“—-
\ National

Configuration Manual

MSc Research Project
Cloud Computing

VIJAYAKUMAR KANNIAH
Student ID: x21188955

School of Computing
National College of Ireland

Supervisor: Sean Heeney

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: VIJAYAKUMAR KANNIAH
Student ID: x21188955
Programme: Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Sean Heeney
Submission Due Date: 18/09/2023
Project Title: Configuration Manual
Word Count: 1316
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: VIJAYAKUMAR KANNIAH

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

VIJAYAKUMAR KANNIAH
x21188955

1 Introduction

This document’s main objective is to give reader a thorough manual for effectively set
up and run the project. The system architecture, installation procedures, configuration
options, execution flow, and troubleshooting advice are all covered. Before deploying the
project, please carefully read this document.

2 Prerequisites

Users are expected to have basic knowledge of Ubuntu, python programming language,
node js and machine learning algorithms.

3 Environment Setup

I am using AWS cloud for my implementation. I have used configuration for EC2 instance
as specified in Figure [I} It is recommended to use the latest version of ubuntu and a
minimum of RAM: 16 GB. We are using backed in FAST API and frontend in React JS

I have developed my project using python programming language and python ver-
sion of 3.7 or later is required. You can install python latest version from https:
//www.python.org/downloads/

* Need to download environment setup file [2]:

FastAPI - A modern, fast (high-performance), web framework for building APIs with
Python 3.7+ based on standard Python type hints. You can find information and docu-
mentation for FastAPI on its official website: https://fastapi.tiangolo.com/

Uvicorn - A lightning-fast ASGI server that serves as the interface between your Fast API
application and the internet. You can find more information and documentation for Uvi-
corn on its GitHub repository: https://github.com/encode/uvicorn

CMake - A widely used open-source, cross-platform family of tools designed to build,
test, and package software. You can find information and documentation for CMake on
its official website: https://cmake.org/documentation/

Dlib - A C++ library containing machine learning algorithms and tools, including the
Histogram of Oriented Gradients (HOG) feature descriptor. You can find information
and documentation for Dlib on its official website: http://dlib.net/

OpenCV (cv2) - An open-source computer vision and machine learning software library.

https://www.python.org/downloads/
https://www.python.org/downloads/

EC2 » Instances) i-06f1ef99a0de98952

Instance summary for i-06f1ef99a0de98952 info ‘ Connect ‘ ‘ Instance state ¥ ‘ ‘ Actions ¥
Updated less than a minute ago

Instance ID Public IPv4 address Private IPv4 addresses

i-06f1ef99a0de98952 63.32.132.180 | open address [4 172.31.22.135

IPv6 address Instance state Public IPv4 DNS

- ® Running ec2-63-32-132-180.eu-west-

1.compute.amazonaws.com | open address [

Hostname type Private IP DNS name (IPv4 only)

IP name: ip-172-31-22-135.eu-west-1.compute.internal ip-172-31-22-135 eu-west-1.compute.internal

Answer private resource DNS name Instance type Elastic IP addresses

1Pv4 (A) c7g.4xlarge 63.32.132.180 [Public IP]

Auto-assigned IP address VPCID AWS Compute Optimizer finding

- vpc-0c735787e36a3c094 [A ®
User: arn:aws:sts:250738637992:assumed-role/AWSReserve
dSSO_MSCCLOUD_554ef120b0d7b74a/%x21188955@studen
tncirl.ie is not authorized to perform: compute-optimizer:Ge
tEnrollmentStatus on resource: * because no identity-based
policy allows the compute-optimizer:GetEnrollmentStatus a
ction
Retry

IAM Role Subnet ID Auto Scaling Group name

- subnet-076b470b63898f9e1 [4 -

IMDSv2
Optional

Figure 1: AWS EC2 instance

You can find information and documentation for OpenCV on its official website: ht-
tps://docs.opencv.org/

Node.js and npm - Node.js is a JavaScript runtime, and npm is the package manager
for Node.js. You can find information and documentation for Node.js and npm on their
official websites: https://nodejs.org/ and https://www.npmjs.com/

Serve - A simple static file server for serving web pages. You can find information and
documentation for Serve on its GitHub repository: https://github.com/vercel/serve

* Need to download the dependency files from the requirement.txt file using the
following commands - pip install -r requirements.txt

4 Implementation steps

4.1 Methodology

File structure of the project for front (React JS) and backend (Fast APi)
Config Files to handel the face menthod, face folder and E.t.c-
GenerateEncodings : The model trained with HOG and the output is generated in
the GenerateEncodings folders. Code snippet of it [6] [7]
* Commands to run the Frontend - pm2 "npm start” start —name frontend
* Commands to run the backend - pm2 start ”python3 main.py” —name ”hawkeye”
* Commands to check for the log - sudo pm2 logs
* Commands to check the status of the application - pm2 status [J]

pip install fastapi o
sudo apt install python3-pip

pip install uvicorn

pip install cmake

sudo
pip3
sudo

pip3
sudo
sudo
sudo
sudo
sudo
sudo

apt-get
install
apt-get
install
apt-get
apt-get
apt-get

update && sudo apt-get install libgla

dlib --force-reinstall --no-cache-dir --global-option=build ext
install ca-certificates curl gnupg

cv2

install python3-distutils

install python3-apt

install python3.9-dev

apt install nodejs
apt install npm
npm install -g serve

Figure 2: Dependency Files to Install dependency

] ubuntu@ip-172-31-22-135: ~/ X

dlib==19.22.1
face-recognition==1.3.0
ition-models==0.3.0

face-

opencv-python==4.5.5.62

pandas==1.1.

