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Energy Efficient Task Scheduling Approach in Cloud
Environments towards Green Cloud

Shiva Ram Raja Gandhi Raja
x21219095

Abstract

Assigning and distributing computing resources in an environment of the cloud
is known as task allocation or scheduling. Despite the efficiency and effectiveness
in an environment of cloud computing, task allocation or scheduling is still a chal-
lenge for the same. While task scheduling is responsible for the distribution of
load evenly during the mapping of resources, there are multiple challenges faced
during the same. While there have been multiple studies on cloud computing and
task scheduling, the existing studies have less focus on the effective utilization of
resources that is compute, storage, and network capacities. And therefore, failed to
focus on the implementation of task scheduling algorithms. The goal of the current
thesis is to concentrate on a hybrid GA (Genetic Algorithm) and PSO (Particle
Swarm Optimization) which is a GA-PSO work scheduling technique. This GA-
PSO scheduling technique efficiently distributes the jobs across the resources. The
suggested technique incorporates characteristics of modified GA-PSO algorithms
to shorten the makespan, shorten the execution and turnaround time, and to de-
crease the communication and execution cost. Using the CloudSim framework, the
efficiency of the GA-PSO approach will be compared to that of the conventional
PSO algorithm. The results show that by conserving time, money, and resources,
the Hybrid GA-PSO technique speeds up the convergence to an ideal solution.
The proposed technique has overall enhancement and its performance in terms of
execution cost as well as makespan.

1 Introduction

A ground-breaking paradigm for providing customers with on-demand computing ser-
vices as well as resources over the internet, the environment of cloud computing has
evolved. The inbuilt scalability and flexibility of cloud computing have helped it become
extremely popular across a wide range of businesses. Balancing cost containment with
efficient utilization of cloud resources is still a difficult task for cloud service providers.
Creating a task scheduling approach that effectively distributes computer resources to
workloads while reducing operational costs and time is one of the crucial issues in cloud
computing. As cloud-service providers work to offer premium services at reasonable costs,
cost-effective scheduling is crucial.

Task scheduling in cloud computing has its own challenges the reason being the dy-
namic and distributed nature of the environment of cloud computing. Key challenges
during task allocation or scheduling in cloud computing environment are addressed as



below:

e Various computer resources with a range of capabilities and performance character-
istics are often found in cloud data centers. Scheduling jobs to the best available
resources while taking CPU, memory, storage, and network bandwidth into account
presents a difficult task.

e Workloads in the cloud are extremely dynamic, with variable rates of task arrival
and resource requirements. For schedulers to efficiently manage changing workloads,
they must be able to adjust in real-time.

e Cloud infrastructures are made to be extremely scalable so that many users and pro-
cesses can run at once. In order to address the growing scale of cloud deployments,
scheduling algorithms must be scalable. M.S. Sudheer] (2019)

e Multiple users are served simultaneously by cloud data centers, which cause resource
conflict between various tasks. Making sure that resources are distributed fairly and
preventing performance deterioration because of multi-tenancy is a complex task.

e Different requirements of QOS (Quality of Service), such as throughput, response
time and data consistency, apply to various jobs and applications. User pleasure
depends on meeting these QoS standards while scheduling tasks. Sangwan and
Dhanda (2019)

e Scheduling tasks can have an impact on energy usage, which is a big energy user
in cloud data centers. It can be difficult to optimize scheduling choices for lower
energy consumption without sacrificing performance. |Dong and Rojas-Cessa, (2015))

e Failures in cloud infrastructures are common, including node breakdowns and net-
work outages. For high availability and dependability, task scheduling must be
fault-tolerant, allowing jobs to be redelegated to alternate nodes in the event of a
failure. Varanasi (2020))

e Cloud service companies strive to match user needs while reducing operational
expenses. A difficult trade-off is finding a balance between resource use, energy
use, and infrastructure maintenance expenses.

