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Designing a Robust Multi-Cloud DevOps Strategy for
Kubernetes Disaster Recovery: An Open Source

Approach

Shashank Arvind Gokhale
21226661

Abstract

This study focuses on designing a DevOps centered strategy for a resilient multi-
cloud disaster recovery. It targets managed Kubernetes clusters deployed on Google
Cloud Platform (GCP) and Azure, utilizing open-source tools to enhance flexibility,
mitigate vendor lock-in, and streamline the disaster recovery process. A CI/CD
pipeline is established to increase the efficiency of disaster recovery across cloud
providers. The research evaluates Recovery Time Objectives (RTO) and Recov-
ery Point Objectives (RPO) for containerized applications rolled out on GCP &
Azure, specifically in scenarios involving software upgrades and area wide power
outages/datacenter failures. The aim is to offer an alternative to cloud specific
tools, enabling migration and restoration across cloud service providers post dis-
aster. The developed pipeline explores variations in RTO & RPO amongst distinct
cloud providers for the same application stack. The findings reveal GCP’s efficiency
in restoring applications after a system upgrade failure, while Azure demonstrates
quicker migration and restoration capabilities in datacenter failure scenarios.

Keywords - Kubernetes, Disaster Recovery, DevOps approach, google kuber-
netes engine, Azure kubernetes service, velero.

1 Introduction

In today’s dynamic business landscape, the ability to swiftly develop, deploy, and
scale applications is paramount to an organization’s success. Microservices archi-
tecture for applications with Kubernetes (K8s) container orchestration is a proven
approach to achieve scalability, agility, and service iteration capabilities to meet
these demands (Burns et al. (2022)). Moreover, when this approach is practised on
the cloud it can significantly benefit a business by offering unparalleled scalability,
resource elasticity, inherited global reach and cost-efficiency by its pay-as-you-go
model.

As many organizations are adopting this microservices approach for application
deployment there is a need for a robust disaster recovery (DR) process to ensure
business continuity in the event of a disruption. These DR scenarios can be caused
due to various factors such as natural calamities, underlying system hardware fail-
ure, human errors while configuring the systems, and cybersecurity incidents such
as ransomware, phishing, or malware attacks. Recovery Time Objective (RTO),
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Recovery Point Objective (RPO), and expenses associated are key considerations
in DR planning.

Cloud service providers (CSP) offer disaster recovery as a service (DRaaS) to re-
store the services of an organization during a time of disruption. But these solutions
lack flexibility and customization option for DR as these services are designed to
work in specific workflow patterns which might not perfectly align with the organ-
ization’s requirements. Enterprises utilizing this offering increase their dependence
on CSPs subjecting themselves to potential risks, as any issues or disruptions on
the provider’s side may impact the effectiveness and reliability of the DR process.
Particularly, this is true for certain specialized industry sectors which are subjected
to stringent data privacy regulations and are required to retain their data within
specific geographic location. The possible workaround for these companies is to
have a multi-cloud DR strategy to ensure their data stays in the same region i.e.,
migrate all resources to another CSP in the same region. Furthermore, using DRaaS
provided by cloud providers enables vendor lock-in making migration difficult to
different CSP. Also, there are limitations to the cloud services covered by DRaaS
and involve recurring subscription charges resulting in an expensive DR strategy.

Cloud computing is based on shared resource model (Buyya et al. (2009)) where
the underlying hardware resources are pooled and allocated dynamically to multiple
tenants. Cloud users interact with virtualized resources that are abstracted from
the physical infrastructure. However, it’s important to note besides CSP’s aim to
present a consistent and standardized interface to users, there exists difference in
physical infrastructure such as variations in processor types, clock speeds, memory
configurations, and storage technologies. These variations can impact performance
and might lead to subtle performance differences between instances. Studying how
these changes in performance impacts a multi-cloud DR process is also important
in selecting which cloud provider to be chosen as the primary and secondary sites
for DR.

The current state of kubernetes DR on cloud platforms is limited to using cloud
provider’s tool enabling vendor lock-in or rely on expensive third party DR soft-
wares. Open-source tools offer a compelling solution to this challenge, enabling
businesses to achieve tailor made DR for there requirements while avoiding vendor
lock-in and financial burden. But these are harder to implement due to their
complexity and there is a need to develop a strategy in which these tools can be
seamlessly integrated reducing the overall complexity of DR implementation.

