Use Case

Scope

The scope of this use case is to allow the user to add and remove recipes to and from

their meal plan on the Food Planner App system.

Description

This use case describes the steps a user must make to add or remove recipes from their

weekly meal plan.

Use Case Diagram

22

Flow Description

Precondition

- Application must be successfully installed on the End User’s Android mobile phone

device.

- The End User must have a registered user account and be logged in to the application.

- The End User’s Android mobile phone device mobile device must be connected to the

internet.

- Remote Firebase Cloud Database service is available.

- There must be existing recipes that can be added to the End Users meal plan.

Activation

This use case starts when an End User navigates to a Recipe Details screen.

Main flow

1. On a Recipe Detail screen, the user clicks the Add to Meal Plan button.
2. The user will be redirected to the Weekly Meal Plan screen.
3. The user selects the day in which they would like to add the recipe to.
4. Once the day is selected, a confirmation prompt appears requesting for the user

to Confirm or Cancel adding the recipe to the Meal Plan. (See E1)
5. The End User clicks confirm button. (See E2, E3)
6. The Recipe is successfully added to the Meal Plan
7. The End User is redirected to the Meal Plan screen.
8. The Selects the day that they added the Recipe to.
9. The End User highlights the meal just added and then Clicks the Remove from

Meal plan button.
10. The recipe is successfully removed from the meal plan.

Alternate flow

N/A

Exceptional flow

E1 : The End User clicks the Cancel button.
1. The recipe is not added.
2. The Use Case ends.

E2 : The End User’s device is disconnected from the internet.
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

E3 : Remote Firebase Cloud Database is unavailable.
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

Termination

This use cases ends when the End User successfully adds or removes a recipe to and

from their weekly meal plan.

Post condition

The system goes into a wait state.

23

2.1.1.7. Requirement 6: Food Shopping List Generator (FR6)

2.1.1.7.1. FR6 - Description & Priority
The Shopping List generator is the lowest priority requirement in the overall system.

In this Use Case the End User is the user generates a shopping list from their weekly

meal plan. The purpose of this feature is that the user can create an automated list of

items they need to buy to prepare the recipes in their meal plan.

2.1.1.7.2. FR6 - Use Case

Scope

The scope of this use case is to allow the End User to generate a shopping list for the

recipes on their weekly meal plan using the Food Planner App system.

Description

This use case describes the steps the End User must take to generate an automated

shopping list from their weekly meal plan using the Food Planner Application.

Use Case Diagram

Flow Description

Precondition

- Food Planner Application must be successfully installed on the End User’s Android

mobile phone device.

- The End User must have a registered user account and be logged in to the application.

- The End User’s Android mobile phone device mobile device must be connected to the

internet.

- Remote Firebase Cloud Database service is available.

- There must be existing recipes added to the End Users meal plan.

24

Activation

This use case is activated when the End User navigates to their Weekly Meal Plan screen.

Main flow

1. On the Weekly Meal Plan screen, the user clicks the Create Shopping List button.
(See E1)

2. The user is redirected to the Shopping List screen where all ingredients that are
required to prepare the recipes on their weekly meal plan are listed. (See E2, E3)

Alternate flow

N/A

Exceptional flow

E1 : No recipes added to Weekly Meal Plan
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

E2 : The End User’s device is disconnected from the internet.
3. An error notification is displayed on screen and the action is not successful.
4. The Use Case ends.

E3 : Remote Firebase Cloud Database is unavailable.
1. An error notification is displayed on screen and the action is not successful.
2. The Use Case ends.

Termination

The use case ends when the End User is successfully redirected to a screen containing the

automatically generated Food Shopping list.

Post condition

The system goes into a wait state.

25

2.1.2 Data Requirements
Registered user accounts will be created, stored and authenticated using Google’s Firebase

User Authentication backend service. This service must be available for a user to register for

a new user account, to log in to an existing account, to update their user account details or to

delete their account. Data relating to recipes, meal plans, and shopping lists will be stored

externally using Google’s Firebase Realtime Database. Database data should be able to be

created, updated, and deleted without any errors. All errors from the manipulation of data in

the application should be handled in the application code without effecting the user’s

experience. Security best practices should be implemented to protect users’ data. The onus is

on the user to control which data they submit to the application. Some prerequisites for

registered users to access their user data are that their mobile device is connected to the

internet, that they have the required version of Google Play Services installed on their device,

that the Firebase User Authentication service is available, that they are logged in to the

application, and that the Firebase Realtime Database service is available.

2.1.3 User Requirements
All users will be required to register for a user account and log in to access all core features of

the application. By registering for a user account users accept the terms of service which

require them to use the application responsibly. Using the application, users will be able to

register for an account, log in to an account, log out of their account, delete their account,

create a public or private custom recipe, update their recipes, delete their recipes, search for

recipes, add recipes to their meal plan, remove recipes from their meal plan, and generate a

food shopping list.

2.1.4 Environmental Requirements
The Food Planner application must be installed on an Android device which is running a Google

supported Android OS version. The most up to date version of Google Play Services should be

installed on the device. The application must be developed for an API level of 19 or higher as

this is a requirement for all Google ML Kit APIs. The end user’s mobile device will need to be

connected to the internet to login or interact with the external Firebase Realtime Database.

User authentication, external data storage, and external APIs are going to be used for integral

parts of the application. Therefore, a lot of thought has been put into the chosen service

providers. Google’s products and services are renowned for their reliability, security, and

availability. Google’s products are well documented which will also support the development

of this application.

2.1.5 Usability Requirements
During the development of this application, all efforts will be made to follow accessibility best

practices. There will be a focus on the learnability, efficiency, memorability, and error handling

of the application. The application UI and processes should be easy to use and intuitive. The

application should be intuitively designed so that user training is not required in how to use

it. User Experience (UX) will be a priority in the development of this application. There should

be no accessibility warnings in the application code. The application should open on the user’s

device without crashing. Errors should be handled appropriately in the application code to

prevent the application from crashing. There will be an appropriate use of easy-to-understand

warnings, prompts, error messages, and confirmation messages throughout the application.

26

2.2 Design & Architecture

System Architecture Diagram

Figure 1 - FoodPlannerApp System Architecture Diagram (Development System)

1. User – The user running the FoodPlannerApp application on an Android device.

2. Android Device – This component represents the Android device (Physical) running

the FoodPlannerApp application in Developer Mode or virtually using an AVD

emulator via Android Studio IDE. The device must have an Android SDK version of 24

or higher installed to run the FoodPlannerApp application.

3. Gallery Application – This component represents the device Gallery application which

the Ingredient Scanner feature is dependent on. The user must grant the

FoodPlannerApp permission to access their gallery to use the full Ingredients Scanner

feature functionality.

4. Camera Application – This component represents the device Camera application

which the Ingredient Scanner feature is dependent on. The user must grant the

FoodPlannerApp permission to access their Camera to use the full Ingredients Scanner

feature functionality.

5. FoodPlannerApp – This component represents the FoodPlannerApp installed on the

user’s device via Android Studio. If the device was released to production the

FoodPlannerApp application would be installed via the Google Play Store. The

FoodPlannerApp applications target Android SDK version is 33.

6. Internet – The device must be connected to the internet to connect to the Firebase

web services. The Google ML Kit Text Recognition functionality is available offline as

the ML Model is set to be downloaded to the device when the application is installed.

27

7. Google Play Services – Google Play Services is required to use the ML Kit Text

Recognition model.

8. Google ML Kit Text Recognition v2 API – This ML Kit API requires an Android API level

of 19 or greater. The Text Recognition model is dependent on Google Play Services

however the ML model is automatically downloaded to the device once the

application is installed.

9. Firebase – Firebase is used as the cloud app development platform.

10. Firebase Authentication – The application uses Firebase Authentication as the

application user authentication service. The User Management feature is dependent

on a successful connection to the Firebase Authentication service.

11. Firebase Realtime Database – Firebase Realtime Database is used as the application’s

cloud-hosted NoSQL cloud database where the applications data is stored as JSON.

The applications Recipe, Meals and Ingredient data are stored in a Firebase Project

Realtime Database. The Recipe Manager, Recipe Search, Ingredient Scanner and

Shopping List features are dependent on a successful connection to this database.

MVC (Model-View-Controller) Architecture Pattern Diagram

Figure 2 – MVC-style Architecture Pattern used in the FoodPlannerApp application. (Adilovic, 2021)

The software architecture design pattern that the FoodPlannerApp application

implementation most resembles is MVC (Model-View-Controller). In the MVC design pattern

there is a separation between the Model – used for structuring data, the Controller – used for

handling user input, and the View – used to present data to the user. (Adilovic, 2021) For the

most part, in the implementation of the FoodPlannerApp, the Activity class contains both the

View (UI Presentation Logic) and the Controller (User Input Handling Logic). Therefore, this is

not a strict implementation of the MVC pattern as there is no total separation of responsibility

between the Controller and View. However, in some cases, Recycler View adapter classes are

used to control how sets of data are displayed in an Activity’s Recycler View. The application

also implements utility and interface classes that can be reused by multiple Activities.

28

Simplified FoodPlannerApp Application UML Package/Class Diagram

Figure 3 – FoodPlannerApp application simplified (class methods & variables excluded) UML Package/Class Diagram.

Java > Fragments Package
The Fragment Package contains the DatePickerFragment class used to create a Calander
dialog to allow the user to select a date when adding a recipe to their meal plan.

Java > Interfaces Package
The Interfaces Package contains the SortMeals comparator class used for sorting meals by
date in ascending order in the Meal Planner. The Sort algorithm is used in this class.

29

Java > Activities Package
The Activities Package contains all the projects Activity classes. Each activity class corresponds
to one application UI screen and related functionality. Activity classes follow the below
lifecycle flow – each methods in a rectangle in the below diagram represents a ‘Callback’
method to be executed when the Activity enters a certain state (Google for Developers, 2023):

Figure 4 - Android Activity Class Lifecycle (Google for Developers, 2023)

Java > Utilities Package
The Utilities Package contains the ValidPasswordCheck utility class used for verifying that a
password meets the minimum password requirements using Regex and Pattern Matching.

Java > Models Package
The Models Package contains all the classes for modelling the application data such as Meals,
Meal Ingredients, Ingredients and Recipes.

Java > Adapters Package
The Adapters Package contains the Adapter Classes used to control how sets of object
ArrayList data are displayed in an Activity Recycler View.

Resource Folder
The application Res (Resource) folder contains a Drawable folder containing application
vector and PNG images, the Layout folder containing the UI XML template files used by the
Activity classes, the Menu folder containing the application UI Toolbar Menu XML template,
the Mipmap folder containing the application logos and the Values folder containing reusable
string/colour values and the application theme template.

Firebase Packages (Imported)
The Activity classes import from Firebase ‘Auth’ and ‘Database’ packages to interact with
Firebase Authentication and Firebase Realtime Database.

Java / Android / Androidx Packages (Imported)
The Activity classes import various packages from the Java, Android and Androidx packages
such as the ‘android.appcompat.app.AppCompatActivity’ which is used as an activity base
class to support running new platform features on older devices.

30

2.3 Implementation

BaseMenuActivity.java (Activity class in Activities package):

− Project File Location:

o app/src/main/java/com/example/foodplannerapp/activities/BaseMenuActivity.java

− Primary Resource Layout: settings_main.xml

− Purpose: The BaseMenuActivity class contains the logic for the Toolbar Settings Menu.

The BaseMenuActivity class extends the AppCompatActivity Class, and all classes

(apart from the Login and Registration Activities classes) extend the BaseMenuActivity

class so that the settings menu can be accessed in those activities.

The onCreateOptionsMenu() method gets the current Firebase Authentication instance

(required for the Log Out option) and inflates the setting menu UI:

The onOptionsItemsSelected() method sets the functionality for each of the menu items

when clicked though using a Switch statement:

31

Ingredient.java (Model class in Models package):

− Project File Location:

o app/src/main/java/com/example/foodplannerapp/models/Ingredient.java

− Purpose: Model used for receiving, storing, displaying, and processing ingredient

objects retrieved from the Firebase Realtime Database.