Cloud data centers offer Infra resources as a service. The physical systems servers,
storage, network systems for the data center, and software programs, operating systems,
and management tools that the data center provides as Infrastructure as a Service (IaaS)
and Platform as a Service (PaaS), respectively. Programs like web search, social media,
computation, etc. are offered as Software as a Service (SaaS) by means of cloud comput-
ing data centers. (Calheiros et al.| (2011) These applications operate on virtual machines,
which are virtualized IT resources offered by IaaS and PaaS. Cloud service providers ful-
fill requests with resources, such as various kinds of VMs, based on the request. Madni
et al. (2016))

Figure [1| describes how a cloud-based computing infrastructure typically operates,
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Figure 1: Cloud Infrastructure

Cloud infrastructure is the backbone of cloud computing services, providing physical
and virtual resources to support various applications and services. It comprises data cen-
ters, virtualization, resource pooling, orchestration and automation, self-service portals,
networking, security measures, scalability, monitoring and performance optimization, and
redundancy and disaster recovery. Data centers house physical hardware components,
virtualization technology enables multiple virtual instances on a single server, resource
pooling allows for better resource utilization, orchestration and automation tools manage
resources efficiently, self-service portals enable users to select and provision computing
resources on-demand, and networking components facilitate communication between ele-
ments. Security measures, scalability, monitoring, and redundancy and disaster recovery
mechanisms ensure data resilience and high availability. Overall, cloud infrastructure
revolutionizes the way businesses and individuals access and utilize computing power,
storage, and applications, enabling cost-effective and efficient solutions for various use
cases. laaS resource scheduling optimization strategies are used to either improve oper-
ating system performance or customer satisfaction. Certain types and hybrid categories
of clouds, which are frequently handled throughout the resource management process in
the figure below, can be used to explain task scheduling schemes. These systems are
further separated according on the kind of algorithms employed.

The Figure 2| shows various categories that highlight the key elements of the schedul-
ing process. Each group tries to improve the outcomes by planning the allocation of
activities and resources. The chart shows that the first two scheduling classes put an
emphasis on energy and utilization, which tends to reduce energy consumption and in-
crease the effective use of cloud resources. The primary focus is on minimizing workload,
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Figure 2: Task Scheduling in Cloud Computing

makespan, execution time, resource expenses, user costs, and response times. The con-
nections between the aforementioned classes enable effective resource management.

We shall talk about scheduling classes that emphasize time and money issues in this
study because they show how effectively a cloud provider’s facilities work. Implementa-
tion time and makespan should be decreased while speed or bandwidth is enhanced to
get this competency. Therefore, the main aim is to create a task allocation or scheduling
strategy that effectively uses the resources while taking into account the cost of execution,
cost of communication, makespan, time for execution, completion time, and service level
agreement-bound turnaround time. This is done by using an algorithm that utilizes the
resources more promptly and in a cost-efficient manner /Akhter and Othman| (2016))

1.1 Need for the Research

Resource allocation, standard compliance, customer QOS, and enhancing the advant-
ages of providers of cloud are all established through management of resources and task
scheduling. Resources must be assigned and dispersed to users in the fair, fierce, and
productive manner. According to service providers, a cost-effective scheduling method
is currently a crucial requirement for data centers. There are numerous methods avail-
able for task scheduling, including First FCFS, ACO, LJF and others. Each of these
algorithms has various benefits as well as restrictions. Mustafa et al.| (2015)

Additionally, in IaaS of cloud, the technique of resource organization is the main
area of worry, where appropriate resource optimization and task completion in a shorter
amount of time are still regarded as the main issues |Arunarani et al,| (2019)), Given the
objectives mentioned above, this field necessitates a novel task scheduling technique to
control the total cost, unexpected workload, and minimize reaction and execution times
for the efficient management of massive resources. Because of this, our main objective
is to enhance the scheduling algorithm by using current methods to enhance the QoS
operation.




The major goal of using an effective integrated scheduling technique, such as the
Genetic Algorithm that is GA technique and Particle Swarm Optimization that is PSO
technique, is to reduce the optimization problem.

1.2 Research questions

“How can the hybrid approach using Genetic Algorithm -Particle Swarm Optimization
(GA-PSO) techniques for task allocation/scheduling strategies maximize efficient optim-
ization of resources with reduced costs in the cloud computing environment?”

