“—-
\ National

Configuration Manual

MSc Research Project
Cloud Computing

Shiva Ram Raja Gandhi Raja
Student ID: x21219095

School of Computing
National College of Ireland

Supervisor: Mr. Rashid Mijumbi

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shiva Ram Raja Gandhi Raja
Student ID: x21219095
Programme: Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Mr. Rashid Mijumbi
Submission Due Date: 14/8/2023
Project Title: Energy Efficient Task Scheduling Approach in Cloud Environ-
ments towards Green Cloud
Word Count: 902
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shiva Ram Raja Gandhi Raja

Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shiva Ram Raja Gandhi Raja
x21219095

1 Introduction

With this report, one can understand the steps needed to run and to successfully deploy
our research which is Energy Efficient Task Scheduling Approach in Cloud Environment
using the CloudSim framework. This report will walk you through the hardware require-
ments and software requirements to achieve successful implementation of the project.

2 Pre-Requirements

Let’s look into the prerequisites of this project, by satisfying these we will be well pre-
pared on the configuration journey for our Energy-Efficient Task Scheduling project using
CloudSim.

2.1 Hardware Requirements

For this project, we need a laptop or desktop with a minimum of i3 processor, 8 GB
RAM, and 100 GB storage capacity is needed to run the CloudSim toolkit.
Table [1| shows the hardware setup I used for the project.

Table 1: Hardware used for the project

Parameter Value
Processor Intel 15
CPU 6 cores and 12 threads
RAM (GB) 8
Storage (TB) 1

2.2 Software Requirements

In this section, we will know the software we need to download and install before we start
the project.

e Java JDK 1.8.0-311: Java JDK is necessary for the CloudSim project as it provides
the essential tools and libraries for compiling, running, and developing Java-based
simulation applications that model and analyze cloud computing environments and
scenarios. You can install the version from https://www.oracle.com/ie/java/
technologies/javase/javase8u2ll-later-archive-downloads.html

1

https://www.oracle.com/ie/java/technologies/javase/javase8u211-later-archive-downloads.html
https://www.oracle.com/ie/java/technologies/javase/javase8u211-later-archive-downloads.html

& oracle.com/ie/javaftachn 1-later-archive-downloads.htm cw % » 0@

Products Industries Resources Customers Partners Developers Company

Solaris SPARC 64-bit (SVR4 package) 133.81MB 'ij jdk-8u311-solaris-sparcv9tar.Z
Solaris SPARC 64-bit Compressed Archive 94.88 MB -ni‘ jdk-8u3Tl-solaris-sparcvotar.gz
Solaris x64 (SVR4 package) 13474 MB 'ij jdk-8u311-solaris-x64.tar.Z
Solaris x64 Compressed Archive 9276 MB 'i] jdk-8u311-solaris-x64.tar.gz
Windows x86 Installer 157.37 MB '&j jdk-8u311-windows-i586.exe
Windows x64 Installer 17057 MB 'ij jdk-8u311-windows-x64.exe

Figure 1: Download JDK file

e Eclipse 2022-09 (4.25.0): Eclipse IDE is valuable for the CloudSim project as it
offers a robust and user-friendly integrated development environment, facilitat-
ing efficient coding, debugging, and project management throughout the simu-
lation modeling and implementation process. You can install the version from
https://www.eclipse.org/downloads/packages/release/2022-09/r

@ eclipse.org/downloads/packages/release/2022-09/r

(E CL I pS E Projects Working Groups Members More~ Q-

FOUNDATION

Home / Downloads / Packages / Release / Eciipse IDE 2022-09 / R

Eclipse Installer Eclipse Packages Eclipse Developer Builds ~

The Eclipse Installer 2022-09 R now includes a JRE for macOS, Windows and Linux.

Try the Eclipse Installer 202209 R Download

The easiest way to install and update your Eclipse Development

Environment.

Find out more
& 2,525,953 Installer Downloads.
& 1,657,010 Package Downloads and Updates The Edlipse Installer 2023-06 R

now includes a JRE for
macOS, Windows and Linux.