1.1 Research Problem

How can we create a robust and effective DevOps strategy for multi-cloud disaster
recovery of containerized applications on Kubernetes clusters, using open-source
tools? Also, what differences in Recovery Time Objectives and Recovery Point
Objectives can we observe among different cloud providers?

1.2 Motivation

In the realm of cloud computing, we believe this DevOps-centric approach for multi-
cloud kubernetes disaster recovery using open-source tooling can bring benefits as
outlined below:
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1. Provides a comprehensive methodology to implement multi-cloud DR for
Kubernetes utilizing platform-agnostic approach.

2. Mitigates risks associated with vendor lock-in.

3. Facilitates the comparison of variations in RTO & RPO among different CSP,
assisting researchers and developers in making well-informed decisions when
selecting a CSP for their DR requirements.

1.3 Structure of the Document

Following is an overview of the work’s content, In Section 2, the literature regard-
ing DR is reviewed to assess current state of the art and identify key performance
indicators for DR. Section 3, describes research methodology, scope of experiment-
ation, and results acquisition strategy. Section 4, delves into open-source tools
utilized and involves high-level architecture of the proposed solution. Section 5,
shows the final outputs of the successfully implemented DevOps-centric approach
for multi-cloud kubernetes DR. Section 6, provides an in-depth analysis of the res-
ults gathered from experiments conducted. Section 7, summarizes all the research
outcomes and offers recommendations for future work.

2 Related Work

This section delves into the significance of disaster recovery within information
systems, aiming to secure business continuity. It examines the endeavours of various
researchers in tackling challenges to enhance disaster recovery performance metrics.

2.1 Crucial Role of Disaster Recovery for Business Con-
tinuity

Having a robust disaster recovery strategy is of utmost importance, capable of
enduring disruptions caused by natural or human-induced events. This forms a
fundamental cornerstone that dictates the company’s ability to either thrive or fal-
ter in the aftermath of a disaster. According to Gartner reports, worldwide public
cloud end-user spending is to reach about $600 billion in 20231, showing a 21.7%
growth from the previous year. It predicts that By 2026, 75% of organizations to
adopt a digital transformation model based on the cloud as a fundamental platform.

However, In 2021, several significant cloud outages underscored the vulnerabil-
ities of relying solely on single cloud provider2. On December 7th, AWS us-east-1
experienced an outage affecting many crucial services. Google Cloud faced a net-
working glitch on November 16th. AWS EU-Central region encountered an outage
on June 10th due to temperature-related connectivity issues. The largest Europe-
based cloud provider, OVHcloud, saw its data centre burn down on March 10th.
According to Andrade et al. (2017) Half of the businesses that encounter signific-
ant data loss resulting from disasters cease operations within 24 months, while a
staggering 93% cease operations within a span of 5 years. This shows that having
a robust disaster recovery plan plays a crucial role in business continuity.

1Gartner.com
2Cast.ai
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2.2 Disaster Recovery Performance Metrics

RTO and RPO are considered to be the primary performance metrics of disaster re-
covery efficiency (Suguna and Suhasini (2014)). RTO measures the time required to
restore the system to normal order after a disruption. Whereas RPO measures the
time between the last successful data backup before the disruption till the disaster,
thus providing maximum data which can be lost after the successful restoration.
The other important metric is the financial expense involved in performing DR
(Alhazmi and Malaiya (2012)). It is very important for a company to declare the
SLAs (Service Level Agreements) and SLO (Service level objectives) based on these
metrics to their customers to safeguard themselves from risks during the event of
a catastrophe. Alhazmi and Malaiya (2012) gave an equation to calculate the cost
of DR for an organization for a time period of one year.

The total cost (CT ) can be calculated as the sum of initial cost (Ci), operating
cost (Co), and expected annual costs for potential disasters (Cd):

CT = Ci + Co + Cd (1)

The annual disaster cost (Cd) is given by:

Cd =
∑
i

pi(Cri + Cui) (2)

where (Cri) is the expected cost of disaster, (Cui) is the unrecoverable disaster that
is dictated by RTO. for each type of disaster i, (pi) is the probability of its occur-
rence.

Alhazmi and Malaiya (2013) highlighted potential disaster triggers over a 5-
year span, encompassing events such as system upgrades, power disruptions, fire,
configuration change management, and cyber-attacks. But, System upgrades and
power outages accounted for 72% and 70% respectively which were highest when
compared with other events. Hence in this study, we will be mainly focusing on
these two events to design our DR approach.