The major goal of this research project is to find a solution to the problem of task
scheduling and enhance resource utilization in a timely and cost-effective way in order to
improve system effectiveness and decrease the makespan, execute time, and turnaround
time. We employ an enhanced a hybrid genetic algorithm and a particle-swarm optim-
ization technique to do this. The proposed method runs faster and produces the best
results when the GA and PSO algorithms have less iterations. This approach initializes
different encoded solutions to a random population and then uses the GA-PSO to provide
the best possible solution.

2 Related Work

Our literature review is segregated into related sections as indicated below in order to
provide a thorough understanding of this research field. Section 2.1. defines theories on
existing algorithms studied by researchers. Section 2.2 describes theories on the proposed
system where the heuristic scheduling strategy elaborates on the significance of a few
algorithms that are inherently problem-dependent while the scheduling strategies meta-
heuristic and hybrid elaborate on the significance of algorithms that are, by definition,
independent of problems.

2.1 Theories on pre-existing algorithms

The term ”cloud scheduling” refers to a technique that distributes jobs over a number of
virtual computers or charges virtual machines with using the available resources to meet
user needs. Resource management and job scheduling have received extensive research
and survey attention in recent years. Kumar et al.| (2013)

[aaS task and resource scheduling issues are explored and several hybrid scheduling
strategies, their algorithm benefits, and drawbacks are covered by Syed Hamid Hussain in
his research. The difficulties around efficient resource use have received a lot of attention
from researchers working on infrastructure as a service. Singh and Chana/ (2016))

2.2 Theories on proposed system

The heuristic scheduling algorithm is based on the idea that individual tasks should begin
as soon as their predecessor tasks are finished, provided that there are enough resources
available. If there are insufficient resources, such as when a individual is needed for
an activity but is already working on another, the activity is added to a list of ones



that can be scheduled as soon as more resources are available. This list is checked
to see if an activity is waiting for a resource that has been released after an activity
completes and releases its resources. Several activities will frequently be vying for the
same resource. The activities are given resources and begun in decreasing order according
to their "urgency” in this example. These algorithms are categorized as problem-specific
techniques, and their capacity to resolve issues depends on the intricacy of the situation
at hand. Such algorithms have the capacity to often and accurately offer solutions for
specific types of difficulties over a regular time span. To address the associated problems
associated with workflow applications and scheduling concerns, a wide variety of heuristic
techniques are created in cloud computing. |Akhter and Othman (2016)

FCFS scheduling method was created by |Li and Shi (2009) and operates on the prin-
ciple that priority is given to the queues that arrived first, followed by those still awaiting
service. However, the method was unable to balance the burden among many VMs (vir-
tual machines).

Mr. Buyya et al.| (2018) presented the Weighted Round Robin (WRR) algorithm
which divides the jobs using time slices in a circular sequence. The method distributes
the jobs to the optimal virtual machine based on its information, including processing
power, load, and the scope of the work assigned as per its preference. In some cases,
the task may take longer than expected to finish the computations at the time of exe-
cution owing to the execution of a large amount of series on the standard instructions.
The primary factor for Weighted Round Robin is QOS, which says that response time is
its ideal metric. The performance evaluation and test results concluded that Weighted
Round Robin is perfectly viable for both homogeneous and heterogeneous workloads.
Although this algorithm increased the ratio of resources consumed and reaction times,
for some reason it did not properly balance the demand on the resources. To improve
energy consumption techniques, a staggering amount of problems are brought to light.
The author has also discussed the limitations of current scheduling methods that center
on energy and created a strategy known as a load detection policy. The load detection
technique and the cost of electricity are highlighted in detail in. In order to identify
the over loaded and under loaded hosts and reduce energy consumption and service level
agreement, this technique measures the standard deviation in addition to the median.
It fell short, nevertheless, in looking at the deadline restriction. The author then came
up with the concept of static scheduling made up of some reactive strategies to replace
dynamic scheduling; he called this technique the energy effective reactive programming
Heuristic algorithm. This method has the ability to distribute real-time jobs across vir-
tual machines in so as to ultimately preserve cloud energy. The ERECT algorithm’s SLA
violation when migrating VMs for energy conservation is a drawback, though. In an ef-
fort to reduce energy use, the scheduling algorithms inadvertently missed the SLA breach.

