
Configuration Manual

MSc Research Project

Cloud Computing

VIJAYAKUMAR KANNIAH
Student ID: x21188955

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: VIJAYAKUMAR KANNIAH

Student ID: x21188955

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 18/09/2023

Project Title: Configuration Manual

Word Count: 1316

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: VIJAYAKUMAR KANNIAH

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

VIJAYAKUMAR KANNIAH
x21188955

1 Introduction

This document’s main objective is to give reader a thorough manual for effectively set
up and run the project. The system architecture, installation procedures, configuration
options, execution flow, and troubleshooting advice are all covered. Before deploying the
project, please carefully read this document.

2 Prerequisites

Users are expected to have basic knowledge of Ubuntu, python programming language,
node js and machine learning algorithms.

3 Environment Setup

I am using AWS cloud for my implementation. I have used configuration for EC2 instance
as specified in Figure 1. It is recommended to use the latest version of ubuntu and a
minimum of RAM: 16 GB. We are using backed in FAST API and frontend in React JS

I have developed my project using python programming language and python ver-
sion of 3.7 or later is required. You can install python latest version from https:

//www.python.org/downloads/

* Need to download environment setup file 2 :

FastAPI - A modern, fast (high-performance), web framework for building APIs with
Python 3.7+ based on standard Python type hints. You can find information and docu-
mentation for FastAPI on its official website: https://fastapi.tiangolo.com/
Uvicorn - A lightning-fast ASGI server that serves as the interface between your FastAPI
application and the internet. You can find more information and documentation for Uvi-
corn on its GitHub repository: https://github.com/encode/uvicorn
CMake - A widely used open-source, cross-platform family of tools designed to build,
test, and package software. You can find information and documentation for CMake on
its official website: https://cmake.org/documentation/
Dlib - A C++ library containing machine learning algorithms and tools, including the
Histogram of Oriented Gradients (HOG) feature descriptor. You can find information
and documentation for Dlib on its official website: http://dlib.net/
OpenCV (cv2) - An open-source computer vision and machine learning software library.

1

https://www.python.org/downloads/
https://www.python.org/downloads/

Figure 1: AWS EC2 instance

You can find information and documentation for OpenCV on its official website: ht-
tps://docs.opencv.org/
Node.js and npm - Node.js is a JavaScript runtime, and npm is the package manager
for Node.js. You can find information and documentation for Node.js and npm on their
official websites: https://nodejs.org/ and https://www.npmjs.com/
Serve - A simple static file server for serving web pages. You can find information and
documentation for Serve on its GitHub repository: https://github.com/vercel/serve

* Need to download the dependency files from the requirement.txt file using the
following commands - pip install -r requirements.txt 3

4 Implementation steps

4.1 Methodology

File structure of the project for front (React JS) and backend (Fast APi) 4
Config Files to handel the face menthod, face folder and E.t.c- 5
GenerateEncodings : The model trained with HOG and the output is generated in

the GenerateEncodings folders. Code snippet of it 6 7 8
* Commands to run the Frontend - pm2 ”npm start” start –name frontend

* Commands to run the backend - pm2 start ”python3 main.py” –name ”hawkeye”
* Commands to check for the log - sudo pm2 logs
* Commands to check the status of the application - pm2 status 9

2

Figure 2: Dependency Files to Install dependency

Figure 3: Requirement Files to Install dependency

3

Figure 4: File Structure of the project (Backend)

4

Figure 5: Config File of the Backend

Figure 6: GenerateEncodings1 (Model Training)

5

Figure 7: GenerateEncodings2 (Backend)

Figure 8: GenerateEncodings3 (Backend)

Figure 9: Status of the application (Backend)

6

Figure 10: UploadImage for identification

Figure 11: Addperson known person to the application

5 Applications

* UploadImage - Upload the image to identify the face 10
* AddPerson - Add the known person to the application 11
* Train Model - Train the model for the know persons 12

6 Execution and Results

In this study, two small image databases were constructed, sourced from Unsplash and
Google, aimed at evaluating model performance across varied image types and sizes.
The assessment of these datasets revealed that dlib consistently outperformed alternative
models. Randomly selected facial images from Google were employed to validate the
trained models, resulting in the classification of individuals as ”UNKNOWN.” Subsequent
testing of non-facial images demonstrated the models’ ability to correctly refrain from
predicting faces and instead presented a reset option. Through training a DLIB-based
face detection model on images of seven renowned personalities from the Labelled Face
Database, we achieved accurate results. The training process and subsequent accuracies
were obtained using an AWS EC2 cloud environment, facilitated by a dedicated backend

7

Figure 12: Model Training

API system developed for this project.

8

	Introduction
	Prerequisites
	Environment Setup
	Implementation steps
	Methodology

	Applications
	Execution and Results