2.3 Evolution of Disaster Recovery Approaches

2.3.1 Traditional Approaches: Hot, Warm, and Cold Standby

Traditionally, DR strategies were categorized into three main approaches: hot
standby, warm standby, and cold standby. Hot standby, as discussed by Wood et al.
(2010) and Pokharel et al. (2010), involves maintaining mirrored, ready-to-activate
servers in a secondary datacenter. This approach ensures near-zero Recovery Time
Objective (RTO) and Recovery Point Objective (RPO) but comes at a higher cost
due to dual active deployment. Warm standby strikes a balance between recovery
speed and cost-effectiveness. It involves keeping applications in a ”warm” state
with partial deployment, offering flexibility in RPO through synchronous or asyn-
chronous replication. On the other hand, cold standby, characterized by periodic
data replication and longer RPO intervals, suits applications without stringent SLA
requirements.

2.3.2 DRaaS a Cloud-Based Approach

The advent of cloud computing brought about a paradigm shift in DR approaches.
DR as a Service (DRaaS), as explored by Wood et al. (2010), offers a cloud-based
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solution that provides benefits such as cost savings, scalability, and flexibility. It
facilitates seamless migration of systems to the cloud and ensures uninterrupted
business operations. However, challenges related to data compliance, security, and
vendor lock-in need to be addressed for widespread adoption.

2.3.3 Agile & DevOps Integration

Researchers like Baham et al. (2017) proposed agile methodologies for DR, emphas-
izing real-time updates, flexibility, and adaptability. These principles align with
the agile development framework and emphasize continuous improvement. The
integration of DevOps culture, as highlighted by Rajkumar et al. (2016), brings
collaboration between development and operations teams, enabling efficient soft-
ware delivery with stability. This cultural shift ensures rapid deployments, reduced
failure times, and effective uptime.

2.3.4 Automation using Infrastructure as Code

Automation emerged as a key enabler in DR evolution. Lavriv et al. (2018) em-
ployed Infrastructure as Code (IaC) approach using tools like Terraform to auto-
mate disaster recovery processes. This approach significantly reduced RTO when
compared to manual process and demonstrated the potential of automation in en-
hancing disaster recovery efficiency. but the proposed solution was limited to virtual
machine instance recovery and a single cloud provider.

2.3.5 Multi-Cloud Strategy

As organizations embrace multi-cloud deployments for enhanced redundancy and
availability, new challenges arise. Gallagher and Lennon (2022) advocated for de-
ploying applications across multiple availability zones in a multi-cloud architecture.
This approach minimizes disruptions during disasters and emphasizes the import-
ance of deployment pipelines to streamline processes. However this study was
limited to only utilizing cloud providers tools for DR which might result in vendor
lock-in.

2.4 Disaster Recovery for Kubernetes

Kubernetes, an open-source container orchestration tool introduced by Google in
2014, was designed with a strong focus on improving the experience for developers
working on cluster applications. Its core aim is to streamline the deployment and
management of complex distributed systems while capitalizing on the efficiency
benefits of containers. Additionally, it incorporates disaster recovery capabilities
at its core (Burns et al. (2016)). Nonetheless, even meticulously designed Kuber-
netes clusters are susceptible to failures arising from factors like system upgrades or
widespread outages. This reality has prompted numerous authors to turn to Velero,
an open-source backup and restore tool designed for Kubernetes, to execute effi-
cient disaster recovery procedures (Poniszewska-Marańda and Czechowska (2021)).
Sameer et al. (2022) conducted a comparative study of disaster recovery tools for
Kubernetes clusters, highlighting the significance of tool selection based on func-
tionality and platform support according to them velero and kasten k10 were best
amongst the bunch.
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2.5 Comparative Analysis of Related work

In Table 1, related works have been compared based on their focus, benefit and
challenges

Papers Focus Benefit Challenges

Wood et al.
(2010)

DRaaS
Cost savings, flexibil-
ity, & scalability.

Compliance & data security,
standardization, vendor lock-in,
deployment complexity & expens-
ive.

Pokharel et
al. (2010)

Multi-site
cloud DR

High availability
low downtime.

Multi-cloud migration, intera-
cloud traffic & deployment com-
plexity.

Baham et al.
(2017)

Agile meth-
odology for
DR

Rapid development,
reduced failure times.