− Ingredient Attributes: Name, Description.

Meal.java (Model class in Models package):

− Project File Location:

o app/src/main/java/com/example/foodplannerapp/models/Meal.java

− Purpose: Model used for creating, receiving, storing, displaying, and processing meal

objects sent to and from the Firebase Realtime Database.

− Meal Attributes: Name, cooking time, preparation time, servings, suitability, cuisine,

image URL, source URL, description, method, ingredients, ID, user ID, recipe ID, date.

MealIngredients.java (Model class in Models package):

− Project File Location:

o app/src/main/java/com/example/foodplannerapp/models/MealIngredient.java

− Purpose: Model used for creating, receiving, storing, displaying, and processing meal

ingredient objects sent to and from the Firebase Realtime Database.

− Meal Ingredient Attributes: database key, ingredient, purchased status.

Recipe.java (Model class in Models package):

− Project File Location:

o app/src/main/java/com/example/foodplannerapp/models/Recipe.java

− Purpose: Model used for creating, receiving, storing, displaying, and processing recipe

objects sent to and from the Firebase Realtime Database.

− Recipe Attributes: Name, cooking time, preparation time, servings, suitability, cuisine,

image URL, source URL, description, method, ingredients, user ID, recipe ID, visibility.

IngredientScannerRVAdapter.java (Recycler View Adapter class in Adapters package):

− Project File Location:

o java/com/example/foodplannerapp/adapters/IngredientScannerRVAdapter.java

− Purpose: Adapter class used to display Ingredient ArrayList data in a Recycler View.

This class Inflates the Recycler View with one card layout item for every object in the

ArrayList passed to the Adapter class. This class binds the ArrayList object data to the

card layout element to display its data.

− Activities Used By: Ingredients Scanner Activity

32

MealPlanRVAdapter.java (Recycler View Adapter class in Adapters package):

− Project File Location:

o app/src/main/java/com/example/foodplannerapp/models/MealPlanRVAdapter.java

− Purpose: Adapter class used to display Meal ArrayList data in a Recycler View. This

class Inflates the Recycler View with one card layout item for every object in the

ArrayList passed to the Adapter class. This class binds the ArrayList object data to the

card layout element to display its data. This Adapter class also sets an on click interface

for the recycler view items.

− Activities Used By: Meal Planner Activity

RecipeRVAdapter.java (Recycler View Adapter class in Adapters package):

− Project File Location:

o app/src/main/java/com/example/foodplannerapp/models/RecipeRVAdapter.java

− Purpose: Adapter class used to display Recipe ArrayList data in a Recycler View. This

class Inflates the Recycler View with one card layout item for every object in the

ArrayList passed to the Adapter class. This class binds the ArrayList object data to the

card layout element to display its data. This Adapter class also sets an on click interface

for the recycler view items.

− Activities used by: Main Activity (My Recipes), Public Activity, Recipe Search Activity.

2.3.1 User Management Feature (Login, Registration, Account Settings)

ValidPasswordCheck.java (Utility class in Utilities package):

− Project File Location:

o java/com/example/foodplannerapp/utilities/ValidPasswordCheck.java

− Purpose: Utility class for checking if password meets minimum requirements

− Activities used by: Registration Activity, Edit Account Activity

− Key imports:

o java.util.regex.Matcher, Pattern

33

LoginActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/LoginActivity.java

− Primary Resource Layout: activity_login.xml

− Purpose: The Login Activity is used to enable registered users to log in to the

application. It also provides a link to the Registration Activity screen. If a user is already

logged in, they will be directed to the Main Activity screen when the Login Activity is

launched.

− Key package imports:
o com.google.firebase.auth.FirebaseAuth, FirebaseUser

When the Login Activity is launched, an instance of the FirebaseAuth is obtained:

The firebase.auth.Firebase package method AuthsignInWithEmailAndPassword is then called

using the instance above and the user provided email and password is passed to it. If the login

is successful using this method the user will be directed to the Main Activity (My Recipes)

screen. If the login is unsuccessful then an error message will be displayed on screen:

RegistrationActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/RegistrationActivity.java

− Primary Resource Layout: activity_registration.xml

− Purpose: The Registration Activity is used to enable new users to register for an

account. It also provides a link to the Login Activity screen.

− Key package imports:
o com.google.firebase.auth.FirebaseAuth

o com.example.foodplannerapp.utilities.ValidPasswordCheck

34

When the Registration Activity is launched, an instance of the FirebaseAuth is obtained. If the

user provides all required data, and the user’s provided password is valid (passes

ValidPasswordCheck utility class check), then the firebase.auth.Firebase package method

createUserWithEmailAndPassword is called using the FirebaseAuth instance and the user

provided email and password is passed to it. If the registration is successful, then the user

account will be created in Firebase Authentication and the user will be signed in and directed

to the Main Activity (My Recipes) screen. If the registration fails an error message will be

displayed on screen:

Figure 5 - Registered user listed in Firebase Authentication Users list.

EditAccountActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/EditAccountActivity.java

− Primary Resource Layout: activity_edit_account.xml

− Purpose: The Edit Account Activity is used to enable existing logged in users to update

their email or password, or to delete their account.

− Key package imports:
o com.google.firebase.auth.FirebaseAuth, FirebaseUser

o com.example.foodplannerapp.utilities.ValidPasswordCheck

35

When the Edit Account Activity is launched, the currently logged in user (FirebaseUser) is

obtained from the current Firebase Auth instance:

This FirebaseUser reference is then used to call the updateEmail, updatePassword and delete

FirebaseUser methods. Each of these three actions are time sensitive and require recent user

authentication to be executed. If recent authentication is required, then an error message

will be displayed on screen requesting for the user to sign in again before executing the action.

Figure 6 - updateEmail method

Figure 7 - updatePassword method

Figure 8 - delete method.

36

2.3.2 Ingredients List OCR Scanner Feature

IngredientsScannerActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/IngredientsScannerActivity.java

− Primary Resource Layout: activity_scan_ingredients.xml

− Purpose: The Ingredients Scanner Activity is used to enable logged in users to select

an image from their device gallery, or to take an image using their device camera, and

then scan the selected image to receive any scanned ingredients texts meaning. If

there are any matching ingredients stored in the Firebase Realtime Database, then

these ingredients and their meaning will be displayed to the user on screen.

− Key package imports:
o com.example.foodplannerapp.adapters.IngredientScannerRVAdapter

o com.example.foodplannerapp.models.Ingredient

o com.google.firebase.database.DataSnapshot, DatabaseReference, FirebaseDatabase

o com.google.mlkit.vision.common.InputImage

o com.google.mlkit.vision.text.Text, TextRecognition, TextRecognizer

When the Ingredients Scanner Activity is launched, a Firebase Reference is created to the

‘Ingredients’ data stored in the database:

This reference is used to retrieve and store all ingredient data in an Ingredient Model object

ArrayList. This is the ArrayList of ingredients that will be queried for matching ingredients in

a scanned image:

There are three buttons made available on the Ingredients Scanner screen, the Select Image

button, the Capture Image button, and the Scan Ingredients button. When the Select Image

button is clicked then the app’s current image gallery permission is checked. If the user has

not permitted access to their device, then the user will be prompted to permit access:

37

If the user grants permission to the app to access their photo gallery, then the Photo Gallery

Image Selection activity will be launched using ActivityResultLauncher:

The ‘Capture Image’ button functions similarly to the ‘Select Image’ button except that it

allows the user to take an image using their device camera instead. The user must grant

permission to their device camera and once the permission is granted then the

IngredientsScannerActivity will start the captureImage ActivityResultLauncher.

Once an image is selected, it replaces the logo image on screen and the Scan Ingredients

button is enabled. Once the Scan Ingredients button is clicked, the runTextRecognition()

method will be run. Within this method, the user selected image is set as the ML Kit Vision

InputImage and an instance of the Google ML Kit Vision TextRecognizer clients is created. The

Text Recognizer client then processes the input image and if successful the text result is

passed to the processTextRecognitionResult() method:

38

In the processTextRecognitionResult() method, the text result is broken up into ‘blocks’ to

check whether it is empty. If empty, a toast notification is displayed on screen to say that no

text was detected. Otherwise, the text is stored to a single string using the getText() method

called result_text which is then further processed to remove certain characters. The

processed text is then split by commas and stored in a string array. The scanned ingredients

list is then stored in a string Array called scannedIngredients and this array is passed to a

method called searchIngredients():

39

The searchIngredients() method creates a new Ingredients Model ArrayList called

allIngredientsList which is updated with the ingredients stored in the original ingredientList

ArrayList. Each ingredients in the allIngredientsList ArrayList is checked to see if it appears in

the scanned ingredients String Array list ‘scannedIngredientsList’. If the ingredient is present,

then the ingredient is stored in a new Ingredient Model Object ArrayList called

matchingIngredientsList. The matchingIngredientsList ArrayList is then used to populate the

Ingredients Scanner Recycler View (ingredients card list) using an instance of the

IngredientsScanneRVAdapter class:

Figure 9 - Screenshot of Stored Ingredients in Firebase Realtime Database

40

2.3.3 Recipe Search Engine Feature

RecipeSearchActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/ RecipeSearchActivity.java

− Primary Resource Layout: activity_search_recipes.xml

− Purpose: The Recipe Search Activity enables users to search for public or owned

recipes by Ingredients, Cuisine, Suitability and by Name.

− Key package imports:
o com.example.foodplannerapp.adapters.RecipeRVAdapter

o com.example.foodplannerapp.models.Ingredient, Recipe

o com.google.android.material.bottomsheet.BottomSheetDialog

o com.google.firebase.auth.FirebaseAuth

o com.google.firebase.database.ChildEventListener, DataSnapshot, DatabaseError,

DatabaseReference, FirebaseDatabase, Query, ValueEventListener.

The Recipe Search Activity first queries and stores recipes from the database that are public

and or belong to the currently logged in user and stores them to a Recipe ArrayList. The user

can then query the retrieved recipes by searching By Ingredients, Cuisine, Suitability or Name.

When the ‘Ingredients Search’, ‘Cuisine Search’ and ‘Suitability Search’ buttons are clicked a

corresponding multi-select alert dialog is displayed on screen. For example, below is the code

for building the Ingredients Search dialog:

41

When the user selects ingredients from the Ingredients Search dialog box and then clicks the

‘Search’ button, the filterRecipesByIngredients() method is called which queries the recipes

list retrieved from the database for recipes with matching ingredients. The matching

ingredients are stored in a new Recipe model ArrayList and the Recipe List (Recycler View) is

updated to display the matching recipes:

The Cuisine and Suitability searches are implemented similarly. When the ‘Cuisine Search’ or

the ‘Suitability Search’ button is clicked, the searchByCuisine() or searchBySuitability()

methods are executed to build the multi-select alert dialog where users can select cuisines or

suitability’s to search by. Then when the dialog ‘Search’ button is clicked, the

filterRecipesByCuisine() or filterRecipesBySuitability() methods are called to filter the original

recipes list by the selected cuisine/suitability. If there are matching recipes, then the recipe

list will be updated to display these recipes.

The Recipe Name search is implemented using a setOnQueryTextListener method for the

Search View (Search Bar) element. When the Search View query text changes, the

searchByName() method is called which filters the original recipe list by recipes with matching

names.

The Clear Search button clears the currently applied search by executing the

resetRecipesList() method.

The RecipeSearchActivity class implements the RecipeRVAdapter RecipeClickInterface. When

a Recipe is clicked in the Recycler View (Recipes List), a BottomSheetDialog is displayed on

screen containing the clicked recipes details, and a ‘View Details’ button which when clicked

directs to user to the Recipe details page.

42

2.3.4 Recipe Manager Feature

AddRecipeActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/AddRecipeActivity.java

− Primary Resource Layout: activity_add_recipe.xml

− Purpose: The Add Recipe Activity is used to enable logged in users to create private or

public recipes. The recipes created in this Activity are stored in the Recipes section of

the Firebase Realtime Database.