Time management, resource allocation, and task optimization are just a few of the
optimization problems that have been solved by metaheuristic algorithms. Some of the
most popular meta-heuristic algorithms include GA-Based, ACO-Based, PSO-Based, and
other evolutionary metaheuristic algorithms. The term ”metaheuristic” describes more
advanced heuristics that were created to offer solutions for a variety of optimization is-
sues. Hence the other algorithms accumulated enormous demand over time and are now
frequently used for problem independent as well as nondeterministic solutions to NP-
hard optimization-related problems. GA, introduced in 1975, has been used to schedule



workflows and improve resource allocation, while ACO, introduced by Marco Dorigo, is
used for optimizing energy consumption and increasing profits for service providers. Ant
Colony Optimization (ACO) is an inconsistent search algorithm designed to solve compu-
tational problems in cloud computing. It enhances consistency of pheromones, allowing
persistent solutions to issues like abrupt loads. Pradhan et al.| (2022)

Other evolutionary meta-heuristic algorithms include the Bees Life algorithm, Krill
Herd (KH), binary grey wolf optimizer (QI-BGWO) inspired by quantum, cuckoo search,
and flower pollination algorithms, and the improved whale optimization algorithm (IWOA).
These algorithms have shown high accuracy and effectiveness in solving optimization
problems and achieving high-quality solutions. Several meta-heuristic algorithms have
been put forth for computing performance in cyber-physical social systems (CPSS), in
addition to GA and ACO. These algorithms have been tested in various scenarios, achiev-
ing better performance and reducing energy consumption. Opposition-based learning has
also been used to optimize PSO (OPSO) for task scheduling in a cloud computing en-
vironment, improving convergence, energy consumption, and makespan. Overall, meta-
heuristic algorithms have been developed to address various optimization problems and
improve overall performance in various domains. Ghumman and Kaur| (2015))

Ghumman and Kaur| (2015) proposed a modified genetic algorithm that mitigates
the usage of power and with the use of paralleling, can be enhanced. Context switching
optimization minimizes overhead and enhances system responsiveness. Implementations
and approaches may vary based on the system’s requirements, the nature of task, and
available resources. This set of algorithms was created by combining various task and
resource scheduling heuristics and meta-heuristics to address scheduling issues in the
context of computing a cloud. To reduce the makespan, cost waiting time, Ghumman
and Kaur| (2015) also proposed a hybrid algorithm that combines the ACO and MaxMin
algorithm. By using task priority as a constraint, this technique raises QoS parameters
even more.

2.3 Purpose of the study

This paper presents an enhanced scheduling algorithm based on PSO-GA. The hybrid
algorithm combines the benefits of both the above algorithms, increasing resource util-
ization and convergent solutions quicker. GA is an advanced algorithm but slow for
large-scale problems. The algorithm uses GA and PSO techniques to reduce iterations
and perform swapping to achieve optimal results. Cloud Simulation is used to evaluate
the strategy in comparison to more established methods.

3 Methodology

To build the suggested model, we identified and examined a number of scheduling al-
gorithms in the previous section, including particle swarm optimizer, first come first
serve, genetic algorithm, shortest job first. The suggested method aims to solve the is-
sue of work scheduling and improve resource utilization in a time and money efficient
way. To acquire the fittest value, the numbers of iterations for the genetic algorithm and
particle swarm optimization algorithms are reduced in this article, and certain operators
are added to accomplish swapping. As a result, the suggested algorithm will run more
quickly to reach the ideal answer. GA is a more sophisticated algorithm than PSO as
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a result it takes more time to provide results. PSO, however, produces findings more
quickly, but they are less accurate. The proposed system will be improved and combined
with various algorithms to yield the best result. These hybrid algorithms are tested in
both heterogeneous as well as homogeneous situations by the Cloudsim toolbox.