Leadership support, Lack of situ-
ational awareness.

Rajkumar et
al. (2016)

DevOps
Culture

Extended availability,
faster deployments, &
increased communica-
tion .

limited to cloud providers tools,
Vendor lock-in, & multi-cloud de-
ployments.

Larviv et al.
(2018)

Terraform
for DR

RTO improvement
from automation.

Multi-cloud deployment not ex-
plored, & was limited to virtual
machine instances on cloud.

D. Gallagher
et al. (2022)

Multi-Cloud
application
DR

High availability, &
deployment pipelines.

Utilized cloud providers tooling,
vendor lock-in, & deployment
complexity

Sameer, S et
al. (2022)

Kubernetes
DR Tools

Available tools feature
comparison.

Multi-cloud DR was not explored,
& DR was not automated

Table 1: Comparison of Related Works

3 Methodology

From section 2, it is quite evident that there are challenges present such as com-
plexity involved in designing & implimenting, vendor lock-in, multi-cloud data mi-
gration, lack of situational awareness & coordination between teams to implement
a robust DR process. However, the proposed DevOps-centric approach utilizing
open-source toolings for robust disaster recovery for Kubernetes helps mitigate
these challenges. The failures caused by system upgrades and power outages/wide
area outage is still a big issue and accounted for 72% & 70% respectively over a
period of five years in a study conducted by Alhazmi and Malaiya (2013). hence
we will be considering these two scenarios to be implemented and evaluated for our
proposed solution.

In our research, we focus exclusively on the deployment of Kubernetes through
managed clusters offered by cloud providers. This emphasis is aligned with the
shared responsibility model, which mandates comprehensive patching and updates
of the underlying hardware. Furthermore, the abstraction of hardware failures
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and repairs to the end user contributes to the successful realization of our chosen
scenarios.

3.1 Scenarios

We have selected namely two scenarios which are as follows:

1. Software Upgrade Failure

2. Area Wide Power Outage/ Datacenter Outage in a region.

The approach for both scenarios will be different but both will make use of pipelines
for disaster recovery and will be deployed on the managed Kubernetes clusters.
Additionally, the consistency of the application stack across both scenarios is para-
mount, as any deviation within this stack could potentially disrupt the accuracy of
the DR timing data.

3.1.1 Scenario 1

Disruptions can arise from errors in the updated version of an application stack de-
ployed to the Kubernetes cluster. These disruptions encompass heightened latency,
resource shortages, pod malfunctions, conflicts in dependencies, and configuration
anomalies. In such instances, a prompt rollback and restoration to the previous
version, complete with its persistent data, become pivotal to safeguarding business
continuity. In this scenario, the managed Kubernetes cluster remains unaffected
and operational. However, the deployed application on nodes necessitates reverting
to the previous version. Managing this necessity falls under the responsibility of
the backup utility which is driven by a pipeline workflow, which will be elaborated
upon in subsequent sections of this discussion.

3.1.2 Scenario 2

A datacenter outage within a specific region poses a significant threat to the en-
tire application, causing disruptions in business continuity. This is primarily due to
the complete unavailability of the underlying compute resources, which includes our
managed Kubernetes cluster. In such circumstances, there are two potential courses
of action: firstly, relocating the entire application to an alternate region within the
same cloud provider; secondly, migrating to a different cloud provider altogether,
this is driven by data privacy regulations necessitating user data to remain within
the same geographic jurisdiction. To address this scenario, a meticulously crafted
pipeline is required. This pipeline would orchestrate the allocation of infrastructure
resources across diverse regions or alternate cloud provider. Once these resources
are provisioned, the kubernetes backup utility comes into play recovering the ap-
plication along with its persistent volumes, effectively restoring normal operational
status for the application stack on the managed kubernetes cluster.

3.2 Architectural Overview

Figure 1 shows the architectural overview of the proposed approach. In which a
continuous delivery pipeline will be created which when triggered performs a set of
automated workflows for creating the required managed Kubernetes cluster on the
cloud by making use of an infrastructure orchestrator whose configuration files are
kept in a distributed version control system. After the managed kubernetes cluster
is created it starts with the second stage of deploying the kubernetes backup tool
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Figure 1: Architectural overview of the approach

on the managed cluster to manage the backup and restoration of the application
stack. The version control system acts as the only source of truth for the processes
running in the pipeline.