− Key package imports:
o com.example.foodplannerapp.models.Recipe

o com.google.firebase.auth.FirebaseAuth

o com.google.firebase.database.DataSnapshot, DatabaseReference, FirebaseDatabase

When the Add Recipe Activity is launched, the OnCreate() method retrieves and assigns the

currently logged in users ID from the current instance of Firebase Authenticate and assigns it

to a local variable. The OnCreate() method also create a reference to the ‘Recipes’ object in

the Firebase Realtime Database:

Dialog alerts are also built in the OnCreate() method for the recipe Suitability and Cuisine

multi-select dialog alerts used for selecting the recipe cuisine/suitability.

Ingredients are added by clicking the ‘Add Ingredient’ button which opens an alert dialog

where users can add a new ingredient. For every ingredient added, an ingredient ‘card’ view

is added dynamically to the screen which contains the ingredient name and a delete button

which when clicked deletes the ingredient. Once the Add Recipe button is clicked, if all recipe

information has been provided, then a StringBuilder is used to combines all individual

ingredients provided by the user into a single string value:

43

The user input recipe information is extracted from the UI text input fields and used to create

a new Recipe model object:

An Add Value Event listener is then created for the ‘Recipes’ database reference which is used

to add the new recipe object to the Firebase Realtime Database:

Figure 10 - Recipe created in the Firebase Realtime Database.

44

EditRecipeActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/EditRecipeActivity.java

− Primary Resource Layout: activity_edit_recipe.xml

− Purpose: The Edit Recipe Activity is used to enable logged in users to update or delete

their own recipes.

− Key package imports:
o com.example.foodplannerapp.models.Recipe

o com.google.firebase.database.DataSnapshot, DatabaseReference, FirebaseDatabase,

ValueEventListener

When the Edit Recipe Activity is launched, a Parcelable recipe object is retrieved which was

passed to the Intent when the ‘Edit Recipe’ button was clicked on My Recipes screen:

This recipe information is then used to set the Edit Recipe screen input text fields with the

recipe’s current information:

When the Update Recipe button is clicked, if all required information is provided, then a

HashMap object is created using the updated recipe information:

This mapped object is then used to update the recipe object in the Firebase Realtime

Database using the database reference .updateChildren() method:

The EditRecipeActivity also provides a Delete Recipe button which when clicked calls the

deleteRecipe() method which deletes the recipe from the database:

45

MainActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/MainActivity.java

− Primary Resource Layout: activity_edit_recipe.xml

− Purpose: The Main Activity is used to enable logged in users to view all owned recipes

in a list. It also provides access to the Recipe Edit and Add Recipe screens.

− Key package imports:
o com.example.foodplannerapp.models.Recipe

o com.example.foodplannerapp.adapters.RecipeRVAdapter

o com.google.android.material.bottomsheet.BottomSheetDialog

o com.google.firebase.database.DataSnapshot, DatabaseReference, FirebaseDatabase,

ValueEventListener, Query, DatabaseError, ValueEventListener

When the Main Activity is launched, a Firebase Database query is created to filter recipes

returned from the Firebase Realtime database by the currently logged in users ID to ensure

that the user can only view their own recipes:

A ValueEventListener is created for the query which retrieves a snapshot of the recipes from

the database belonging to the logged in user, stores them to a Recipe model ArrayList, and

then uses the Recipe ArrayList to populate the Recipes List (Recycler View) on screen using

the RecipesRVAdapter class:

46

The MainActivity class implements the RecipeRVAdapter RecipeClickInterface. When a Recipe

is clicked in the Recycler View (Recipes List), a BottomSheetDialog is displayed on screen

containing the clicked recipes details, and two buttons which when clicked direct to the

selected recipes Edit and View Details Screens:

The MainActivity contains a floating action button of a recipe cookbook icon that when clicked

directs the user to the Add Recipe screen:

ViewRecipesActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/ViewRecipeActivity.java

− Primary Resource Layout: activity_view_recipe.xml

− Purpose: The View Recipe Activity is used to enable logged in users to view a recipe

details screen. It also provides access to the ‘Add to Meal Plan’ and ‘View Recipe in

Browser’ buttons.

− Key package imports:
o com.example.foodplannerapp.models.Recipe, Meal, MealIngredient

o com.example.foodplannerapp.fragments.DatePickerFragment

o com.google.firebase.database.DatabaseReference, FirebaseDatabase

o com.google.firebase.auth.FirebaseAuth

Similarly, to the Edit Recipe page, a Parcelable recipe object is obtained from the instance

when the View Recipe Activity is launched which is used to populate the recipe details on

screen. The View Recipe Activity implements DatePickerDialog.OnDateSetListener. When the

‘Add to Meal Plan’ button is clicked, the DatePickerFragment is initiated, and a Calander

dialog appears on screen. Once the user selects a calendar date and clicks OK, the onDateSet()

method will be executed. In the onDateSet() method, a Meal Object is constructed using the

47

recipe data and the meal object is then added to the Firebase Realtime database. For every

recipe ingredient, a child Ingredient object is added to the Meal object created in the database

– this is required for the Shopping List feature:

PublicRecipesActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/PublicRecipeActivity.java

− Primary Resource Layout: activity_public_recipes.xml

− Purpose: The Public Recipes Activity is used to enable logged in users to view all public

recipes in a list. It also provides access to the Recipe View Screen for public recipe.

− Key package imports:
o com.example.foodplannerapp.models.Recipe

o com.example.foodplannerapp.adapters.RecipeRVAdapter

o com.google.android.material.bottomsheet.BottomSheetDialog

o com.google.firebase.database.DataSnapshot, DatabaseReference, FirebaseDatabase,

ValueEventListener, Query, DatabaseError, ValueEventListener

DatePickerFragment.java (Fragment Class in Fragments Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/fragments/DatePickerFragment.java

− Purpose: Dialog fragment class for meal plan date selection on recipe view page

− Key package imports:
− android.app.DatePickerDialog, Dialog

− androidx.fragment.app.DialogFragment

− java.util.Calendar

48

2.3.5 Meal Planner & Shopping List Features

MealPlanActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/MealPlanActivity.java

− Primary Resource Layout: activity_meal_plan.xml

− Purpose: The Meal Planner Activity is used to enable logged in users to view all their

scheduled meals in a list. It also provides access to the ‘Remove Meal from Plan’ and

‘View Meal Details and Shopping List’ buttons.

− Key package imports:
o com.example.foodplannerapp.models.Recipe

o com.example.foodplannerapp.adapters.RecipeRVAdapter

o com.google.firebase.database.DataSnapshot, DatabaseReference, FirebaseDatabase,

ValueEventListener, Query, DatabaseError, ValueEventListener

Similarly, to the Main Activity, when the Meal Planner is launched, a Firebase Database query

is created to filter meals returned from the Firebase Realtime database by the currently

logged in users ID to ensure that the user can only view their own scheduled meals. A

ValueEventListener is created for the query which retrieves a snapshot of the users’ meals

from the database, stores them to a Meal model ArrayList, and then uses the Meal ArrayList

to populate the Meals List (Recycler View) on screen using the MealRVAdapter class. The

MealPlanActivity class implements the MealPlanRVAdapter MealPlanClickInterface. When a

Meal is clicked in the Recycler View (Meal List), a BottomSheetDialog is displayed on screen

containing the clicked meals details. The bottom sheet dialog contains a Remove Meal Plan

from Plan button which when clicked enables the user to remove the meal from their plan.

The bottom sheet dialog also contains a ‘View Details & Shopping List’ button which when

clicked directs the user to the Meal details screen:

SortMeals.java (Interface Class in Interfaces Package)

− Project File Location:
o java/com/example/foodplannerapp/interfaces/SortMeals.java

− Purpose: The purpose of this class is to sort the Meal ArrayList by date (Ascending

order) to list Meals in the Meal Planner by date in ascending order.

− Key package imports:
o com.example.foodplannerapp.models.Meal

o java.util.Comparator

49

ViewMealPlanActivity.java (Activity Class in Activities Package)

− Project File Location:
o app/src/main/java/com/example/foodplannerapp/activities/ViewMealPlanActivity.java

− Primary Resource Layout: activity_meal_plan.xml

− Purpose: The Meal Planner Activity is launched when a user clicks the ‘View Meal

Details and Shopping List’ button on the Meal Planner Activity screen. This is where

the Meal details and shopping list are located.

− Key package imports:
o com.example.foodplannerapp.models.Meal, Meal Ingredients

o com.google.firebase.database.DataSnapshot, DatabaseReference, FirebaseDatabase,

ValueEventListener, Query, DatabaseError

Similarly, to the View Recipe Activity, a Parcelable meal object is obtained from the instance

when the View Meal Activity is launched which is used to populate the meal details on screen.

On this screen, the user can click the View Source recipe button which will launch their default

device browser and navigate them to the Source Recipe URL. On this screen, the meal

Shopping List is available. For every ingredient stored for the Meal, an ingredient card view is

added to the shopping list layout dynamically using the addIngredientCard() method below:

50

The use user can then check or uncheck ingredients listed in the Shopping List container to

mark whether the item has been purchased or not. Checking and unchecking the ingredients

checkbox updates the meal ingredients purchased value in the Firebase Realtime Database:

Figure 11 - Screenshot of Meal Object and Child Ingredients Object in Firebase Realtime Database

51

2.4 Graphical User Interface (GUI)

User Login Screen

Figure 12 - Login Screen Wireframe.

Figure 13 - Screenshot of Login Screen.

Figure 14 - Toast notification displayed when email and or

password are not provided when the Login button is
clicked.

Figure 15 - Toast notification displayed when login fails.

The Login Screen is where the user can log into the application by providing their account

email address and password. If the login is successful, they will be directed to the ‘My Recipes’

screen. If a user provides incorrect login credentials, then an error toast notification will

appear on screen. The user is directed to the Login screen whenever they select the log out

action. There is a link on the Login screen which directs the user to the Registration screen

when clicked.

52

User Registration Screen

Figure 16 - Registration Screen

Wireframe.

Figure 17 - Screenshot of Registration

Screen.

Figure 18 - Screenshot of

Password Requirements alert.

Figure 19 - Toast notification displayed
when email and or passwords are not

provided.

Figure 20 - Toast notification

displayed when already in use email is
provided.

Figure 21 - Toast notification
displayed when invalid email

address is provided.

The Registration screen is where the user can register for a new account or navigate to the

login screen. On this screen users must provide a valid email address, valid password, and a

matching valid password. Users cannot register for a new account using an email address that

is not in a correct email format or an email address already in use by another account. If an

invalid email address is provided an error notification will be displayed on screen. The

password provided by the user must contain at least one uppercase, lowercase, digit, and

special character and must be at least 8 characters in length. If these requirements are not

met, then an error toast alert will be displayed on screen. If a valid email address and

matching valid passwords are provided an account will be created for the user when the

Register button is clicked, and the user will be directed to the ‘My Recipes’ screen.

53

Edit Account Screen

Figure 22 - Account Settings Screen

Wireframe.

Figure 23 - Screenshot of Account

Settings Screen.

Figure 24 - Screenshot of Sign-in
required alert for each Account

Settings actions.

Figure 25 - Update Email Confirmation

box.

Figure 26 - Update Password

Confirmation box.

Figure 27 - Delete Account

Confirmation box.

The Account Settings Screen is where users can update their account email address and

password or delete their account. All actions on this screen are time sensitive in relation to

when the user last logged in (5 minutes). If a user tries to execute on of the available actions

after 5 minutes since they last logged in, then an error alert will be displayed on screen. If a

valid email or password is not provided, an error alert will be displayed on screen and the

password or email address will not be updated. The user must click ‘Yes’ in a confirmation

dialog that appears when each of the actions is attempted to be executed on this page. The

signed in user’s current account email address is displayed at the top of this screen.

54

Ingredients Scanner Screen

Figure 28 - Ingredients Scanner Screen

Wireframe.

Figure 29 - Screenshot of Ingredient
Scanner Default Screen.