3.1 Proposed System Complexity

The GA is used in the proposed method to generate a random population (chromosomes),
which is then used to establish a standard for a specific number of repeats. ‘n’ represents
the number of iterations repeated by half as often that is ‘n/2’ to reduce complexity
because the GA is very sophisticated and requires some time to discover the most suitable
potential answer. In Genetic Algorithm, chromosomes refer to a collection of genes that
together for providing a solution to a certain issue. Every chromosome in this algorithm
contains many genes that represent the host machine’s virtual machines. The assessment
of the function of fitness is indicated in Algorithm 1 shown in Figure [3| determines the
kind of chromosome to be chosen. Besides; selection, crossover, and mutation operators
help these chromosomes get better with each iteration.

The Tournament Selection Method in Genetic Algorithm

Input: VM (the chromosomes)

Output: VMfitness (fitnesschromosome)

Stepl: Set the tournamentSize = n

For i = 0 to tournamentSize

id = Math.random( }* chromosome/VM.size( ) // Random Selection of VM
tournament[{] = get VM (id)

End For

fitness«—tournament.getFitnest({ ) //return fitness walue.

Figure 3: Algorithm 1

For the selection of the best collection of Virtual Machines from the sample population,
tournament selection or the selection operator is used on the population (chromosomes),
as given in Algorithm 1. When referring to solutions to multiple task problems in GA,
the term ”"population” refers to how the work is divided up among the available VMs for
each task problem. For the purpose of ensuring that the picked ids appropriately reflect
the index of the selected chromosome, the option picking operators create a random id
after performing numerous matches between a few VMs. The operator who crossovers
on the group of VMs with the best combination of tasks is likewise chosen based on its
fitness value.

The crossover operator on the group of VMs with the best combination of tasks is
also chosen based on its fitness value. A crossover operator seeks to create an entirely
novel set of chromosomes by transferring the virtual machines, or VMs, that exist in each
pair of VMs. A random number is selected from among the available VMs in this. The
crossover operator that produces the population with the best fitness value is changed
by a mutation operator. This operator’s operation on the population created by the se-
lection process depends on how quickly mutations arise. The way the responsibilities are



divided among the readily available VMs is plainly demonstrated by the fact that if the
two virtual machines are identical, their places are switched to create a new population.

Input: particles
Output: (g,..,) and (p...,) vlues
Setpy.., = null; g ..,= null; k=0; {/k is the index of the particles.
While not Reach max particles.size do
If p,..[k] ==null | p,..[k].getFitness() = particles[k].getFitness()
Phes [ K] =particles[&];
End If
Mg, ==null | p,.. [k].getFitness() < g,...zetFitness()
B = Particle(p,...[K]):
k=Kk+1;
End If
Repeat  // until the last particle

Figure 4: Algorithm 2

Create new Virtual Machine combinations (particles) using the position and speed
of earlier iterations. The particles’ pbest as well as ghest values are evolved during this
step. With each iteration, the values of pbest and gbest, which alter, determine how the
particle positions and velocities change. In PSO, the initials pbest and gbest stand for a
particle’s best personal location and the best position for the overall number of particles,
or swarm. These parameters are used in accordance with Algorithm 2 in Figure [ in
which the first iteration’s pbest (s) equal the GA algorithm’s output, where (s) separates
each result from the others. In order to compare earlier results, gbest is further defined
as the result with its lowest fitness value.

Updating of the velocity position matrix: Raising particle velocity’s objective is to
create a new production from a group of VM sites that is more fit than its predecessor
(each particle refers to a VM. In PSO, the process of velocity helps particles evolve or
modify their places in pursuit of optimal solutions. Using the particle’s g-best and p-best
values, the velocity is calculated based on the swarm’s best fitness value. In this way, the
enhanced velocity measurements are used to modify the position of each particle’s VMs.