Distinct pipelines have been tailored to cater to the specific demands of scenario
1 and scenario 2. The pipeline dedicated to scenario 1 encompasses an automated
workflow executed for the Kubernetes backup tool, solely focusing on restoring the
application stack. Conversely, the pipeline designed for scenario 2 is a more com-
prehensive undertaking. It encompasses two pivotal stages: the orchestration of
infrastructure via an infrastructure orchestrator, coupled with the subsequent util-
ization of the Kubernetes backup tool’s workflow. Together, these stages facilitate
the seamless migration of the application to an alternate region or a different cloud
provider.

3.3 Results Acquisition

It is important to acquire consistent output for the designed pipelines for the dis-
aster recovery process and to benchmark the efficiency of the disaster recovery
process we will be considering the timing data for each iteration for the scenarios
discussed. the number of test samples size required for having a confidence level of
95% can be given by the below equation (Israel (1992))

n0 =
Z2 · p · q

e2
(1)

where: n0 is the required sample size, Z is the critical z-score, p is the estimated
proportion of attribute present in the population, q is 1 − p, e is the desired level
of precision.

Population in our case is infinite and by assuming p=0.5 with e ± 5% we get
the total sample size required to be:

n0 =
(1.962 · 0.5 · 0.5)

0.0522
= 384.16 (2)

The necessary sample size is considerably large, surpassing the allocated budget
for provisioning cloud resources within the confines of the free trial. Additionally,
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deploying these resources would incur significant expenses and time investment.
Therefore, we will conduct 20 iterations for each scenario, & utilize this sample
size to assess the outcomes. This evaluation will be conducted with a confidence
interval of 95% and will be elaborated upon in the evaluation section of this report.

3.3.1 Collection of timing data for scenarios

The hardware infrastructure supporting managed Kubernetes clusters varies across
regions even within the same cloud provider. Furthermore, different cloud providers
might utilize entirely distinct underlying hardware. It’s important to note that
these hardware resources are shared among multiple tenents to increase resource
utilization of cloud. Figure 2 illustrates the sequence of steps in the pipeline and

Figure 2: Time Measurement Scenario 1

Figure 3: Time Measurement Scenario 2

outlines the timing measurement process for scenario 1. It’s important to note that
detecting malfunctions in containerized applications falls outside the scope of this
project and can be addressed using open-source monitoring tools like Prometh-
eus. The time measurement commences immediately when the pipeline initiates
the recovery of the containerized application. The initial step involves removing
the faulty application, followed by the restoration of the application to a specific
point in time using the backup utility. Lastly, the pipeline awaits the containerized
application to become operational and change its status to ’ready’ before stopping
the timer. This procedure is repeated 20 times to gather the necessary samples
across different cloud providers.

Figure 3 illustrates the sequence of steps in the pipeline and outlines the timing
measurement process for scenario 2. The time measurement for this pipeline ini-
tiates as soon as stage 1 workflow is triggered as shown in Figure 1 involving the
infrastructure orchestrator which recreates the managed kubernetes cluster in the
same cloud provider but different region or on another cloud provider altogether
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depending on the requirement. the next step involves installing the kubernetes
backup utility on the provisioned cluster after successful installation the point-in-
time backup is restored on the cluster. Lastly, the pipeline awaits the containerized
application to become operational and change its status to ’ready’ before stopping
the timer. similar to scenario 1 this procedure is repeated 20 times to gather the
necessary samples to compare the differences between cloud providers.

4 Design Specification

4.1 Open-source Tools Utilized

4.1.1 GitHub Actions

GitHub Actions 3is an automation platform provided by GitHub. we will make use
of it to create DR pipelines to restore the application on the k8s clusters. When
the pipeline is triggered the workflow file defined in yaml is executed on a managed
runner instance which can be a virtual machine or a container. The steps declared
in the workflow file can be run sequentially or parallel which will speed up the
deployment time.

4.1.2 Terraform

To implement the methodology discussed in section 3, we have used Terraform4

developed by hashicorp as the infrastructure orchestrator. Terraform is an open-
source IaC tool which enables users to provision the infrastructure resources in
a declarative and version-controlled manner to a plethora of cloud environments
thanks to its plugin support. Moreover, its native support of state management
ensures only new and modified resources are created reducing time for deployment.