Figure 30 - Screenshot of

Ingredient Scanner Screen
displaying detected ingredients.

Figure 31 - Screenshot of Ingredient

Scanner Screen displaying no matching
results text result.

Figure 32 - Screenshot of Camera
activated when Capture Image button

is clicked.

Figure 33 - Screenshot of

Ingredient Scanner Screen
displaying detected ingredients.

55

Figure 34 – Screenshot of request for user device camera

permission required for Image Capture functionality.

Figure 35 – Screenshot of request for user device image

gallery permission required for Select Image functionality.

The Ingredients Scanner Screen is where the user can scan images of food ingredients lists to

receive the ingredients meaning. The user can either select an existing image from their

device image gallery by clicking the ‘Select Image’ button or take a photo using their device

camera by clicking the ‘Capture Image’ button. The selected image will then be displayed on

the screen. The ‘Scan Ingredients’ button scan the image for ingredient text and if there are

any matching ingredients stored in the Google Firebase Realtime Database, they will be

displayed on the screen. The matching ingredient name and description will be displayed in a

single card listed in a Recycler View which the user will be able to scroll. If text is recognised

in the image, but there are no matching ingredients in the database, then this will be displayed

on screen. If the user is using the application for the first time, then they will need to grant

access to their device image gallery and camera.

56

‘Add Recipe’ Screen

Figure 36 - Add Recipe Screen

Wireframe.

Figure 37 - Screenshot of Add Recipe
screen (first half).

Figure 38 - Screenshot of Add Recipe

screen (second half).

Figure 39 - Screenshot of Select

Recipe Suitability multi-select alert
dialog.

Figure 40 - Screenshot of Select
Recipe Cuisine multi-select alert

dialog.

Figure 41 - Screenshot of Add

Ingredients alert dialog.

57

The Add Recipe screen is where users can create a new recipe by adding all the following

required data. If a mandatory field is not completed when the Add Recipe button is clicked,

then an error toast alert is displayed on screen. When users select the Suitability or Cuisine

fields a corresponding alert dialog appears allowing them to select multiple suitability’s or

cuisines. When the user selects the Add Ingredient button an alert dialog appears allowing

the user to add an ingredient. Ingredients added using this alert dialog will be listed in a

Recycler View on the screen. Added ingredients can then be deleted using the ingredient card

‘Delete’ button.

‘Edit Recipe’ Screen

Figure 42 - Edit Recipe Screen

Wireframe.
Figure 43 - Screenshot of Edit Recipe

screen (first half).

Figure 44 - Screenshot of Edit Recipe

screen (second half).

Figure 45 - Screenshot of confirmation

modal for updating recipe.

Figure 46 - Screenshot of confirmation

modal for deleting recipe.

Figure 47 - Screenshot of Add

Ingredient alert dialog.

The Edit Recipe screen is where users can update or delete their recipes. The user can update

the existing recipe details by adding the updated details, clicking the Update Recipe button,

and then clicking Yes in the Update Recipe Confirmation modal. The user can delete a recipe

by clicking the Delete Recipe button and then clicking Yes in the Delete Recipe Confirmation

modal.

58

‘My Recipes’ Screen

Figure 48 - My Recipes Screen Wireframe.

Figure 49 - My Recipes Screen Wireframe (bottom sheet

dialog).

Figure 50 -Screenshot of the My Recipes screen with Add

Recipe button on bottom right.

Figure 51 - Screenshot of My Recipes screen (with bottom

sheet dialog open).

The My Recipes screen is where users can view their recipes. Once a recipe is clicked the

recipe bottom sheet dialog is displayed, displaying recipe details, and buttons to the Edit

Recipe or Recipe Details screens. When clicked, the cookbook icon on the bottom right of the

screen directs the user to the Add Recipe screen.

59

‘Public Recipes’ Screen

Figure 52 - Public Recipes Screen Wireframe.

Figure 53 - Public Recipes Screen Wireframe (bottom

sheet dialog).

Figure 54 - Screenshot of the Public Recipes Screen.

Figure 55 - Screenshot of the Public Recipes Screen

(bottom sheet dialog).

The Public Recipes screen is where users can view public recipes. Once a recipe is clicked the

recipe bottom sheet dialog is displayed, displaying recipe details, and a button to the Recipe

Details screen.

60

‘Recipe Details’ Screen

Figure 56 - Recipe Details Screen Wireframe.

Figure 57 - Screenshot Recipe Details Screen (first half).

Figure 58 - Screenshot Recipe Details Screen (second half).

Figure 59 - Screenshot of Meal Plan date selection.

The Recipe Details screen is where users can view a recipe’s details. The Add Recipe to Meal

Plan button when click will display a calendar fragment on screen which allows the users to

select a date which will add the recipe to their meal plan for the selected date and then direct

the user to the Meal Planner screen. The View Recipe in Browser button will open the source

recipe in their default browser.

61

‘Meal Planner’ Screen

Figure 60 - Meal Planner Screen

Wireframe.

Figure 61 - Meal Planner Screen

Wireframe (bottom sheet dialog).
Figure 62 - Screenshot of Meal Planner

Screen.

Figure 63 - Screenshot of Meal

Planner Screen (bottom sheet dialog).

Figure 64 - Screenshot of Remove

Meal from Plan confirmation modal.

The Meal Planner screen is where the user can view all Meals added to their Meal Plan. When

a meal is selected from the list the meal bottom sheet dialog is displayed where the user can

remove the meal from their plan or navigate to the Meal Detail and Shopping List screen.

62

‘Meal Details’ Screen

Figure 65 - Meal Details Screen

Wireframe.

Figure 66 - Screenshot of Meal details
screen (first half).

Figure 67 - Screenshot of Meal Details

screen (second half).

The Meal Details screen allows the user to view the recipe details for the Meal, view their

shopping list for the meal, and to view the recipe in their default browser by clicking the View

Recipe in Browser button. The user can update their shopping list on this page. Checking an

ingredient in this shopping list saves its purchased status.

63

‘Recipe Search’ Screen

Figure 68 - Recipe Search Screen

Wireframe.

Figure 69 - Recipe Search Screen

Wireframe (bottom sheet dialog).

Figure 70 - Screenshot of Recipe
Search screen.

Figure 71 - Screenshot of Recipe

Search Screen (bottom sheet dialog).

Figure 72 - Screenshot of Ingredients

Search multi-select alert dialog.

Figure 73 - Screenshot of Suitability

Search multi-select alert dialog.

64

Figure 74 - Screenshot of Cuisine
Search multi-select alert dialog.

Figure 75 - Screenshot of Recipe

Search by Name.

Figure 76 - Screenshot of Recipe

Search (no results).

Figure 77 - Screenshot of Recipe
Suitability Search filters applied.

Figure 78 - Screenshot of Recipe

Ingredients Search filters applied.

Figure 79 - Screenshot of Recipe

Cuisine Search filters applied.

The Recipe Search screen is where users can search for recipes by Ingredients, Cuisine,

Suitability or Name. The user can only view public recipes or owned recipes on this screen.

The user can select a recipe from the results list which will open the recipe bottom sheet

dialog which displays the recipe details and displays a button to the recipe details page. The

user can search for recipes using the Search Bar at the top of the screen. The user can search

for recipes by ingredients, cuisine, and suitability by selecting the corresponding search

button which opens the corresponding multi-select alert dialog. The currently applied search

will be displayed on screen to the user in a text view. If no recipes are returned by the search,

then ‘No Matching Recipes’ will be displayed on screen. The currently applied search can be

cleared using the Clear Search button.

65

2.5 Testing

2.5.1 Unit Testing
The project Unit Tests were created using the JUnit 5 test framework and are in the following

project location: app/src/test/java/com/example/foodplannerapp. The following are the

individual unit test cases and their results.

Test Case ID: TC01

Test Case Title: Test Recipe Model

Test Plan ID: 1

Test Type: Unit

Test Case Description: Test Recipe model creates recipe object & stores information correctly.

Project Test Location: java/com/example/foodplannerapp/models/RecipeTest.java (Test Package)

Test Priority: High

Pre-Conditions: Recipe object is created using set values.

Executed Using: IntelliJ Junit 5 Test Runner

Execution Steps: 1. Confirm recipe name is as expected.
2. Confirm cooking time is as expected.
3. Confirm recipe preparation time is as expected.
4. Confirm recipe servings is as expected.
5. Confirm recipe suitability is as expected.
6. Confirm recipe cuisine is as expected.
7. Confirm recipe image URL is as expected.
8. Confirm recipe URL is as expected.
9. Confirm recipe description is as expected.
10. Confirm recipe method is as expected.
11. Confirm recipe ID is as expected.
12. Confirm recipe user ID is as expected.
13. Confirm recipe visibility is as expected.

Post-condition: System goes into wait state until next test is run.

Test Status: Passed

Test Case ID: TC02

Test Case Title: Test Ingredient Model

Test Plan ID: 1

Test Type: Unit

Test Case Description: Test Ingredient model creates ingredient object and stores information
correctly.

Project Test Location: java/com/example/foodplannerapp/models/IngredientTest.java (Test
Package)

Test Priority: High

Executed Using: IntelliJ Junit 5 Test Runner

Pre-Conditions: Ingredient object is created using set values.

Execution Steps: 1. Confirm ingredient name is as expected.
2. Confirm ingredient description is as expected.

Post Conditions: System goes into wait state until next test is run.

Test Status: Passed

66

Test Case ID: TC03

Test Case Title: Test Meal Model

Test Plan ID: 1

Test Type: Unit

Test Case Description: Test Meal model creates meal object and stores information correctly.

Project Test Location: java/com/example/foodplannerapp/models/MealTest.java (Test Package)

Test Priority: High

Executed Using: IntelliJ Junit 5 Test Runner

Pre-Conditions: Meal object is created using set values.

Execution Steps: 1. Confirm meal name is as expected.
2. Confirm cooking time is as expected.
3. Confirm meal preparation time is as expected.
4. Confirm meal servings is as expected.
5. Confirm meal suitability is as expected.
6. Confirm meal cuisine is as expected.
7. Confirm meal image URL is as expected.
8. Confirm meal URL is as expected.
9. Confirm meal description is as expected.
10. Confirm meal method is as expected.
11. Confirm meal ID is as expected.
12. Confirm meal user ID is as expected.
13. Confirm meal date is as expected.

Post Conditions: System goes into wait state until next test is run.

Test Status: Passed

Test Case ID: TC04

Test Case Title: Test Meal Ingredient Model

Test Plan ID: 1

Test Type: Unit

Test Case Description: Test Meal Ingredient model creates ingredient object and stores
information correctly.

Project Test Location: java/com/example/foodplannerapp/models/MealIngredientTest.java (Test
Package)

Test Priority: High

Executed Using: IntelliJ Junit 5 Test Runner

Pre-Conditions: Meal Ingredient object is created using set values.

Execution Steps: 1. Confirm meal ingredient name is as expected.
2. Confirm meal ingredient purchase value is as expected.

Post Conditions: System goes into wait state.

Test Status: Passed

67

Figure 80 - Test Coverage Report for Models Package

Figure 81 - Test Summary Report for Models Package generated by Gradle.

Test Case ID: TC05

Test Case Title: Test SortMeals Interface Class

Test Plan ID: -

Test Type: Unit

Test Case Description: Test SortMeals interface class successfully sorts Meal ArrayList items
correctly by scheduled date (chronological order)

Project Test Location: java/com/example/foodplannerapp/interfaces/SortMealsTest.java (Test
Package)

Test Priority: Low

Executed Using: IntelliJ Junit 5 Test Runner

Pre-Conditions: 3 Meal objects are created using predefined values and added to
ArrayList.

Test Data: Meal A Date = 01/04/2023
Meal B Date = 01/04/2023
Meal C Date = 20/04/2023

Execution Steps: 1. Assert Meal A date is same as Meal B date.
2. Assert Meal B is sorted before Meal C.
3. Assert Meal C is sorted after Meal A.

Post Conditions: System goes into wait state.