Eclipse IDE 2022-09 R Packages

Figure 2: Download Eclipse IDE

e Cloudsim Toolkit: It is utilized to simplify the modeling and simulation of cloud
computing systems, enabling researchers and developers to experiment, analyze,
and optimize various cloud-based algorithms, policies, and architectures in a con-
trolled and scalable environment. You can refer the code from https://github.
com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.3 and https://github.
com/Aniket144/Cloud_Simulation_Project

https://www.eclipse.org/downloads/packages/release/2022-09/r
https://github.com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.3
https://github.com/Cloudslab/cloudsim/releases/tag/cloudsim-3.0.3
https://github.com/Aniket144/Cloud_Simulation_Project
https://github.com/Aniket144/Cloud_Simulation_Project

v Assets 4

fPcloudsim-3.0.3.tar.gz 9.
@cloudsim-3.0.3.zip 13
[E] Source code (zip)

@Source code (tar.gz)

® 2 @8 &5 w2 14 people reacted

Figure 3: Download Cloudsim toolkit

3 Configuration setup

Once all the above-mentioned software has been installed, we need to create an environ-
ment variable for Java. To do that we need to follow the below steps.

Go to "systems setting”.

Select ” Advance system settings”.

Go to "Environment variables”.

Under System variables click "path”.

Edit and add a new path of Java.

Uk e

3.1 Importing CloudSim

- — .
$ eclipse-workspace - Cloud Simulation_Project/examples/org/c

File Edit Source Refactor Navigate Search Project Run
o~ Dt -0 QG H G ® B -H-ose-o-m

Pack 5
18 Packag YRR —— o

s
v 522 Clouc

> B4 Rl Import Projects from File System or Archive

> B e . X —
= € Select at least one folder to import as project.
> & so
> h Re
d
i ::: ial: Import source: | C:\Usershgshiv OneDrive\Desktop\NC|_Modules\Theses\Project\ VESRIONT1GA_PSO-20\Cloud_Simulation_Project-master ~ | Directory.. Archive... I
type filter text Select All
Folder Import as eeclect Al
() Cloud_Simulation_Project-master Folder already imported ... L
0of 1 selected
[Hide already open projects
. [] Close newly imported projects upen completion
= Use installed project configurators to:
8 Search for nested projects 1
8 Detect and configure project natures I
Working sets [
(] Add project to working sets MNew...
Select...
Show other specialized import wizards
o

@ < Back Mext » Finish Cancel £

= wromem

= Cansnie e rermmEr

Figure 4: Importing Project

We will now import the cloudsim package in Eclipse and create a project. Figure [
shows importing cloudsim packages.

To create a Java project in Eclipse IDE follow these below steps,
1. Click file on the left corner of the IDE.
2. Click open project from the file system.
3. Browse the "Import source” and select CloudSim package which you need to import.
4. Click finish to complete the import process.

4 Implementation, Configuring the code part

Let’s look into how we will initialize CloudSim by integrating the proposed algorithm and
we will also look into the parameters where we have made the configuration changes.

From the main.jav code set we will now configure our required scenario, Figure
shows the parameters for configuring VM. and Figure [6] shows parameters for cloudlets.
We can change the VM and cloudlet configuration and set it as per our needs which gives
a better simulation outcome.

ject Run Window Help
WOy PARE Y- -H-ODOD-
= 0O] *Mainjava X

//VM Parameters

long size = 10000; //image size (MB)
int ram = 512; //vmn memory (MB)

int mips = 200;

long bw = 1000;

int pesNumber = 1; //number of cpus
String vmm = "Xen"; //VM name

Figure 5: VM Configuration

By -PARE I -F e
8 ["Mainjava X
public static List<cloudlet3> createCloudlet (int userId, int cloudlets){

// Creates a container to store Cloudlets
LinkedList<cloudlet3> list = new LinkedList<cloudlet3>();

100 // Cloudlet parameters

101 long length = 1000;

102 long fileSize = 300;

103 long outputsize = 300;

104 int pesNumber = 1;

105 UtilizationModel utilizationModel = new UtilizationModelFull();
106

Figure 6: Cloudlet parameters

Once we set the VM and cloudlet configuration, we will now initialize the CloudSim
library,

Figure [7] shows setting up and running a simulation using the CloudSim simulation
framework. The code simulates a cloud computing environment where virtual machines
execute cloudlets (tasks) on data centers.

Bun Window Help
B-®s - P ARE T N e G
8 ["Mainjava X

155 try |
156 // First step: Initialize the CloudSim package. It should be called
: // before creating any entities.
int num user = 1; // number of grid users
Calendar calendar = Calendar.getInstance();
160 boolean trace flag = false; // mean trace events
lel
162 // Initialize the Cloudsim library
163 CloudSim.init(num user, calendar, trace flag);
led
165 // Second step: Create Datacenters
16 //Datacenters are the resource providers in CloudSim. We need at 1list one o

@suppressWarnings ("unused")
Datacenter datacenter0 = createDatacenter("Datacenter 0");
@suppressWarnings ("unused")
Datacenter datacenterl = createDatacenter("Datacenter 1");