4.1.3 Velero (formerly Heptio Ark)

Velero (formerly Heptio Ark)5 is an open-source backup and disaster recovery tool
designed for Kubernetes clusters. It is a cloud-native tool which takes advantage
of K8s custom resource definitions (CRDs) to define backup specifications. It of-
fers a reliable solution for backing up and restoring K8s resources and persistent
volumes by storing the backups on object stores. The key benefits this tool of-
fers are multi-cloud integrations by plugins, incremental backups, scheduling, and
cluster migration support. Figure 4 shows the overall workflow of the backups in
Velero. The steps involved are as follows:

1. Velero client makes a call to the k8s API server to create a backup object.

2. The BackupController notices the newly created backup object and performs
validation.

3. The BackupController starts the backup process and collects the required data
to backup by querying the API server for resources.

4. The BackupController makes a call to the object store and uploads the backup
file.

3GitHub.com
4terraform.io
5velero.io
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Figure 4: velero backup workflow (courtesy velero.io)

4.1.4 Azcopy

AzCopy6is an open-source command line utility developed by Microsoft. It is an
ideal solution for a range of data management tasks, including cloud-to-cloud data
migration, backup, content distribution, and synchronization. The newer version
of AzCopy v10 supports direct transfer of data from cloud to cloud, not utilizing
the mediators’ bandwidth, thus saving on costs. In our case, AzCopy is utilized
to seamlessly transfer restic backup data generated by velero which is stored on
Google Cloud Storage (GCS) bucket to an Azure storage account. This process
is orchestrated by a cron job that runs on GitHub Actions, ensuring regular and
automated transfers.

4.2 High Level Overview of Proposed Architecture

Figure 5: High level overview of setup architecture

In the context of our study, we have selected Azure and GCP as our designated
cloud providers. Our strategy entails the utilization of GitHub actions to create
a DR pipeline the first stage of the pipeline makes use of Terraform for the pro-
visioning of K8s cluster resources on the cloud provider(Azure/GCP). Subsequent
to the successful deployment of the cluster, the second stage of the pipeline starts
the installation of Velero onto this cluster. This installation will be followed by

6Microsoft.com
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the execution of the recovery procedure for the application stack. The restora-
tion process and backup will make use of restic plugin i.e, the backup created by
velero will be stored as a repository in the object storage infrastructure of the cloud
provider (Google cloud storage7 & Azure storage accounts8) rather than taking a
snapshot of the application using a CSI driver which limits the restoration to only
one cloud provider. The pipeline will not terminate until the application restored
on the cluster changes its status to ’ready’.

4.2.1 Application Stack

The application stack comprises a straightforward WordPress9 blog, incorporating
MariaDB as its database management system. Notably, persistent volume claims
are leveraged to preserve data on persistent volumes. This application serves as
the subject of comprehensive testing across both scenarios simulating the process
of restoration after a disruption.

Figure 6: Data migration between cloud Providers

4.2.2 Data Migration Between Cloud Providers

Figure 7: Data migration between cloud Providers

Figure 7 Illustrates the synchronization process between the GCS bucket and the
Azure storage account. This synchronization is facilitated through the utilization
of AzCopy, executed within the GitHub runner environment. The execution of
AzCopy is orchestrated as a scheduled task through GitHub Actions, employing a
cron job configuration. This data mobility forms a critical component of a multi-
cloud disaster recovery strategy, ensuring the continuity of the application stack.
In the event of unavailability from one cloud provider, seamless migration to an
alternative cloud provider is assured.

7cloud.google.com
8microsoft.com
9wordpress.com
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5 Implementation

Following the careful selection of the discussed open-source tools and disaster recov-
ery architecture in the preceding section, our next step involves the implementation
of the disaster recovery pipeline, aligning with a DevOps-centric approach.

5.1 Cloud Configuration

To ensure programmatic access to cloud resources, we created service accounts.
Security keys are then generated for these accounts & securely stored within Git-
Hub secrets, serving as environmental variables accessible to the DR pipeline en-
abling seamless authentication with the cloud provider when required. To ensure
the unbiased acquisition of test results, we have deliberately selected resources
with comparable specifications from both cloud providers. Specifically, for GCP,
the managed K8s cluster is configured with ”e2-standard-2” instances, featuring 2
vCPUs, 8 GB of memory, and includes the deployment of such two nodes. Like-
wise, for the Azure cluster, we have selected the ”Standard-D2-v2” instance, also
equipped with 2 vCPUs, 7 GB of memory, and two nodes deployed. Furthermore,
the chosen regions for both cloud stacks are within North America, Azure resources
are deployed in ”East US,” while GCP resources are in ”us-central1.”