Test Status: Passed

68

Figure 82 - Test Coverage Report for Interfaces Package

Figure 83 - Test Summary Report for Interfaces Package generated by Gradle.

Test Case ID: TC06

Test Case Title: Test isValidPassword Method

Test Plan ID: -

Test Type: Unit

Test Case Description: Test ValidPasswordCheck isPasswordValid utility method asserts
password validity correctly.

Project Test Location: java/com/example/foodplannerapp/utilities/ValidPasswordCheckTest.java
(Test Package)

Test Priority: Medium

Executed Using: IntelliJ Junit 5 Test Runner

Pre-Conditions: -

Execution Steps: 1. Assert valid Password returns True value.
2. Assert invalid Password returns False value.
3. Assert invalid Password returns False value.
4. Assert invalid Password returns False value.
5. Assert invalid Password returns False value.

Post Conditions: System goes into wait state.

Test Status: Passed

Figure 84 - Test Coverage Report for Utilities Package

69

Figure 85 - Test Summary Report for isValidPasswordTest generated by Gradle.

2.5.2 Integration Testing
Integration tests were performed using Espresso, JUnit 4, and Manual Testing. The following
are the individual integration test cases and their results.

Test Case ID: TC07

Test Case Title: Test Recipe Creation in Firebase Realtime Database

Test Plan ID: -

Test Type: Integration

Test Case Description: Test that the Add Recipe Activity class successfully uses the Recipe
model to create a recipe Json object in the Firebase database.

Project Test Location: java/com/example/foodplannerapp/AddRecipeIntegrationTest.java
(androidTest Package)

Test Priority: High

Executed Using: IntelliJ Espresso / JUnit 4 Test Runner & Manual Testing

Pre-Conditions: Android AVD Device is available to run automated UI test.

Execution Steps: 1. Create Recipe Item
2. View Recipe Details
3. Confirm the recipe name is as expected.
4. Confirm the cooking time is as expected.
5. Confirm the recipe preparation time is as expected.
6. Confirm the recipe servings is as expected.
7. Confirm the recipe suitability is as expected.

8. Confirm the recipe cuisine is as expected.

9. Confirm the recipe image URL is as expected.

10. Confirm the recipe URL is as expected.

11. Confirm the recipe description is as expected.

12. Confirm the recipe method is as expected.

13. Assert the expected recipe ID (Manual Firebase Check)
14. Assert the expected recipe user ID (Manual Firebase Check)
15. Assert the expected recipe visibility (Manual Firebase Check)
16. Delete Recipe

Post Conditions: System goes into wait state.

Test Status: Passed

Figure 86 - Add Recipe Integration Test

70

Test Case ID: TC08

Test Case Title: Test Meal Creation in Firebase Realtime Database

Test Plan ID: -

Test Type: Integration

Test Case Description: Test that the View Recipe Activity class successfully uses the Meal model
to create a meal Json object and the MealIngredient mode to create
meal ingredient object(s) in the Firebase database using a Recipe
object’s data.

Project Test Location: java/com/example/foodplannerapp/RecipeToMealItemIntegration
Test.java (androidTest Package)

Test Priority: Medium

Executed Using: IntelliJ Espresso / JUnit 4 Test Runner & Manual Testing

Pre-Conditions: Recipe item is created which is used to create Meal Plan item

Execution Steps: 1. Create Recipe Item
2. View Recipe Details
3. Click Add to Meal Plan Button
4. Select date from calendar date picker.
5. Confirm the expected meal name is as expected.
6. Confirm the cooking time is as expected.
7. Confirm the meal preparation time is as expected.
8. Confirm the meal servings is as expected.
9. Confirm the meal suitability is as expected.
10. Confirm the meal cuisine is as expected.
11. Confirm the meal image URL is as expected.
12. Confirm the meal URL is as expected.
13. Confirm the meal description is as expected.
14. Confirm the meal method is as expected.
15. Confirm meal ID is as expected (Manual Firebase Check)
16. Confirm meal user ID is as expected (Manual Firebase Check)
17. Confirm meal date is as expected (Manual Firebase Check)
18. Confirm meal ingredients is as expected (Manual Firebase Check)

19. Delete Meal
20. Delete Recipe

Post Conditions: System goes into wait state.

Test Status: Passed

Figure 87 - Recipe to Meal Integration Test Results

71

Test Case ID: TC09

Test Case Title: Test MainActivity Class, Recipe Model and RecipeRVAdapter Class
Integration.

Test Plan ID: -

Test Type: Integration

Test Case Description: Test MainActivity Recipe RecylerView is populated with recipes retrieved
from Firebase using the Recipe model and RecipeRVAdapter class.

Project Test Location: N/A

Test Priority: Medium

Executed Using: Manual Testing

Pre-Conditions: Recipe item is created which is used to create Meal Plan item

Steps: 1. Assert Recipes are displayed in Main Recycler View.

Post Conditions: System goes into wait state.

Test Status: Passed

Test Case ID: TC10

Test Case Title: Test IngredientsScannerActivity Class, Ingredient Model and
IngredientsScannerRVAdapater Class Integration.

Test Plan ID: -

Test Type: Integration

Test Case Description: Test IngredientsScannerActivity ingredient RecylerView is populated
with ingredients retrieved from Firebase using Ingredient model and
IngredientsScannerRVAdapater class.

Project Test Location: N/A

Test Priority: Medium

Executed Using: Manual Testing

Pre-Conditions: Recipe item is created which is used to create Meal Plan item

Steps: 1. Scan image containing ingredients using ingredients scanner.
2. Assert matching ingredients are listed in ingredients Recycler

View.

Post Conditions: System goes into wait state.

Test Status: Passed

Test Case ID: TC11

Test Case Title: Test RecipeSearchActivity class, Recipe model and RecipeRVAdapter
class Integration

Test Plan ID: -

Test Case Description: Test RecipeSearch recipe RecylerView is populated with recipes
retrieved from Firebase using the Recipe model and RecipeRVAdapter
class.

Test Type: Integration

Project Test Location: N/A

Test Priority: Medium

Executed Using: Manual Testing

Pre-Conditions: Recipe item is created which is used to create Meal Plan item

Execution Steps: 1. Assert Recipes are displayed in RecipeSearchActivity Recycler
View.

Post Conditions: System goes into wait state.

Test Status: Passed

72

2.5.3 System Testing
System tests were performed using Espresso, JUnit 4, and Manual Testing. The following are
the individual system test cases and their results.

Test Case ID: TC12

Test Case Title: Test Firebase Authentication User Registration

Test Plan ID: 3 (User Management)

Test Type: System

Test Case Description: Test Registration Activity creates a new Firebase Authentication user.

Project Test Location: java/com/example/foodplannerapp/FirebaseAuthenticationTest.java
(androidTest Package)

Test Priority: High

Executed Using: IntelliJ Espresso / JUnit 4 Test Runner & Manual Testing

Pre-Conditions: Firebase Authentication service is available

Execution Steps: 1. Register new user.
2. Assert correct email is printed on edit account screen.
3. Assert new user is created with correct details. (Manual

Firebase Check)
4. Log out.

Post Conditions: System goes into wait state until next test in queue is run.

Test Status: Passed

Test Case ID: TC13

Test Case Title: Test Firebase Authentication User Login

Test Plan ID: 3 (User Management)

Test Type: System

Test Case Description: Test Login Activity authenticates Firebase Authentication user.

Project Test Location: java/com/example/foodplannerapp/FirebaseAuthenticationTest.java
(androidTest Package)

Test Priority: High

Executed Using: IntelliJ Espresso / JUnit 4 Test Runner & Manual Testing

Pre-Conditions: Firebase Authentication service is available

Execution Steps: 1. Log in.
2. Assert correct email is printed on edit account screen.
3. Asser user last login in Firebase Authentication (Manual

Firebase Check)
4. Log out.

Post Conditions: System goes into wait state until next test in queue is run.

Test Status: Passed

Test Case ID: TC14

Test Case Title: Test Firebase Authentication User Deletion

Test Plan ID: 3 (User Management)

Test Type: System

Test Case Description: Test Edit Account Activity deletes Firebase Authentication user.

Project Test Location: java/com/example/foodplannerapp/FirebaseAuthenticationIntegration
Test.java (androidTest Package)

Test Priority: High

Executed Using: IntelliJ Espresso / JUnit 4 Test Runner & Manual Testing

73

Pre-Conditions: Firebase Authentication service is available

Execution Steps: 1. Log in.
2. Delete new user on edit account screen.
3. Assert user is deleted (Manual Firebase check)
4. Log out.
5. Assert user cannot log in.

Post Conditions: System goes into wait state.

Test Status: Passed

Figure 88 - FirebaseAuthenticationIntegrationTest Test Result

Test Case ID: TC15

Test Case Title: Test Firebase Authentication User Update

Test Type: System

Test Plan ID: 3 (User Management)

Test Case Description: Test Edit Account Activity deletes Firebase Authentication user.

Project Test Location: N/A

Test Priority: High

Executed Using: Manual Testing

Pre-Conditions: Firebase Authentication service is available.

Execution Steps: 1. Log in.
2. Navigate to the Edit Account Screen.
3. Update the user email.
4. Assert new email is displayed on screen.
5. Update the user password.
6. Log out.
7. Log in using updated credentials.
8. Assert user is logged in successfully.

Post Conditions: N/A

Test Status: Passed

Test Case ID: TC16

Test Case Title: Test scanning ingredients using ingredients scanner

Test Plan ID: -

Test Type: System

Test Case Description: Test the ingredients scanner successfully returns matching ingredients
in scanned image

Project Test Location: N/A

Test Priority: High

Executed Using: Manual Testing

Pre-Conditions: The user has granted permission to the app to their camera and gallery.

Execution Steps: 1. Log in.
2. Navigate to the Ingredients Scanner Screen.

74

3. Click the Select Image button.
4. Select an image containing ingredients text.
5. Click the Scan Ingredients button.
6. Assert that any matching ingredients are listed on screen with

their name and description.
7. Click the Capture Image button and take a photo of ingredients

text.
8. Assert that any matching ingredients are listed on screen with

their name and description.

Post Conditions: N/A

Test Status: Passed

Test Case ID: TC17

Test Case Title: Test searching for recipes using recipes search

Test Plan ID: -

Test Type: System

Test Case Description: Test the Recipe Search successfully returns recipes matching search
criteria

Project Test Location: N/A

Test Priority: High

Executed Using: Manual Testing

Pre-Conditions: There are existing recipes available in the database.

Execution Steps: 1. Log in.
2. Navigate to the Recipe Search Screen.
3. Assert public or user owned recipes are listed on screen.
4. Click the Ingredients Search button.
5. Select ingredients in the Search Ingredients modal and click

Search.
6. Assert recipes with matching ingredients are listed on screen.
7. Click the Cuisine Search button.
8. Select cuisine in the Search Cuisine modal and click Search.
9. Assert recipes with matching cuisine are listed on screen.
10. Click the Suitability Search button.
11. Select suitability in the Search Suitability modal and click

Search.
12. Assert recipes with matching suitability are listed on screen.
13. Click the Clear Search button.
14. Assert that last search is cleared.
15. Using the search bar search for a recipe by name.
16. Assert that recipes with a matching name are returned.

Post Conditions: N/A

Test Status: Passed

Test Case ID: TC18

Test Case Title: Test Recipe CRUD functionality

Test Plan ID: -

Test Type: System

Test Case Description: Test that a recipe can be created, read, updated, and deleted.

Project Test Location: N/A

75

Test Priority: High

Executed Using: Manual Testing

Pre-Conditions: There are existing recipes available in the database.

Execution Steps: 1. Log in.
2. Click new recipe button.
3. Add new recipe details and click Add Recipe button.
4. Assert user is redirected to My Recipes screen and new recipe

is listed.
5. Click the recipe in the list and click the Edit Recipe button.
6. One the recipe edit screen change the recipe name and then

click the Update Recipe button.
7. Assert user is redirected to the My Recipes screen and recipe

displays updated name.
8. Click the recipe button and click the View Recipe button.
9. Assert details on recipe details screen are correct.
10. Click the Delete Recipe button and click OK in the confirmation

modal.
11. Assert user is redirected to My Recipes screen and recipe is no

longer listed on screen.

