

Configuration Manual

MSc Research Project
Cloud Computing

Shashank Arvind Gokhale
Student ID: x21226661

School of Computing
National College of Ireland

Supervisor: Dr. Rashid Mijumbi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Shashank Arvind Gokhale
……. ………

Student ID:

X21226661
………..……

Programme:

Cloud Computing
………………………………………………………………

Year:

2023
…………………………..

Module:

MSc Research Project
…….………

Lecturer:

Dr. Rashid Mijumbi
…….………

Submission
Due Date:

14/08/2023
…….………

Project Title:

Designing a Robust Multi-Cloud DevOps Strategy for Kubernetes
Disaster Recovery: An Open Source Approach
…….………

Word Count:
1482 10
……………………………………… Page Count: ………………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Shashank Arvind Gokhale
……

Date:

14/08/2023
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Shashank Arvind Gokhale
Student ID: x21226661

1 Prerequisites

This project aimed to create a robust multi-cloud DevOps strategy for Kubernetes disaster
recovery utilizing open-source tooling. The main objective of this study is to create a CI/CD
pipeline for Kubernetes disaster recovery and compare the recovery time objective (RTO) and
recovery point objective (RPO) variances between two distinct cloud providers. In this study,
we considered Google Cloud Platform (GCP) and Microsoft Azure as our two different cloud
providers.

1.1 Cloud Stack

Create free tier accounts on both GCP and Azure before starting with the implementation of
this project. Once the cloud accounts are created create the service principle accounts for both
GCP and Azure to provide programmatic access to perform the required changes during
pipeline execution. Make sure to generate the secret keys and provide access to these service
principles to have contributor-level access as these accounts can assume roles and perform
automated tasks on behalf of you.

Figure 1: Service Accounts Created for our Account.

1.2 GitHub

We have used GitHub action as our CI/CD pipeline enabling open-source tool so we need to
create a GitHub repository to store all the configuration files written for infrastructure as code
(IaC) to be successfully executed by pipeline when initiated. Additionally, this distributed
version control git ensures that there is only one source of truth to the pipeline and helps
mitigate configuration drift.

2

Figure 2: GitHub repository created to host configuration files.

Figure 3: GitHub workflow files created for Azure

2 Terraform Setup

We have utilized terraform as an infrastructure orchestrator to create necessary resources
which are the google kubernetes engine (GKE) and azure kubernetes service (AKS).

2.1 Terraform Prerequisites

We are utilizing Terraform backend to store the state files generated by Terraform. So as to
achieve remote backend capability we need to create object stores on both GCP and Azure and
configure terraform to use them. In our case, we have a bucket named ”terraformstate” for
Azure and ”terraform-state-github-ci-cd” for GCP as shown in Figure 4. Terraform state file is
locked if a job is initialized to make resource changes having this on the object store helps
achieve easy collaboration with multiple developers.

Figure 4: Remote backend for GCP and Azure

3

2.2 Terraform Code Developed

Figure 5 shows the terraform code snippet developed to create an AKS cluster on Azure.
VM instance used for AKS is ”Standard-D2-v2” and 2 nodes of this have been deployed
to ensure resilience and the location is ”West US”. These parameters can be changed as
per your requirement. similarly terraform code is generated for GCP.

Figure 5: AKS creation terraform code snippet

2.3 Terraform Critical Commands

Some critical commands in Terraform are mentioned below:-

• ’terraform init’:- Initializes the terraform configuration, and downloads required
plugins declared in terraform configuration files.

• ‘terraform plan’:- Generates an execution plan by comparing it with the current state
which is stored in terraform.tfstate with the desired state defined in terraform
configuration files. This command will not alter the provisioned resources of the
infrastructure but shows the drift in configuration if any.

4

• ‘terraform apply’:- Applies the changes to the infrastructure resources defined in
terraform configuration files.

• ‘terraform destroy’:- Deletes all the infrastructure resources which were created in
apply phase that is present in terraform.tfstate file.

2.4 Terraform Initialization in Pipeline
The below code shows how terraform is installed and initialized in the pipeline for the azure
cloud:-

Figure 6: Terraform initialization on pipeline

5

The GitHub runner which we are making use of is running the ubuntu operating system and
the default shell configured is bash. We are directing GitHub actions to install Terraform as
specified in line 20. lines 31, 35, 44, & 52 perform terraform init, format, plan, & apply
respectively.