~

~

//Third step: Create Broker
DatacenterBroker broker = createBroker():
int brokerId = broker.getId();

~ o~

~

U W N RO

//Fourth step: Create VMs and Cloudlets and send them to broker
vmlist = createVM(brokerId,10); //creating 10 wvms
cloudletList = createCloudlet (brokerId,20); // creating 20 cloudlets

-

[e e e e

c

Figure 7: Initializing the CloudSim package

Once cloudsim has been initialized and created all the required environments, now
we will initialize our proposed algorithm GA-PSO. First, a Genetic Algorithm is applied
to perform task scheduling, it will Initialize and evaluate the population and find the
fittest population. And then cross-over and mutation method is applied to the fittest
population and evaluated.

Figure [§ and Figure [J] shows the code where the population is being initialized and
evaluated for the fittest population.

EEG-® - P AFE T EHFH O
i *Mainjava X Population java [¥] vm3,java

// Initialize population

System.out.println("Population Initialization");

int chromosomeLength = 20;

Population population = ga.initPopulation(chromosomeLength);

W oc

Lo 1 (Y S FS T o T e e

W

// Evaluate population
ga.evalPopulation (population);

WO

Figure 8: Initializing Population

After finding the best solution of GA we will apply PSO over GA generated popu-
lation. Using PSO on a population created by GA attempts to combine the advantages
of both methods for more effective and efficient optimization. This hybrid technique is
intended to solve the constraints of individual algorithms and offer a strong resolution for
challenging optimization issues, such as the scheduling of tasks in a cloud environment
that are energy-efficient.

Figure shows Swarm creation and finding the best position for particles, then
binding the cloudlets (tasks) to VMs depending on the best position evaluated by PSO.

[T

B
g = o

U

latacenter

netlab
dom

e

]

) *Mainjava % [3] Population.java
Lus

Bvif-f-woro-
[3) vm3java

> - |

// get fittest individual from population in every iteration

Individual fit =

population.getFittest(0):

System.out.print ("Fittest: ");
for (int j=0;7<20;7++) {
System.out.print (fit.chromosome[j] + ™ "):

}

System.out.println(”

fitness

for (int j=0;7<20;7++)

{
1

//List<Cloudlet> newList =

/

population

/

=> " + fit.getFitness());

broker.bindCloudletToVm(j, fit.chromoscme[j]):

over

Rpply cros

Rpply mutation

broker.getCloudletReceivedList () ;

s0
ga.crossoverPopulation(population);

population = ga.mutatePopulation (population);

/'t

Evaluate population

ga.evalPopulation (population);

// Increment the current generation
iteration++;

}

System.out.println("Best solution of GA: " + population.getFittest(0).toString()):

Figure 9: Get the fittest genetic algorithm population sequence

G-i® P AE

8 [§ *Mainjava X [J) Population java

iter

(s

IR
S T

N I N N
© w0

)

DO B PO [0 D3RI B DO 0 B0 DD DI [
=)
(S

Figure 10:
cloudlets to VMs

int[]1[]

L AR R R

) vm3java

particles =

new int[population.size()]1[201;

for (int ind=0;ind<population.size(};ind++)

{

for(int index=0;index<20;index++)

{

}
}

particles[ind] [index] =

// Swarm creation

Swarm swarm =

// Run

swarm

swarm.run(particles);
//print best position

System.
//bind

broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.
broker.

out.println("Best solution
cloudlets to vms

bindCloudletToVm (0,
bindCloudletToVm (1,
bindCloudletToVm (2,
bindCloudletToVvm (3,
bindCloudletToVm (4,

bindCloudletToVm (S, swarm.bestPosition.
bindCloudletToVm (€, swarm.bestPosition.
bindCloudletToVm (7, swarm.bestPosition.
bindCloudletToVm (S, swarm.bestPosition.
bindCloudletToVm (9, swarm.bestPosition.

bindCloudletToVm (10,
bindCloudletToVm (11,
bindCloudletToVm (12,
bindCloudletToVm (13,
bindCloudletToVm (14,

swarm
sSwarm
swarm
swarm
swarm

bindCloudletToVm (15, swarm.bestPosition.
bindCloudletToVm (16, swarm.bestPosition.
bindCloudletToVm (17, swarm.bestPosition.
bindCloudletToVm (18, swarm.bestPosition.
bindCloudletToVm (19, swarm.bestPosition.

new Swarm(particles,

swarm.bestPosition.
swarm.bestPosition.
swarm.bestPosition.
swarm.bestPosition.
swarm.bestPosition.