Post Conditions: N/A

Test Status: Passed

Test Case ID: TC19

Test Case Title: Test adding and removing meals from plan

Test Plan ID: -

Test Type: System

Test Case Description: Test that a meal can be added and removed from a user’s meal plan.

Project Test Location: N/A

Test Priority: Medium

Executed Using: Manual Testing

Pre-Conditions: There are existing recipes available in the database.

Execution Steps: 1. Log in.
2. On the My Recipes screen click a recipe and then click the View

Details button.
3. On the recipe details page click the Add Recipe to Meal Plan

button.
4. Select a date from the Calander picker modal.
5. Assert user is redirected to the Meal Planner screen and recipe

is added to meal plan.
6. Assert that the meals in the list are sorted by date

(chronological order).
7. Click the Meal from the List and then click the View Details and

Shopping List button.
8. Assert meal details are correct.
9. Navigate back the previous screen.
10.

Post Condition: N/A

Test Status: Passed

76

Test Case ID: TC20

Test Case Title: Test updating ingredients in shopping list

Test Plan ID: -

Test Type: System

Test Case Description: Test that an ingredient in a meal shopping list can be marked as
purchased or not

Project Test Location: N/A

Test Priority: Medium

Executed Using: Manual Testing

Pre-Conditions: There are existing meals in the meal plan.

Execution Steps: 1. Log in.
2. On the Meal Planner page click a Meal from the List and then

click the View Details and Shopping List button.
3. Assert that there are ingredients items listed in the Shopping

List section of the Meal details page.
4. Check an unchecked ingredient checkbox in the shopping list.
5. Navigate back to the Meal Planner screen.
6. Click the same Meal from the List and then click the View

Details and Shopping List button.
7. Assert that the ingredient is still marked as checked in the

Shopping List.

Post Conditions: N/A

Test Status: Passed

2.5.4 End-To-End Functionality Testing
As part of the application functionality testing. Manual End-To-End Testing was completed to

ensure that the completed application met all functionality requirements and acceptance

criteria.

Test Plan ID: 4

Test Plan Title: Complete End-To-End functionality testing on completed application.

Test Type: Functionality (End-To-End) / Acceptance Testing

Test Plan Description: Test that the completed application meets all functionality
requirements.

Project Test Location: N/A

Test Priority: High

Executed Using: Manual Testing

Pre-condition: Application development has completed.

Test Cases 1. Execute Test Case IDs TC12, TC13, TC14, TC15, TC16, TC17,
TC18, TC19, TC20

Test Execution Status: Passed

Post-condition: N/A

77

2.6 Evaluation

Android Studio IDE Lint Tool

A code scanning tool named ‘Lint’ is provided by the Android Studio IDE. This tool

automatically runs lint checks for source files in an Android project to identify code structural

quality problems and to detect potential bugs. The lint tool offers optimization improvement

suggestions for improving an application code’s correctness, security, performance,

accessibility, usability, and internalisation. Code structural issues can create issues with an

applications reliability and efficiency which effects the maintainability of the application.

(Google For Developers, 2023)

Figure 89 – Android Studio IDE Lint Tool Code Scan Workflow (Google For Developers, 2023)

One of the projects goals in improving the correctness, usability, security, accessibility,

performance, and internalisation of the application source code was to attempt to resolve as

many of the warnings reported by the Android lint tool as possible. To do this, a Git branch of

the code was checked out and an attempt was made to resolve all reported lint issue. The

following are the results of this effort.

Project Lint Scan Location One:

app/src/main/java/com/example/foodplannerapp (Main Java Package)

Before attempting to resolve any lint errors within the project Java package, the lint scan

reported 322 Warnings and 17 Weak Warnings. Of these 399 reported warnings, all 339

(100%) warnings were then manually resolved. The first of the following two figures displays

the lint scan before the warning were resolved. The second of the two figures display the

Android Studio IDE notification result from the lint scan advising of no issues found in the

app/src/main/java/com/example/foodplannerapp directory:

78

Figure 90 - Lint Report for Java Package before warnings

were manually resolved (322 Warnings & 17 Weak
Warnings Reported).

Figure 91 - Java Package Lint Scan notification stating that

no problems were identified.

Project Lint Scan Location Two:

app/src/main/java/com/example/foodplannerapp (Main Resource Package)

Before attempting to resolve any lint errors within the project Resource package, the lint scan
reported 183 Warnings and 12 Typos. Of these 194 reported warnings, 192 (97%) warnings
were then manually resolved. The first of the following two figures displays the lint scan
before the warnings were resolved. The second of the two figures display the lint scan after
the warnings were resolved:

Figure 92 - Lint Report for Resource Package before

warnings were manually resolved (183 Warnings / 12
Typos Reported).

Figure 93 - Lint Report for Resource Package after

warnings were manually resolved (2 Warnings and 0 Types
reported)

79

Android Profiler (Performance Analyse)

Android Studio IDE offers the following three profiling tools for measuring an applications

performance: CPU Profiler, Memory Profiler, and Energy Profiler. The CPU profiler is used to

identify runtime performance issues, the Memory Profiler is used to track memory

allocations, and the Energy profiler is for tracking the application energy usage which is

important for analysing the applications drainage effect on a device’s battery. (Google For

Developers, 2023) The following image was captured using the Profiler tool in Android Studio.

The profiling session was completed using complete data and does not represent the

application’s performance in production as the profiling session was executed locally using a

physical Android device connected to Android Studio running a development branch of the

application. In the profiling session each of the application activities were launched to capture

each of the activities’ CPU, Memory, and Energy usage:

Figure 94 - Android Studio Performance Profiler Session in which all the application activity screen were opened and closed.

The following is a breakdown of the above performance profile session by Activity:

Activity
CPU (Highest

Usage)
Memory

(Highest Usage)
Energy
(Grade)

LoginActivity (Login Screen) 8% 164MB Light

MainActivity (My Recipes Screen) 12% 158MB Medium

EditRecipeActivity (Edit Recipe Screen) 17% 163MB Medium

AddRecipeActivity (Add Recipe Screen) 16% 166MB Medium

ViewRecipeActivity (View Recipe Screen) 14% 168MB Medium

MealPlanActivity (Meal Planner Screen) 13% 170MB Medium

ViewMealPlanActivity (Meal Details Screen) 13% 172MB Medium

PublicRecipesActivity (Public Recipes Screen) 20% 174MB Medium

IngredientsScannerActivity (Ingredients Scanner
Screen)

10% 166MB Medium

RecipesSearchActivity (Recipe Search Screen) 13% 169MB Medium

EditAccountActivity (Edit Account Screen) 13% 171MB Medium

Average: 14% 167MB -

Opening and closing each of the application activities (screens) uses 14% CPU on average and

does not exceed 20% CPU usage. The activities have a highest memory usage of 167MB on

average and none of the activities reported an energy usage grade of Heavy. All of which

indicate good CPU, memory, and energy default usage.

80

Testing Coverage

Below is a screenshot of the test coverage summary report for the interfaces, utilities, and

model package classes. There is an average class coverage of 100%, an average method

coverage of 93.1% and an average line coverage of 78.2 % for these three packages. The unit

testing for the activities, adapters, and fragment classes were completed manually during the

development of the project.

Figure 95 - Unit Test Coverage Summary Report filtered by Models, Interface, and Utilities Packages

Junit 5 was used to execute the above Unit Tests. A combination of automated UI Espresso

Tests, JUnit 4 and Manual Testing was used to execute the integration and system testing in

the project. End To End Manual testing was completed at the end of the projects development

to ensure that all integrated system features were working successfully together and to

ensure that all functional requirements were met. All functional requirements were

confirmed as working during the End-to-End testing in the Acceptance Testing stage.

81

3 Conclusions

The Interfaces, Utilities, And Model package classes have an extensive unit test coverage.

There is an average class test coverage of 100%, an average method test coverage of 93.1%

and an average line test coverage of 78.2 % for these three packages. One limitation of

creating unit tests for all packages within the application is the applications current

architecture design pattern of MVC. With more time and resources, a Model-View-

ViewModel (MVVM) or a Model-View-Presenter (MVP) architectural pattern design would be

applied to the application in which the UI logic and Business logic would be separated

completely to improve the testability of the application. This limitation was overcome through

extensive unit, integration and system testing of the application using automated and manual

testing. End-To-End functionality testing was completed at the end of the development of the

project to ensure that the application met all functional requirements of the application and

all tests passed.

During the development of the project a high priority was placed on minimising as many

Android Lint tool warnings as possible. This attempt was a success as 339 (100%) warnings

were manually resolved within the applications main Java package and 192 (97%) of warnings

were manually resolved within the application Resource folder. This was to ensure the code

structure quality of the application in areas such as correctness, security, performance,

accessibility, usability, and internalisation. The results of the performance profiling of the

application indicated good CPU, memory, and energy default usage.

The project was a success as all six functional requirements within the scope of the project

were developed and implemented into a single working Android Mobile Application resulting

in successful project completion. The following six functional requirements have been

successfully implemented into the application; A User Management feature allowing users to

create, manage and log in to their user account. An Ingredients Scanner feature allowing users

to scan images for ingredients text and receive the ingredients meaning. A Recipe Manager

feature allowing users to create, read, update, and delete recipes. A Recipe Search feature

allowing users to search for public or owned recipes by ingredients, cuisine, suitability, or

name. A Meal Planner feature allowing users to add or remove recipes to and from their meal

plan. A Shopping List feature allowing users to manage a shopping list containing required

ingredients for each of their scheduled meals in their meal plan. The application was

successful in its aims to develop the FoodPlannerApp using innovative technologies such as

Machine Learning models from Google’s ML Kit Text Recognition API, Android Mobile

Application Development and Backend Cloud computing services such as Firebase.

82

4 Further Development or Research
One issue with Android’s MVC implementation is the violation of the main principle of the

MVC pattern, the Single Responsibility Principle. Regardless, MVC is the architecture pattern

that the FoodPlannerApp’s architecture most resembles. The main goal in the development

of the FoodPlannerApp was to produce a working application which delivers all functional

requirements which was achieved. With more time and resources, the next evolution of the

FoodPlannerApp’s architecture design would be to separate the applications working logic

into either a Model-View-ViewModel (MVVM) or a Model-View-Presenter (MVP)

architectural pattern design.

Two drawbacks of using the Firebase Realtime Database are that relationships between the

data cannot be created within the database and it can be difficult to query data from the

database as the data is stored as a single JSON object. With more time and resources, the

next step in the development of the FoodPlannerApp would be to possibly integrate a

relational database, or to instead implement Firebase Firestore Database instead.

In the original proposal for this project, it was mentioned that the Recipe Search Engine

feature may possibly use web scraping/crawling functionality to extract recipes containing

specified ingredients from Google’s Search Engine Results Pages (SERP). In the Requirements

Specification creation stage of the project, it was stated that the Recipe Search feature

functionality would either be achieved through web scraping or through querying user recipes

stored in the application database. During the development of the Recipe Search Engine

feature, it was decided that the search feature would query user created recipes from the

database. With further development and research, the next evolution of the Recipe Search

Engine would involve searching for recipes containing certain ingredients through extracting

recipes from Google’s SERP.

With further development and research, a Continuous Integration and Continuous delivery

pipeline would be developed. This would involve setting up automated test runs/lint scans

whenever a change is pushed to the project GitHub repository.

With further time and resources, the application functionality would be expanded upon by:

Adding a sort to the ingredients listed in the ingredients multi-select search modal on the

Recipe Search page so that the ingredients are sorted alphabetically. Adding a search bar to

the ingredients multi-select search modal on the Recipe Search page so that users can search

for an ingredient to select from within the modal. Adding image upload functionality to the

Recipe Add/Edit pages so that users can upload their own images of recipes. Adding a

forgotten password functionality to the login page. Adding an email verification system so

that user must verify their email address after registering for a new account.