3.2 Algorithm Proposed

This section precisely describes the whole GA-PSO algorithm using its virtual code,
which is displayed in Algorithm 3. The method begins by initializing the jobs provided
to the broker, and then, as shown in step 2, GA algorithm is applied over the randomly
generated population (chromosomes), with the genes on each chromosome standing in
for a number of VMs. The three GA operators of selection, crossover, and mutation
are then applied n/2 times, and the result is an optimal solution. As seen in step 3,
the solution (chromosome) generated by GA serves as a population (particles) for the
Particle Swarm Optimization algorithm. Each particle in this illustration represents a
VM, and each VM’s index indicates a task. PSO calculates the particle’s pbest and gbest
values, updates its velocity, and repeats the process until it reaches the best solution
and meets the stopping requirement. The outcomes demonstrate the best value with the
lowest calculation, communication, and execution costs as well as the shortest possible
execution time. Additionally, the GA-PSO results are contrasted with the performance
of the existing PSO algorithm and a variety of jobs and VMs. The population describes



many approaches to the task problem, where each approach involves distributing all work
among the available VMs.
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Figure 5: Proposed System Flowchart

A flowchart shown in Figure [5| shows an in-depth analysis of the strategy for imple-
mentation of the proposed system. Tasks will be distributed to virtual machines (VMs)
in this manner, with the initial algorithm being the Genetic Algorithm, with operators
for selection, crossover, and mutation. The p-best and g-best values will also be calcu-
lated using the PSO technique by updating the particle’s position and velocity utilizing
chromosomes provided by the GA’s solution. In the end, the suggested algorithm will ana-
lyze many factors with varying numbers of tasks like makespan, completion time, average
reaction time, etc. The following are the steps for the architecture of the proposed system,

e Apply the algorithm for genetics to the initialized encoded population for n/2 times
as many iterations, or merely half as many.

e Determine the fitness value using the tournament selection method and choose the
chromosomes with the greatest fitness value with the help of the selection operator.
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e To achieve the best result, switch and reorder the chromosome positions using the
crossover and mutation operations.

e Apply the proposed model-generated solution (chromosomes).

e Determine the GA chromosomes’ pbest which is personal best and global best that
is gbest positions.

e Up until the minimal fitness value is returned, PSO updates the velocity and posi-
tion using the values (pbest, gbest).

4 Design Specification

The GA is one of the most complex algorithms, although it is slower to solve complicated
issues. The results from PSO, on the other hand, aren’t much better than GA, despite
being rapid. The recommended GA- PSO techniques are altered to acquire the best pop-
ulation by lowering the amount of iterations as well as including certain operators with
cutting-edge techniques to carry out transferring, so that the suggested approach will
arrive at the ideal solution more quickly. The suggested method places a strong emphasis
on lowering execution costs, makespan, and assessing various workloads to deliver the
best possible set of virtual machines (VMs) to complete the tasks. To achieve the best
possible outcome, different encoded solutions will be subjected to PSO-GA. Using cloud
simulation, the obtained strategy result of is compared to the results of other approaches.

4.1 Architecture Proposed:

Even though numerous algorithms have been developed recently, there are still certain
issues with the job scheduling process. It is proposed to use the GA-PSO approach to
reduce down on wait times, turnaround times, completion times, and execution costs. It
focuses on producing outcomes with the solution generated by Genetic Algorithm while
consuming lesser time as well as less money. The goal of genetic algorithms is to produce
optimal values that have the highest fitness value.

The design shown in Figure [6] concisely explains the suggested method by grouping it
into the following three major categories.

e User-side tasks: This displays the requests made by cloud end users. Each task has
its own specific preferences for resources, duration, and other elements.

e Cloud Broker: Cloud brokers are important in the scheduling process since they are
the organization in charge of using an algorithm to assign jobs to the resources that
are available. It also monitors the secure data transit between cloud customers and
different cloud providers

e Cloud Provider: A cloud service provider creates resources in response to demands
from cloud end users, and the created resource may or may not meet the same
specifications.

11
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Figure 6: Architecture Proposed for allocation of tasks to VMs

5 Implementation

CloudSim Simulation Toolkit is a strong and popular simulator for conducting research
on the cloud environment. CloudSim makes it possible to simulate, model, and test
cloud-based applications and infrastructure services in real time. This simulation toolkit
is used by researchers as well as cloud developers to assess the performance of proposed
cloud applications before setting up the environment. Modelling and simulating large-
scale cloud environments like data centres in addition to a single hardware node like a
desktop, server, or laptop are some of CloudSim’s main tasks. It can switch between
allocating processor cores to virtual resources in a time- as well as and space-shared

fashion. Manasrah and Ali (2018))

5.1 CloudSim’s Architecture and Design

There are several layers that make up CloudSim’s parts. The end-user or developer
decides the requirements for the simulation in the end-user code layers, including those
for virtual machines (VMs), host and their characteristics, as well as applications and
their specifications. Virtualized datacenter simulating and modelling are provided by the
layers that fall in the Cloudsim group name.