population.population[ind] .chromosome [index];

150, population.size(), cloudletList, vmlist);

of PSO: " + swarm.bestPosition.toString());
getR())
getB ())/
getC());
getD());
getE());
getF());
getG()) s
getH())
getI());:
getJ()) s
.bestPosition.getK())
.bestPosition.getL ()}
.bestPosition.getM()};
.bestPosition.getN()};
.bestPosition.getO())};
getP());
geto()) s
getR()):
gets5()) s
getT ()}

Steps for swarm creation, finding best position for particles and

binding

Figure shows the execution output and expected result as our proposed hybrid
techniques evaluation is comparatively lesser than the traditional algorithm and its output
is shown in Figure [12, The output makespan, cost, and simulation time may change
every time depending on systems resource availability, load, background tasks, hardware
variability, and much more. If we notice in our theses report where we have evaluated
and compared with graphs the output is different because we have referred the output
of different execution which we ran previously. It is recommended to run simulations on
dedicated machines or cloud instances with controlled and consistent resources.

<terminated> Main [Java Application] C:\Users\gshiv.p2\poolpluginsiorg.eclipse.justj.openjdk. hatspat.jre full win32.x86_64_17.0.4.420220903-1038\jré\ bin\ javaw.exe

OUTPUT

Cloudlet ID STATUS VM ID Time Start Time Finish Time
0 SUCCESS 2 6.63 0.2 €.683
9 SUCCESS 0 7.57 0.2 T.77
3 SUCCESS 9 10.84 0.2 11.04
1 SUCCESS [} 11.72 0.2 11.92
10 SUCCESS 5 14.65 0.2 14.85
7 SUCCESS 4 14.93 0.2 15.13
2 SUCCESS 2 9.79 €.83 lg€.62
iz SUCCESS 5 7.17 14.85 22.02
17 SUCCESS g 14.41 11.04 25.45
4 SUCCESS 2 .89 le.62 26.52
13 SUCCESS 4 12.37 15.13 27.5
18 SUCCESS 9 5.88 25.45 31.33
5 SUCCESS 2 €.08 26.52 32.59
19 SUCCESS 9 8.22 31.33 39.55
16 SUCCESS 4 14.43 27.5 41.92
[} SUCCESS 2 10.59 32.58 43.18
8 SUCCESS 2 11.63 43.18 54.81
11 SUCCESS 2 13.64 54.81 68.45
14 SUCCESS 2 14.28 68.45 82.73
15 SUCCESS 2 12.7% 82.73 95.52

Make span : 217.505

Execution Cost: 16.5
Total simulation time:
GAR-PSO finished!

241 ms

Figure 11: Execution output for proposed hybrid algorithm

[#] Problems @ Javadoc [E) Declaration BJ Console /@ Terminal

<terminated> PSO_Scheduler [Java Application] C:\Users\gshivi.p2\pool\plugins\org.eclipse justj.openjdk.hotspotjre.full win32.x86_64_17.0.4.+20220003-103¢

OUTPUT
Cloudlet ID STATUS VM ID Time Start Time Finish Time
3 SUCCESS 3 52.15 0.1 52.25
2 SUCCESS 2 56.55 0.1 56.€5
g SUCCESS 6 56.¢6€ 0.1 56.7
16 SUCCESS a 57.4 0.1 57.5
12 SUCCESS 7 60.75 0.1 60.85
a SUCCESS 0 €1.6 0.1 61.7
17 SUCCESS 9 66.55 0.1 66.64
5 SUCCESS 5 €6.6 0.1 66.7
4 SUCCESS 4 €7.25 0.1 €7.35
1 SUCCESS 1 70.85 0.1 70.95
7 SUCCESS 2 57.4 56.65 114.04
13 SUCCESS [57.45 56.7 114.15
9 SUCCESS 5 52.3 66.7 119
€ SUCCESS 4 52 67.35 115.35
18 SUCCESS 7 60.75 €0.85 121.6
10 SUCCESS i} 66.7 61.7 128.4
14 SUCCESS 1 66.65 70.95 137.6
11 SUCCESS 2 56.55 114.04 170.59
15 SUCCESS 5 52.2 119 171.2
15 SUCCESS 7 57.55 121.6 179%.15

Make span: 1185.8250000000003

Execution cost: 20.8
Total simulation time
PSO finished!

164 ms

Figure 12: Execution output for traditional PSO algorithm

	Introduction
	Pre-Requirements
	Hardware Requirements
	Software Requirements

	Configuration setup
	Importing CloudSim

	Implementation, Configuring the code part