83

5 References

Adilovic, A., 2021. A Guide to Choosing the Best Architecture Pattern for Android Apps. [Online]

Available at: https://www.scalablepath.com/android/android-apps-architecture

[Accessed 3 August 2023].

Bechtold, S. et al., no date. JUnit 5 User Guide. [Online]

Available at: https://junit.org/junit5/docs/current/user-guide/

[Accessed 5 August 2023].

Bord Bia, 2020. What Ireland Ate Last Night Report 2020. [Online]

Available at: https://www.bordbia.ie/globalassets/bordbia2020/industry/insights/consumer-

insights/what-ireland-ate-last-night-february-2020.pdf

[Accessed 23 July 2023].

Crowe, M., O'Sullivan, M., Cassetti, O. & O'Sullivan, A., 2019. Estimation and consumption pattern of

free sugar intake in 3-year-old. European Journal of Nutrition, 59(5), p. 2065–2074.

Dasgupta, K. et al., 2023. Associations of free sugars from solid and liquid sources with

cardiovascular disease: a retrospective cohort analysis. BMC Public Health, 23(1).

EPA, 2023. Food Waste Statistics. [Online]

Available at: https://www.epa.ie/our-services/monitoring--assessment/waste/national-waste-

statistics/food/

[Accessed 5 August 2023].

GitHub, no date. About Git. [Online]

Available at: https://docs.github.com/en/get-started/using-git/about-git

[Accessed 1 August 2023].

Google For Developers, 2023. Firebase Authentication. [Online]

Available at: https://firebase.google.com/docs/auth

[Accessed 1 August 2023].

Google for Developers, 2023. Firebase Realtime Database. [Online]

Available at: https://firebase.google.com/docs/database

[Accessed 1 August 2023].

Google For Developers, 2023. Improve your code with lint checks. [Online]

Available at: https://developer.android.com/studio/write/lint

[Accessed 1 August 2023].

Google For Developers, 2023. Inspect your app's memory usage with Memory Profiler. [Online]

Available at: https://developer.android.com/studio/profile/memory-profiler

[Accessed 1 August 2023].

Google For Developers, 2023. Meet Android Studio. [Online]

Available at: https://developer.android.com/studio/intro

[Accessed 1 August 2023].

84

Google For Developers, 2023. ML Kit. [Online]

Available at: https://developers.google.com/ml-kit/guides

[Accessed 1 August 2023].

Google For Developers, 2023. Text recognition v2. [Online]

Available at: https://developers.google.com/ml-kit/vision/text-recognition/v2

[Accessed 2 August 2023].

Google for Developers, 2023. The activity lifecycle. [Online]

Available at: https://developer.android.com/guide/components/activities/activity-lifecycle

[Accessed 3 August 2023].

JUnit, 2021. JUnit 4 About. [Online]

Available at: https://junit.org/junit4/

[Accessed 5 August 2023].

Oracle, no date. The Java™ Tutorials. [Online]

Available at: https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

[Accessed 1 August 2023].

85

6 Appendices

6.1 Project Proposal

National College of Ireland

Project Proposal

Food Planner App

21/12/2022

Bachelor of Science (Honours) in Computing

Software Development

2022/2023

Ruby Lennon

X19128355

x19128355@student.ncirl.ie

86

Contents

1.0 Objectives .. 87

2.0 Background .. 87

3.0 State of the Art... 88

4.0 Technical Approach .. 88

5.0 Technical Details .. 89

6.0 Special Resources Required ... 90

7.0 Project Plan .. 91

8.0 Testing .. 93

References .. 94

87

1.0 Objectives
This project sets out to achieve creating a ‘Food Planner’ application. In this project I will aim

to develop an Android mobile application that consists of a food ingredients scanner, a recipe

search engine, a meal planner, a recipe manager, and a food shopping list generator. My aim

in creating this application is to help lessen the impact of food waste on the environment,

help users to save money by reducing their food waste, and to help users make better

informed decisions on what food they choose to purchase. This mobile application is for

anyone who wants to organise their eating schedule, make healthier food choices, and reduce

food waste by only buying what they need to save money and lessen their impact on the

environment. Using the mobile application users will be able to upload an image of an

ingredients list on any food product. Through using OCR (Optical Character Recognition)

technology, the application will then extract the ingredients text from the uploaded image.

The application will then generate a report of all the listed ingredients and their meaning.

Users will also be able to search for food recipes by ingredients, total preparation time, cuisine

and or meal type etc. I currently envision the application doing this by executing a Google

search using those search queries and crawling through the ‘Recipes’ section in Google SERP

(Search Engine Results Page). Through web scraping, the key information in those recipe

pages would then be extracted, formatted, and returned to the user in the Food Planner App.

Users will also be able to manage their saved recipes, create meal plans and create food

shopping lists.

2.0 Background
The first problem that this project attempts to solve is food waste and its impact on the

environment and on household expenditure. According to the EPA (The Environmental

Protection Agency) Irish households threw away an estimated 241,000 tonnes of food in

2020. Food waste costs the average Irish household about €60 per month or €700 per year.

It is estimated that food waste generates about 8% to 10% of global greenhouse gas

emissions. (EPA, 2022) The ‘Food Planner App’ aims to solve this by helping users to reduce

their food waste and carbon footprint by searching for recipes containing ingredients they

already own. Helping users to reduce their food waste should also help them to save money.

The second problem that this project attempts to solve is confusing obscure food product

ingredients. When it comes to selecting a food product in a shop, it can be difficult to

understand the ingredients listed on food labels and whether they are good for you or not.

Manufacturers can avoid listing sugar and fats as the first ingredient by using multiple forms

of sugar and fat that go by other names. The ‘Food Planner App’ attempts to solve this by

allowing users to upload a photo of a food products ingredients list and to receive a report of

the ingredients and their general meaning. The third problem that this project attempts to

solve is unhealthy food habits because of hectic schedules. The ‘Food Planner App’ attempts

to solve this by allowing the user to organise their recipes, create a meal plan and generate a

food shopping list. My solution to these problems is to develop an all-encompassing food

planner application. Through clear goal setting, structured project planning, in depth research

and supervisor guidance I believe I will be able to meet the project objectives.

88

3.0 State of the Art
A few examples of food ingredients scanners include ‘Yuka - Food & Cosmetic Scan’ (Yuka,

2022) and ‘Infood app’ (Infood Team, 2022) – both of which are mobile applications which

allow the user to scan food product barcodes to find out more information regarding the

products ingredients. One difference between these applications and the ‘Food Planner App’

is that the Food Planner App will use OCR technology to read the food ingredients from the

text in an image to generate the report instead. An example of an application that allows a

user to search for recipes by ingredients is ‘Supercook’ (SuperCook, 2022). One difference

between ‘Supercook’ and the ‘Food Planner App’ is that ‘Supercook’ does not have an

ingredients scanner functionality. An example of an application that generates a meal plan is

‘Eat This Much’ (Eat This Much Inc, 2022) – this application allows users to create and edit a

meal plan and automatically generate a shopping list. The difference between ‘Eat This Much’

and the ’Food Planner App’ is that ‘Eat This Much’ does not include an ingredients scanner

and does not include a recipe search engine that allows the user to search for recipes

containing owned ingredients. Two other applications to note that include one or more, but

not all, of the ‘Food Planner App’ features are ‘Whisk’ (Whisk, 2022) and ‘The CookBook App’

(CookBook Co. Pty Ltd, 2022) - both of which allow users to share recipes, create meal plans,

create shopping lists, and save recipes. While there are many individual applications available

for meal planning, creating shopping lists, recipes finders, recipe managers, ingredients

scanners etc., what makes the ‘Food Planner App’ different is that it combines all those

individual features into one all-encompassing food planner application. All the individual

features work together to create a comprehensive solution for the user. I was unable to

identify an existing application that encompasses all those functionalities into a single mobile

application.

4.0 Technical Approach
For this project, I plan to take an Agile Software Development approach. I am going to use Jira

Software to support this approach. Each core feature of the application will be developed in

sprints. Using Jira Software, each core feature will be represented by an Epic issue and contain

User Stories. Each User Story will describe smaller functional requirements written from the

perspective of the end user and will be tested individually. Each User Story will contain sub-

tasks to be completed. Once all development tasks in an Epic are developed and tested, I will

execute End-To-End testing for that feature. I plan to develop the following features in the

following order of priority:

1. Basic App Functionality

2. Ingredient List OCR Scanner

3. Recipe Search Engine by Ingredients

4. Recipe Manager

5. Meal Planner

6. Shopping List Generator

89

I plan to define the application requirements by breaking the above features down into their

functional and non-functional requirements. Each Epic will involve researching, functionality

development, defining User Story acceptance criteria, integrating the developed functionality

as a solution to the User Story, user interface design and implementation, Acceptance Criteria

testing and End-To-End testing. Each of the project deliverables and features will represent a

milestone in the project. Each milestone will be broken up into user stories and tasks to be

completed. The final requirement specification will be confirmed on 05/03/2022 and

submitted to Moodle. Once the final requirements specification has been confirmed, I will

update the Jira Software project to reflect these requirements. Each requirement will be

created as a User Story in the project. Each User Story will be broken up into sub-tasks and

activities to complete. Each task will be given an estimate of how many days I expect to be

able to complete the task. In my opinion the two most complex and difficult to develop

features will be the Ingredients List OCR Scanner and the Recipe Search Engine. I believe that

these are also the two most important and unique features of the application. This is the

reason why I have added them to the top of the features priority list. Once I have developed

and tested the Ingredients List OCR Scanner and the Recipe Search Engine, I plan to begin

working on the dependent sub features such as the Recipe Manager, Meal Planner and

Shopping List Generator. The project plan in section 7 of this project proposal provides more

information regarding the milestones, tasks, and activities that I have defined so far for the

development of this project.

5.0 Technical Details
Language / Tool / Library / Method Planned Use

Android studio

I plan to develop the ‘Food Planner App’ as an
Android mobile application using Android Studio,
the official IDE for Google’s Android Operating
System.

OCR (Optical Character Recognition)
I plan to use OCR technology to convert images of
food product ingredient list text into machine-
encoded text to create the ingredients report.

Web Scraping and Crawling

I plan to use web scraping in the recipe search
engine to extract information from recipe websites
that are returned in Google’s SERP (Search Engine
Results Page).

Java and or Kotlin

I plan to use Java and or Kotlin as the primary
programming language to develop the application.
I plan to finalise this decision once I begin
developing the application in Android Studio.

Python
I may use Python for the web scraping/crawling
functionality of the application.

Selenium
I may use Selenium for the web scraping/crawling
functionality of the application.

90

Language / Tool / Library / Method Planned Use

Google Play Services Libraries
I plan to use Google Play Services in the
development of the mobile application.

Android Testing Support Library
I plan to use this testing framework as part of the
application testing.

MongoDB / MySQL / PostgreSQL

I have not yet confirmed which database I am going
to use for the mobile application development. I
can see myself using one of the following three:
MongoDB, MySQL, or PostgreSQL.

Espresso
I may use Espresso, the open-source Android UI
Testing Framework, to write and automate Android
UI tests

GitHub / Git
I plan to use GitHub as the primary project
repository.

ML Kit Text Recognition API
I may use this API for capturing and extracting text
from an image.

Android Image Cropper
I may use this Google Play Service for cropping
images uploaded to the application.

jsoup
I may use this Java HTML parser for The Recipe
Search Engine.

Search Algorithms

I plan to use a search algorithm in the Ingredients
List OCR Scanner. I will require an appropriate
search algorithm to quickly search for matching
ingredients in the database. I will confirm which
algorithm I use once I begin developing the feature.