3 Velero Setup

This project utilizes Velero as a backup and restore utility for containerized applications
deployed on Kubernetes clusters. velero requires an object store to keep the backed-up content
using restic plugin. Figure 7 shows velero architecture.

Figure 7: Velero Architecture

The pipeline workflow file dictates downloading velero CLI and making it executable as shown
in line 5 of listing 2. Once CLI is downloaded we start installing the velero on kubernetes
cluster line 48 shows which provider we are using in this case it is GCP this needs to be changed
to azure if we want to deploy it in Azure. Line 51 shows the bucket name which will be utilized
to store the backups on google cloud.

Figure 8: velero installation on cluster.

Line 52 passes the credential file to Velero installation as Velero needs to assume roles on the
managed k8s cluster on GCP to create backups and restores. this credential file is passed as an
environment variable to the GitHub runner ensuring security. Line 46 deploys a demon set on
Kubernetes cluster equipped with restic plugin to act as a node agent to perform file-system

6

backups and store them as repositories in the object store making it easy to migrate to another
cloud in the event of disruptions.

3.1 Velero Backup Command
Velero can be used to backup different tiers of the k8s cluster such as it can backup only certain
pods, namespaces, entire clusters and more. the below command can be used to backup a
namespace.

velero backup create --include-namespaces "namespace-name" --default-volumes-to-fs
backup=true "backup-name"

3.2 Velero Restore Command
The below-mentioned command can be used to restore the backed-up content on the k8s cluster
in the same region, a different region or another cloud provider.

velero restore create --include-namespaces "namespace-name" --from-backup "backup-name"

4 Application Install on Kubernetes cluster
Any application of your choice can be installed to test this pipeline but make sure to change
the pipeline code to include the namespace of the application which you have installed and
want to perform a restore using velero.
In our case, we made use of a simple wordpress blog as an application to be tested. which uses
mariaDB as the database and uses persistent volume claims. we made use of helm package
manager to install this application. Once the application is installed login to the WordPress
admin page and post a new blog to test whether Velero was successful in restoring the
application along with persistent volume or not.

helm install my-release oci://registry-1.docker.io/bitnamicharts/wordpress
--namespace=wordpress

5 Azcopy Setup
we have made use of Azcopy to migrate the backups from one object store to another object
store hosted on different cloud providers i.e., GCP storage bucket content is migrated to Azure
storage bucket and vice versa.

Figure 9: Shows the code for GCP to Azure data transfer workflow.

7

6 Scenario Implementation
We have selected namely two scenarios which are as follows:

1. Software Upgrade Failure
2. Area Wide Power Outage/ Datacenter Outage in a Region.

Figure 10: Shows how the implementation should be for the said scenarios.

6.1 Scenario1
Below is the code snippet to implement the pipeline for scenario 1 for GCP.

Figure 11: Scenario 1 implementation in pipeline workflow.

Line 85 in the above code restores the WordPress application, and line 88 waits till all the
restored pods attain a ready state and appends the time taken to restore in the timing-output.txt

8

file. Line 93 deletes the restored namespace for the next iteration. We can see that this program
iterates 20 times as shown in line 80.

6.2 Scenario 2

6.2.1 Cloud Failover
The below code snippet shows the pipeline for Azure to GCP failover.

Figure 12: Code snippet showing Azure to GCP failover.

9

The first half of the pipeline till line number 55 is responsible for creating the infrastructure
resources and configuring gcloud CLI to establish communication with the GCP
programmatically as shown in Figure 6. Lines 84 to 137 are responsible to install the velero
and perform the restoration WordPress application. line 139 calls for terraform destroy which
destroys all infrastructure resources for the next iteration. In a similar manner, GCP to Azure
failover has been coded.

6.2.2 Region Failover
Region failover is similar to cloud failover, but the only change is the terraform part of the code
will be changed and the working directory will be changed in the pipeline as shown in the
below code.

Figure 13: Shows the code snippet of application restore in different region.

Line 18 shows the working directory being changed to terraform-secondary where terraform
configuration files are kept for that region.

7 Analysis & Plot for Timing Data Collected
Once both scenarios are iterated for 20 cycles we get the timing data to calculate the mean time
to restore. we have made use of Python to plot the density plot for the scenarios below is a
Python program used to plot a comparative chart for scenario 1. Similarly, it is generated for
scenario 2.

10

Figure 14: code snippet Python Code for Density Plot and 95% Confidence Intervals.

Figure 15: This will be the generated plot from the running code provided in Figure 14.

11