The class diagram in Figure [7] more clearly displays the fundamental elements of the
simulation system. An illustration of a key hierarchy that starts the simulation is the
CloudSim core. Regarding cloudlets, datacenter broker policies, and other relevant entit-
ies, this structure necessitates a sequence of iterative actions.

A CloudSim class is the primary one in charge of managing event queues. These
occurrences are regarded as SimEvent class instances. The generated events are then
assigned to a future queue and sorted according to time constraints. However, as the
events’ scheduled times arrive, the aforementioned created events are switched from future
queues to postponed queues. SimEntity is referred to as an abstract class where action
is taken based on events in a deferred queue via event handling methods. There is also
a collection of tags for occurrences in CloudSimTags. Both the startup and shut entities
are activated during the starting and stopping of a simulation entity.

12
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Figure 7: Hierarchy of classes that enables the CloudSim Simulation Toolkit

5.2 Set Up of the Proposed Model

The suggested model employs a modified hybrid GA-PSO algorithm to efficiently as well
as quickly resolve the issue of work scheduling and enhance resource utilization. This
shortens the makespan, execution time, and turnaround time while improving system
efficiency.

A few simulation parameters which are mentioned in In Table[l| are used to assess the
effect of the GA-PSO algorithm on the work scheduling problem. A CloudSim simulator
is used to put the suggested method into practice. The virtual computers used in the
experiment and its duties are defined by these settings. To minimize execution time and
increase execution cost, different task counts are used. The table shows that there are
20 jobs totaling ten virtual machines. Million instructions per second i.e. MIPS which is
two hundred per second.

Table 1: Simulation Parameters of GA-PSO

Parameter Value
No. of Tasks 20
No. of VMs 10
MIPS 200
RAM (MB) 512
BW (mbps) 1000
Process Speed 10000
No. of Processors 1

GA is used to 20 randomly selected solutions (populations) in order to determine the
optimal chromosomes with the aid of the selection, crossover, and mutation operators.
While the rate of mutation in the mutation stage is 0.30, the crossover rate is 0.95 in the
crossover stage as shown in Table
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Table 2: GA-PSO Parameters

Parameter Value
No. of Tasks 20
Crossover 0.95
No. of Iterations 20(n/2)
No. of Executions 100
Mutation Rate 0.30

5.3 Implementation of the Proposed Model

There are a few basic prerequisites that must be met for CloudSim to be available on
desktop, and these versions are all available on GitHub. The required .zip format version
must first be downloaded. Since the entire CloudSim source code is written in Java, Java
JDK3 must be installed on the computer where the code will be executed. Additionally,
Java IDE can be downloaded from the Eclipse foundation and deployed locally for greater
feasibilityfootnote4. Cloudsim provides a significant benefit for resolving complex com-
putations. They necessitate the use of a math library function, which may be obtained

from the Apache website, in order to take advantage of this functionality.

orkspace - Cloud_Simulation_Project/examples/org/doudbus/cloudsim/examples/Main,java - Eclipse IDE
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//Third step: Create Broker
DatacenterBroker broker = createBroker();
int brokerId = broker.getId();:

//Fourth step: Create VMs and Cloudlets and send them to broker
vmlist = createVM(brokerId,10): //creating 10 vms

broker.submitVmList (vimlist) :
broker.submitCloudletList (cloudletList);

srenced Libraries

s

Figure 8: GA-PSO with 10 VMs configuration setting

cloudletlList = createCloudlet (brokerId,20); // creating 20 cloudlets

Q im|§
= C

Two experiments will be run on CloudSim. Experiment no. 1 uses 10 VMs of various
size as mentioned in Figure 8, and experiment no. 2 uses the conventional PSO algorithm
and 10 VMs of all permuted configurations as described in Figure[d Test results obtained
from the trials are then compared with each other. The suggested strategy asserts that
it takes less time and money to attain the outcome than the traditional PSO method.
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Figure 9: Traditional PSO with 10 VMs Configuration setting