6.0 Special Resources Required
No special resources will be required for the work completed in this project.

91

7.0 Project Plan

92

I created the project plan in Jira Software. I have created a Jira Software project to help

manage the ‘Food Planner App’ project development. I created the above Gantt chart using

the Jira Software app, ‘BigGantt’. The Gantt chart depicts all current issues created in the Jira

Software project and their start and end dates. The chart ranges from 19/09/2022 to

06/09/2022. I have created an Epic issue to track each of following project

deliverables/milestones: the project pitch video, project proposal, project ethics forms,

requirement specification, mid-point implementation/documentation/video presentation,

final implementation/documentation/video presentation, viva examination and project

showcase. I have added an estimated start date and due date to each of these issues. The

start date is the date that I plan to begin working on that deliverable and the due date is the

deliverable submission date. As I begin working on each of these Epics, I will add sub task

issues to each. This will help me to keep track of all required tasks and their progress. The

Gantt chart is synced to the project in Jira Software so all changes to the project will be

reflected in the Gantt chart.

I have also added an Epic issue to represent each of the following features of the application:

Basic Application Functionality, Ingredients Scanner, Recipe Search Engine, Recipe Manager,

Meal Plan Manager and Shopping List Generator. I have added an estimated start date and

end date for the development of each of these features as depicted in the project plan. These

dates are subject to change based on my progression. The project plan also indicates the order

in which I plan to develop each feature of the application. I have allocated more development

time to the two key features of the application, the Ingredients List Scanner, and the Recipe

Search Engine, compared to the other features. I have done this due to the complexity of

those features and the estimated difficulty in developing them. Each feature epic will contain

tasks, user stories and sub-tasks. Once I begin developing each feature, and once the final

functional requirements have been defined, I will create further tasks and stories which I will

then estimate in days. I have included some dependencies in the project plan. For example,

the Recipe Manager feature is dependent on the Recipe Search Engine and the Shopping List

Generator is dependent on the Meal Plan Manager. I hope to complete development and

testing of all features by 09/08/2022.

93

8.0 Testing
Method / Tool / Framework Planned Use

Unit Testing

Throughout the development of the project, I aim to
execute local unit testing on individual components of the
software. I may use Junit 5 as the testing framework for
this.

Manual User Testing

I plan to complete manual user testing throughout all
stages of the development process. I plan to manually test
changes by executing test plans and test cases that are
based on predefined acceptance criteria. All manual user
testing will be completed from the perspective of an end
user.

Xray Jira

I may use Xray, the test management tool for Jira, to
manage all manual testing. This will facilitate creating test
cases, test plans and test execution issues for each
development task and user story. Using Xray I will be able
to document the execution of the test plan within a test
execution ticket. If I find any bugs while executing the test
plan, I will be able to create a bug ticket to link to the
development task. I will then be able to document the bugs
resolution progress in the bug ticket.

Acceptance Criteria Testing
For each task I am going to define acceptance criteria that
must be tested for, and met, for the testing to be marked
as passed.

E2E (End-To-End) Testing

At the end of each feature development, I plan to complete
E2E manual testing to ensure that all development work
within the new feature work together and with other parts
of the application. I will also complete E2E testing once all
features have been developed to ensure that the
application is functioning as expected.

Regression Testing

I plan to incorporate manual regression testing when
testing each new feature of the application to ensure that
the application still functions as expected and that the new
changes have not introduced any bugs to previously
developed and tested parts of the system.

Android Testing Support
Library

I plan to make use of this framework to test the application.
The APIs provided by this library will allow me to build and
run test code for the application, some of which include
Junit 4 and functional user interface (UI) tests.

Integration Testing

Each time I develop a new feature, I will integrate it into the
application. I will then use the Top-down Integration
Testing method where the higher-level modules are tested
first and then the lower-level models are tested and
integrated to test the applications functionality.

Espresso
I may use Espresso, the open-source Android UI Testing
Framework, to write and automate Android UI tests.

94

References
CookBook Co. Pty Ltd, 2022. The ultimate pocket recipe manager. [Online]

Available at: https://thecookbookapp.com/

[Accessed 21 December 2022].

Eat This Much Inc, 2022. Put your diet on autopilot. [Online]

Available at: https://www.eatthismuch.com/

[Accessed 21 December 2022].

EPA, 2022. Food Waste Statistics. [Online]

Available at: https://www.epa.ie/our-services/monitoring--assessment/waste/national-waste-

statistics/food/

[Accessed 21 December 2022].

Infood Team, 2022. Infood - Ingredients food scan. [Online]

Available at: https://play.google.com/store/apps/details?id=net.infood.app&gl=us&hl=en

[Accessed 21 December 2022].

SuperCook, 2022. SuperCook - Recipe Generator. [Online]

Available at: https://play.google.com/store/apps/details?id=com.supercook.app&hl=en_IE&gl=US

[Accessed 21 December 2022].

Whisk, 2022. The Ultimate Cooking App. [Online]

Available at: https://whisk.com/

[Accessed 21 December 2022].

Yuka, 2022. Yuka - The mobile app that scans your diet and cosmetics. [Online]

Available at: https://yuka.io/en/

[Accessed 21 December 2022].

95

6.2 Reflective Journals

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc (Honours) in Computing – Evening (BSHCSDE4)

Supervisor Enda Stafford

Month: November 2022

What?

Reflect on what has happened in your project this month?

− On 30/10/22 I submitted my Project Pitch Video. In this video I outlined the problems I will be
attempting to solve in my project, why the project should be attempted, what the project will do,
and why the project is challenging and how it is different from what has been done before.

− On 11/11/22 I was notified that Enda Stafford is my project supervisor.

− On 11/11/22 I received my project pitch feedback.

− On 21/11/22 I had a meeting with Enda Stafford to discuss my project pitch feedback, project
timeline, project proposal and upcoming deadlines and deliverables.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

− In terms of successes, on 11/11/22 I received confirmation that my project pitch idea was accepted
and that no amendments were required.

− The next challenge is to create my Project Proposal before the deadline on 17/12/22.

Now What?

What can you do to address outstanding challenges?

− For creating the project proposal document – I am going to do the following:

o I am going to complete more in-depth research and analysis of the technologies and
methodologies that I am going to use to create my project.

o I am going to define in detail the project objectives and requirements.
o I am going to create a project plan.
o I am going to create a test plan.
o I am going to identify any special resources required in creating the project.
o I am going to conduct additional market research.

Student Signature Ruby Lennon 30/11/2022

96

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc (Honours) in Computing – Evening (BSHCSDE4)

Supervisor Enda Stafford

Month: December 2022

What?

Reflect on what has happened in your project this month?

− On 15/12/22 I had a call with Enda Stafford to discuss my Project Proposal and project ethics
declaration requirements.

− On 21/12/22 I submitted my Project Proposal.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

− In terms of successes, through creating the Project Proposal, I completed the following:

o Defined the project objectives and background.

o Conducted additional market research.

o Created an initial project plan.

o Worked out the initial project technical approach.

o Completed further research regarding the application proposed technical details & testing.

− One of the next challenges is to create the project Requirement Specification before the deadline on

05/03/23.

− I plan to begin creating the basic application functionality by 01/02/23.

Now What?

What can you do to address outstanding challenges?

− To create the Requirement Specification document – I am going to do the following:

o Look at each function/feature of the application and map out how the software will execute

them in technical terms.

o I believe creating the basic app functionality in Android Studio will support the process of

creating the Requirement Specification document. I think it will provide an insight into the

application structure and how to best develop the application features.

Student Signature Ruby Lennon 05/01/23

97

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc (Honours) in Computing – Evening (BSHCSDE4)

Supervisor Enda Stafford

Month: January 2023

What?

Reflect on what has happened in your project this month?

− On 04/02/23 I had a call with Enda Stafford to discuss my Project Proposal feedback, my current

progress with the project, the Requirements Specification, and questions I had regarding the project

process.

− I downloaded Android Studio and started familiarising myself with how to use the IDE for Android

mobile application development.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

− One of the next challenges is to create the project Requirement Specification before the deadline on

05/03/23.

− One success is that I have begun familiarising myself with Android Studio so that I can begin working

on the project code.

Now What?

What can you do to address outstanding challenges?

− I am going to create the functional and non-functional Requirement Specifications.

− I am going to continue following online tutorials on how to develop mobile applications using

Android Studio so that I can begin developing the project features.

Student Signature Ruby Lennon 05/02/23

98

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc (Honours) in Computing – Evening (BSHCSDE4)

Supervisor Enda Stafford

Month: February 2023

What?

Reflect on what has happened in your project this month?

− On 23/02/23 I had a call with Enda Stafford to discuss my Project.

− I completed the Requirement Specification document and submitted it on 05/03/23.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

− One of the next challenges is complete the Mid-Point Implementation, Documentation & Video

Presentation before the deadline on 29/04/23.

− Some successes are that I have implemented the basic app functionality such as user authentication

using Firebase Authenticate, I have implemented basic recipe CRUD functionality using Firebase

Realtime Database, and I have implemented basic OCR Text Recognition functionality using the

Google ML Kit Vision API.

Now What?

What can you do to address outstanding challenges?

− I am going to complete implementing one or more of the functional requirements in the application.

− I am going to complete the Mid-Point Implementation, Documentation & Video Presentation before

the deadline on 29/04/23.

Student Signature Ruby Lennon 05/03/23

99

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc (Honours) in Computing – Evening (BSHCSDE4)

Supervisor Enda Stafford

Month: March 2023

What?

Reflect on what has happened in your project this month?

− On 25/03/23 I had a call with Enda Stafford to discuss my Project Requirements Specification

feedback.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

− One of the next challenges is complete the Mid-Point Implementation, Documentation & Video

Presentation before the deadline on 29/04/23.

Now What?

What can you do to address outstanding challenges?

− I am going to complete the Mid-Point Implementation, Documentation & Video Presentation before

the deadline on 29/04/23.

Student Signature Ruby Lennon 02/04/23

100

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc (Honours) in Computing – Evening (BSHCSDE4)

Supervisor Enda Stafford

Month: April 2023

What?

Reflect on what has happened in your project this month?

− On 15/04/23 I had a call with Enda Stafford to discuss the project Mid-Point Examination

requirements

− On 01/05/23 I completed the Mid-Point Documentation, Demo and Presentation

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

− One of the next challenges is develop the OCR Ingredients List Scanner functionality before

27/05/23.

− I completed the development for the User Management and Recipe Manager features

Now What?

What can you do to address outstanding challenges?

− I am going to develop the OCR Ingredients List Scanner functionality and once working will

implement into the main FoodPlannerApp app code.

Student Signature Ruby Lennon 01/05/23

101

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc in Computing

Supervisor Enda Stafford

Month: May 2023

What?

Reflect on what has happened in your project this month?

- Continued to develop Food Ingredients OCR Scanner feature.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

- Challenge 1: Complete food ingredients scanner feature.

- Challenge 2: Begin developing recipe search feature.

Now What?

What can you do to address outstanding challenges?

- Prioritise completion of food ingredients scanner feature.

- Identify best approach for developing recipe search engine feature.

Student Signature Ruby Lennon

102

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc in Computing

Supervisor Enda Stafford

Month: June 2023

What?

Reflect on what has happened in your project this month?

- Completed development of the Food Ingredients OCR Scanner feature and the Recipe Search

feature.

- On 20/06/23 I had a call with Enda Stafford to receive feedback on my project Mid-Point Submission.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

- Success: Completing development of the Food Ingredients OCR Scanner feature and the Recipe

Search feature.

- Challenge 1: Complete remaining two features - Meal Planner feature & Shopping List feature.

- Challenge 2: Complete project final report, document testing, and the project poster.

Now What?

What can you do to address outstanding challenges?

- Prioritise completion of Meal Planner feature & Shopping List feature and then complete the project

final report, document testing, and the project poster.

Student Signature Ruby Lennon 02/06/23

103

Supervision & Reflection Template

Student Name Ruby Lennon

Student Number X19128355

Course BSc in Computing

Supervisor Enda Stafford

Month: July 2023

What?

Reflect on what has happened in your project this month?

- Completed development of the FoodPlannerApp

So What?

Consider what that meant for your project progress. What were your successes? What challenges still

remain?

- Success – successfully developed all six functional requirements of the application.

Now What?

What can you do to address outstanding challenges?

- Complete and submit final submission requirements.

Student Signature Ruby Lennon 06/08/23