5.2 GitHub

GitHub repositories have been utilized for storing the configuration files needed
by the DR pipeline to create infrastructure resources and serve as the only source
of truth for configuration files eliminating the ambiguity of configuration drift.
The figure 8(b)figure depicts a successfully executed DR pipeline, encompassing a
sequence of steps that include the terraform apply, the installation of Velero, the
restoration of the application via Velero, and the subsequent resource destruction.
These steps are iterated over 20 times to gather timing data for the evaluation
process.

5.3 Terraform

Terraform was successful in creating the required infrastructure resources on the
cloud providers after initialization of the DR pipeline. Figure 8(a)shows the code
snippet for the deployment of managed k8s clusters on Azure. Terraform has been
configured to use a remote backend to store the state file i.e., on the object store
of the cloud provider which prevents multiple pipelines from getting triggered as
the state file would be locked until the first process completes attaining the desired
state.

5.4 Velero

Velero is configured on the cluster and uses the object store to store the backups
which are created using restic plugin providing us with a file system backup to
restore. The Figure 9 shows the configured storage location for velero on google
cloud named ”shagok-velero-backup” and also confirms the application is success-
fully restored as the pods subjected to restoration attained status ”ready”.
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(a) Terraform Code Snippet (b) Github Action Pipeline

Figure 8:

Figure 9: Pipeline output for velero successful restoration
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(a) Azcopy workflow with completed
status

(b) Newly created container for the
inbound data to azure

Figure 10:

5.5 Azcopy

Azcopy used to migrate the data from GCP to Azure has been successfully achieved
as shown in the figure. new storage container has been created with the same name
as that of GCP storage bucket ”shagok-velero-backup”.

6 Evaluation

6.1 Scenario 1

The application stack encounters errors as a result of a system upgrade, neces-
sitating a restoration to its previous operational state, inclusive of its persistent
volumes. In this case, solely the application stack experiences disruption, while the
Kubernetes cluster remains unaffected. Consequently, only the application stack
requires redeployment which is achieved through a point-in-time restore procedure
utilizing Velero. This restoration process has been executed on both GCP and
Azure across a span of 20 iterations. from the table 2 & table 3 it is quite clear
that GCP is faster than Azure by 40.85 seconds w.r.t their mean time to restore.
Also, from the figure 11 illustrating density plot for 95% confidence interval, it is
quite evident that there is a sizable difference between both providers suggesting
GCP is faster then azure and also has high probability of faster restoration in the
95% interval of the distribution.

6.2 Scenario 2

Scenario 2 involves migrating the application completely to a different region or
cloud provider using pipelines designed to automate the workflow.

6.2.1 Fail-over to different cloud provider

Table shows the timing data for 20 iterations for both migration directions i.e., from
GCP to Azure and Azure to GCP. Figure 12 depicting 95% confidence interval using
t-distribution reveals that GCP to Azure migration is faster than Azure to GCP
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Loop Duration (s)
1 71
2 80
3 73
4 71
5 105
6 67
7 71
8 67
9 84
10 87
11 66
12 128
13 75
14 67
15 69
16 74
17 76
18 76
19 67
20 67

Mean Time 74

Table 2: GCP timing for scenario 1

Loop Duration (s)
1 140
2 111
3 96
4 99
5 89
6 88
7 127
8 260
9 136
10 131
11 108
12 98
13 83
14 135
15 100
16 97
17 105
18 99
19 98
20 97

Mean Time 114.85

Table 3: Azure timing scenario 1

Figure 11: Density plot scenario 1
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cloud and w.r.t mean time of restore from table 4 & table 5 we can say that GCP
to Azure is 73.75 seconds faster than Azure to GCP. Hence, we can use GCP as
our primary site & Azure as secondary site.