5
(¢}

requests==
SQLAlchemy

Figure 3: Requirement Files to Install dependency

File used 1 make]

o

aocker Conlaing
~—— Dockerfile _'1
-'I | Conlaing all respongs codes of AP| |

— Init__.p¥ f"‘_"ﬁ
~—— apl_ops.py -_} al parameters
—— cascade ool cascades generabed by .1|:|
| “——haasrcascade_frontaliace default.omi diib Tor [ace dalaction configuration il
- Al fohder names, pahs

W-WJ are stored here
-—— database - —
| b= init__.py 1. trud.py contains function 1o add and ged status
I !—:ru:l.p-_f b
| ;_m""““_.nf"’ . database.py creates sqited db
| L—— schemas.py models and schemas represent dala models

. hawkeye db is sgied db

~—— hawhkeye.db A
—— gncodings " ™
| ——encodings 2021 12 13 10_55 02 PM.pkl sach encoding represent trained models, they
I Bt gt Ly have timestamp al the end. So that latest
' sncodings_2021_12_14_11_55_07_Piipkd encoding is picked for making predictions
~—— face_data - J
| b—— adrian usars face data, each
| = bijon0& lolder represents each y
| b lan malcolm sser . lmhﬂﬂﬁhhfnﬂrmﬁlgtnmﬁu

fromn faces presant in lace_data

o

~—— generate_encodings.py j

—_ “n”}_.—-[main entrypoint, REST apl

— umwunnw

'-—rlﬂl.iﬂmh.tlij
— FESpONEE I'I'md-l'll
—— utils.py

utdity functions like

save images, nead files,

check Niletype

) \.

HEunction 2 ; find taces - first image is|
convearted inba black and while, then
python packages is110 | | aee getection is performed, and for
lnpial Inko anviroamant each faces detected its maiched
against present encedings to find

(J.I-w 1 :Mind Mﬂﬂ!mlﬁlﬁg

ancodings Tolder

whose lacea it is

pydantic respansa madels usad
for lormatting dictionary object
types

Figure 4: File Structure of the project (Backend)

BaseSettings

Figure 5: Config File of the Backend

datet ime

settings

Figure 6: GenerateEncodingsl (Model Training)

Figure 7: GenerateEncodings2 (Backend)

ENC_Nname

Figure 8: GenerateEncodings3 (Backend)

name namespace version | mode pid uptime u status cpu mem user watching

frontend default N/A ork] 0 ¢] 15 0% ob ubuntu
hawkeye default N/A ork| 3287914 6h 2 0% 352.4mb ubuntu

ui default N/A ork 0 0 15 0% ubuntu
3

ui-new default N/A ork] 763519 0s 256... 0% 5 ubuntu

] Current process list is not synchronized with saved list. App main static-page-server-8082 differs. Type 'pm2 save' to synchronize.

Figure 9: Status of the application (Backend)

&« C A Notsecure | 63.32.132.180:3000

Hawk Eye
Upload Image

Choose File | No file chosen

Figure 10: Uploadlmage for identification

<« C' A Notsecure | 63.32.132.180:9092/docs#/Add%20newd%20Person/create_new_face_create_person_post w4 W& & 0O o

‘ / Read Root v
Add new Person ~
/create_person/ Create New Face N

Parameters Cancel | Reset

Name Description

sssss . Vijay01

Request body """ multipart/form-data v

images * eauire Add string item

array

Figure 11: Addperson known person to the application

5 Applications

* UploadImage - Upload the image to identify the face
* AddPerson - Add the known person to the application
* Train Model - Train the model for the know persons

6 Execution and Results

In this study, two small image databases were constructed, sourced from Unsplash and
Google, aimed at evaluating model performance across varied image types and sizes.
The assessment of these datasets revealed that dlib consistently outperformed alternative
models. Randomly selected facial images from Google were employed to validate the
trained models, resulting in the classification of individuals as ”UNKNOWN.” Subsequent
testing of non-facial images demonstrated the models’ ability to correctly refrain from
predicting faces and instead presented a reset option. Through training a DLIB-based
face detection model on images of seven renowned personalities from the Labelled Face
Database, we achieved accurate results. The training process and subsequent accuracies
were obtained using an AWS EC2 cloud environment, facilitated by a dedicated backend

Create New Model ~

GET /train/ Create Encodings AN

No parameters

Responses
Code Description Links
200 No links

Successful Response

Media type

application/json v

Controls Accept header.

Example Value | Schema

{

"status”: "string”,

"code”:
“encoding_name": "string"

Figure 12: Model Training

API system developed for this project.

	Introduction
	Prerequisites
	Environment Setup
	Implementation steps
	Methodology

	Applications
	Execution and Results