6 Evaluation

The GA-PSO hybrid technique is constructed by use of the CloudSim simulator in order
to assess the suggested algorithm. A combination of different virtual machines is chosen
from the already available virtual machines, taking into account factors such as average
turnaround time, average cost, and an average completion time. Outcomes of the methods
proposed are contrasted with those of the conventional PSO algorithm. To obtain the
findings using CloudSim, 20 jobs and 10 VMs are taken into account in both algorithms.
This section includes charts and graphs that help you better comprehend the outcomes
of using the proposed algorithm.

6.1 Performance Evaluation

The main goal of the evaluation is to improve the particle swarm optimization by incor-
porating the GA technique to raise the makespan, completion time, execution cost and
turnaround time characteristics. In order to demonstrate the advantages of the suggested
algorithm, the outcomes of the enhanced version of PSO model are also compared with
those of the classic Particle Swarm Optimization method.

Figure [10] shows that the time of completion of the proposed method is smaller than
that of the PSO algorithm. The proposed algorithm’s least time recorded is 6.13ms, in
comparison to the PSO algorithm’s recorded time which is 52.3m, the least, which is a
big difference. Additionally, 205.04ms is the PSO’s maximum completion time, roughly
three times as long as the suggested algorithm’s maximum completion time.

Table 3: PSO vs Proposed Algorithm MakeSpan and Execution Cost.

Algorithm MakeSpan (ms) Cost ($)
PSO 1202.305 21.2
Proposed Hybrid Algorithm 201.51 15.1

The Particle Swarm Optimization approach with 20 tasks and 10 virtual machines
and the proposed algorithm approach using 20 tasks and 10 virtual machines for the exact
same algorithm are all used in the above table. The main goal of the above comparison
shown in Table 3| and Figure [11]is to understand the makespan and the execution costs
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Figure 11: PSO vs Hybrid model main results
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Figure 12: Turnaround Time for PSO vs proposed model

of the two situations so that the Particle Swarm Optimization algorithm’s makespan and
execution costs are greater than the proposed algorithm. With this output, we will attain
efficiency.

The calculation of turnaround time is mentioned in Figure by subtracting the
arrival time from the completion time. This calculation shows that the minimum turn-
around time of every task of the proposed model; its turnaround time being 5.93, or about
3 percent less than that of the PSO technique. It can be inferred that the proposed model
has produced more better outcomes in both of the aforementioned parameters.

6.2 Discussion

We designed an effective scheduling method in this paper which will enhance the cost
as well as time parameters to a point where, after analyzing the literature, we offered a
hybrid technique. The plotted graphs in sub section explain turnaround and completion
time outcomes, and timeline with the execution cost. The proposed algorithm succeeded
admirably in each of the outcomes listed in the report’s purpose. The GA-PSO method
enhanced the time and cost factors efficiently that were the focus of this paper, as shown
by the displayed graphs that compared the proposed and standard PSO methods.

7 Conclusion and Future Work

Thus, our research reviewed the task allocation and resource allocation algorithms from
previous related research papers, outlining their main drawbacks and benefits. This
information allowed us to propose an efficient algorithm by combining modified GA-PSO
used in solving scheduling problems including time and money-related variables. This
study contrasts the GA-PSO method with the traditional PSO technique to demonstrate
how the proposed technique performed better for each metric, including execution cost,
makespan, turnaround, and completion time. The outcome demonstrates the suggested
model’s efficiency in terms of time and cost as well as its capacity to identify rapid fixes
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for issues. The suggested technique can be expanded in the future to support additional
virtual machines (VMs) by employing numerous data centers in a heterogeneous domain,
allowing jobs to be allocated to available VMs in each data center based on their speed
and size. Additionally, this will improve cloud scheduling and provide consumers with
more freedom.
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