Loop Total Duration (s)
1 593
2 595
3 583
4 635
5 588
6 617
7 600
8 605
9 594
10 614
11 582
12 593
13 628
14 632
15 570
16 595
17 620
18 562
19 580
20 598

Mean Time 599.2

Table 4: Azure to GCP Failover

Loop Total Duration (s)
1 491
2 621
3 451
4 412
5 489
6 680
7 775
8 432
9 542
10 474
11 517
12 462
13 461
14 510
15 521
16 534
17 537
18 638
19 468
20 494

Mean Time 525.45

Table 5: GCP to Azure Failover

6.2.2 Migration to Different Region

The pipeline was triggered to move the application to secondary region which in-
volved provisioning of GKE cluster and restoring the application using velero. sim-
ilarly, this was triggered on Azure to migrate the application to secondary region.
This process was iterated for 20 iterations as shown in the table. from the figure
13 it is evident that Azure was faster by 161.7 seconds than GCP when migrating
the application to new region.
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Figure 12: Density plot scenario 2 failover to other cloud provider

loop Total Duration (s)
1 622
2 621
3 610
4 602
5 589
6 585
7 605
8 618
9 579
10 627
11 587
12 610
13 593
14 607
15 612
16 587
17 576
18 614
19 602
20 591

Mean Time 601.85

Table 6: GCP migration to different region

loop Total Duration (s)
1 415
2 410
3 443
4 456
5 433
6 421
7 423
8 444
9 412
10 444
11 412
12 420
13 522
14 442
15 417
16 465
17 430
18 450
19 492
20 452

Mean Time 440.15

Table 7: Azure migration to different region

6.3 Discussion

Having conducted all the experiments for both scenarios and obtained the results,
we can affirm the successful implementation of our DevOps-centric approach to
restoring the containerized application on a Kubernetes cluster. The comprehens-
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Figure 13: Density plot scenario 2 migration to different region

ive analysis of experimental outcomes from first scenarios indicates that GCP was
faster in recovering when system failures occur due to system upgrades and for the
second scenario of area wide outage for cloud providers Azure was faster in migrat-
ing to a different region and also failover from GCP.

From the acquired results we can state that it would be better for organizations
to consider GCP as their primary site to host their application as it supports faster
RTO for the failed application stack after a software revision and use Azure cloud
as a standby site if an area wide outage would occur as it is faster in building up
required infrastructure resources to host the containerized application than GCP.

The RPO considerations are subjected to organizations preference. velero can
schedule backups as low as every 5 minutes and also in our experimentation we
have scheduled it to run every 5 mins and the data is synchronized between cloud
providers every 5 mins using azcopy. which results to be maximum of 10 minutes for
asynchronous initiation and 5 minutes for syncronous i.e., the migration job starts
as soon as the application is backed up. Reducing the backup interval even further
would result in impacting cluster performance and huge backup data hoarding in
object stores driving the costs up.

An important point to note is that the designed pipeline must authenticate
with the cloud provider, granting programmatic access to execute tasks on the
cloud platform. The time required for authentication is not uniform, as it varies
based on the number of requests being handled by the CSP, introducing a latency
factor. this can be optimized by testing different types of authorizers for cloud
provider in further studies to improve performance of the designed pipeline.

7 Conclusion and Future Work

In conclusion, we were able to successfully develop a DevOps-centric strategy for the
multi-cloud DR process by creating CI/CD pipelines by making use of open-source
tooling to restore the containerized application running on managed Kubernetes
cluster as efficiently as possible on both the chosen cloud providers and compare
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the RTO & RPO between the cloud providers for the scenarios of system upgrade
failures & area wide outage requiring application to be migrated to different region
or cloud provider. This platform-agnostic approach to DR mitigated the risks as-
sociated with vendor lock-in, and allows organizations to maintain flexibility and
freedom in their cloud service provider selection.

From the evaluation section it can be stated that organizations should consider
GCP as their primary site to host their application as it supports faster RTO for the
failed application stack after a software revision and use Azure cloud as a standby
site if an area wide outage would occur as it is faster in building up required infra-
structure resources to host the containerized application than GCP.

The process of implementing such a pipeline is notably intricate and demands
the professional expertise to make well-informed decisions during the tool selection
phase. The range of software available for disaster recovery is extensive when
building a solution of this nature, and this study can serve as an effective initial
reference point. This study has investigated GCP and Azure; however, there is
potential for further exploration into other cloud platforms and on-premise data
centers. Another potential avenue for research is to analyze disparities based on the
underlying hardware type. In this case, we focused on standard free-tier offerings,
but it is also worthwhile to examine systems with enhanced performance capabilities
across various cloud providers. A study can be conducted to minimize the time
taken for pipeline initialization which directly depends upon the mechanism used
for authentication with the cloud provider by testing different types of authorizers.
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