~

\" National
College
Ireland

Attribute-Based Encryption and Key
Agreement Protocol for Data Security in
EHR Systems - Configuration Manual

MSc Research Project
Cloud Computing

Murphy Elo
Student 1D: x21220263

School of Computing
National College of Ireland

Supervisor: Rashid Mijumbi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Murphy Elo
Student ID: x21220263
Programme: Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Rashid Mijumbi
Submission Due Date: 14/08/2023
Project Title: Attribute-Based Encryption and Key Agreement Protocol for
Data Security in EHR Systems - Configuration Manual
Word Count: 780
Page Count:]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Attribute-Based Encryption and Key Agreement
Protocol for Data Security in EHR Systems -
Configuration Manual

Murphy Elo
x21220263

1 Introduction

This configuration manual will guide you in understanding the system software setup,
and the necessary steps to implement this research project: Attribute-Based Encryption
and Key Agreement Protocol for Data Security in EHR Systems.

2 System Configuration

These are the system software setup used for implementation:

e Docker 4.21.1 for running Django and Flask containers

Python 3.3 to run Charm’s framework on Flask for Ciphertext - Attribute-Based
Encryption (CP-ABE) protocol.

Python 3.10 for the EHR system on Django

Kivy 2.2.1 for developing the mobile app.

3 Software Installation

3.1 Docker Installation

Docker has been used to provide isolated containers for the Django and Flask environ-
ments. The EHR system runs on Django, and the proposed algorithms run on the Flask
framework. Below are the steps to install Docker and run the services using the given
Docker Compose file in the downloaded code folder.

Step 1: Install Docker: To run the Docker Compose configuration, you need to
have Docker installed on the system. To install Docker, open the terminal and use the
following command in the Figure [I}

Step 2: Create Directory Folder: Create a directory folder and place the Django
and Flask application code along with their respective Dockerfiles in the directory. The

sudo apt update
sudo apt install -y docker.io docker—compose

Figure 1: Install Docker

my—-docker-project/

—— ehr-main/

L Dockerfile.django
—— flask_abe/

L Dockerfile.flask
L— docker-compose.yml

Figure 2: Directory Structure

directory structure should look like the Figure [2]

Step 2: Configure Docker-compose.yml: Now CD into the project directory
created and run the following command to start the Docker service:

docker-compose up -d.

The -d flag runs the services in the background. The Django and Flask applications
should now be running. You can access them using the following URLs:

Django: http://localhost:8000
Flask: http://localhost:5000

3.2 Kivy Installation

Kivy was used in this project to build the mobile app as the third party system. It is an
open-source Python App Development Framework. You will need to install Kivy in the
development environment. Use the following command to install Kivy:

pip3 install kivy

3.2.1 Required Kivy Dependencies

After installation, run the following command to install the requirements.txt file to have
the mobile app running:

pip install requirements.txt

= requirments.txt X

buildozer==1.5.0
certifi==2023.7.22
cffi==1.15.1
charset-normalizer==3.2.0
cryptography==41.0.3
distlib==0.3.7
docutils==0.20.1
file ==3.12.2

4

kivy-deps.angle==0.3.3
kivy-deps.glew==0.3.1
kivy-deps.sd
Kivy-Garden==0.1.5
kivymd==1.1.1

pexpect=
Pillow==10.0.0
platformdirs==3.10.0
ptyprocess==0.7.0
pycparser==2.21
Pygments==2.16.1
pypiwin32==223
python-dateutil==2.8.2
pytz==2023.3
pywin32==306
requests==2.31.0
sh==2.0.5
six==1.16.0
tzdata==2023.3
urllib3==2.0.4
virtualenv==20.24.2

Figure 3: Requirements File for Mobile App

4 Implementation

The data modification algorithm scheme can be seen implemented in the abe.py file that
can be found in the flask folder of the code:

To provide secure communication between the Django-built EHR system and Kivy-
built mobile app, ECDH (Elliptic Curve Diffie-Hellman) has been implemented in the
ecdh.py file that can be found in the ehr-main folder of the code, and the main.py file in
the kivy app folder.

5 Evaluation

As an evaluation of the result, a mobile app is implemented as a third-party system
performing patient health data retrieval from the EHR system.

from flask import Flask, request, jsonify
iringgroup import PairingGroup,ZR,G1,G2,
from charm, schemes.abenc,abenc_yct14 import EKPabe
il import objectToBytes, bytesToObject

1mpnri logging -
import

import json
import os
import ast

os.environ['PYTHONUTF8'] =
logging.basicConfig(level=1logging.DEBUG

logger = logging.getLogger(__name_)
app = Flask(__name__

group = PairingGroup('MNT224")
kpabe = EKPabe(group

with open(‘'data.json', ' as file:
existing_data = json.load(file

@app.route("/check"
def hello():
try:

print('test api')
group = PairingGroup('MNT224"
kpabe = EKPabe(group)
attributes = ['ONE1', 'two', 'THREE']
(master_public_key, master_key) = kpabe.setup(attributes
policy *(ONE1 or THREE) and (THREE or two)'
secret_key = kpabe.keygen(master_public_key, master_key, policy
print(policy,attributes)
print('secrat type',type(secret_key)
msg = "Some Random Message"
cipher_text = kpabe.encrypt(master_public_key, msg.encode(, attributes)
print(‘'cipher type',type(cipher_text)
decrypted_msg = .decrypt (cipher_text, secret_key)
if(mse decrypted_msg)

print('msg is same',decrypted_msg
else:

print('not same msg'

Figure 4: Code Snippet for Data Modification

@ edchpy X

from cryptography.hazmat.primitives import serialization, hashes

from cryptography.hazmat.primitives.asymmetric import ec

from cryptography.hazmat.primitives.kdf.x963kdf import X963KDF

from cryptography.hazmat.primitives import padding

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives import serialization

nerate_server_keys_for_server():
private_key = ec.generate_private_key (ec.SECP256R1())
return private_key

generate_shared_secret_on_server(private_key, peer_public_key):
peer_public_key = serialization.load_pem_public_key(peer_public_key)
shared_key = private_key.exchange(ec.ECDH(), peer_public_key)

return shared_key

encrypt_message_on_server(shared_secret, message):
kdf = X963KDF(algorithm=hashes.SHA256(), length=32, sharedinfo=None)
derived_key = kdf.derive(shared_secret)

iv = b'0123456789abcdef '

cipher = Cipher(algorithms.AES(derived_key), modes.CFB(iv)
encryptor = cipher.encryptor()

padder = padding.PK 28) . padder()

padded_data = padder.update(message.encode()) + padder.finalize()

ciphertext = encryptor.update(padded_data) + encryptor.final
return ciphertext

decrypt_message_on_server(shared_secret, ciphertext):
kdf = X963KDF (algorithm=hashes.SHA256(), length=32, sharedinfo=None)
derived_key = kdf.derive(shared_secret)

i

added_data = decryptor.update(ciphertext) + decryptor.finalize()
unpadder = padding.PKCS7(128) .unpadder ()
decrypted_message = unpadder.update (decrypted_padded_data) + unpadder.finalize

return decrypted_message.decode()

Figure 5: Code Snippet for Secure Communication

Username:

PASSWORD:

Figure 6: Kivy Mobile App Login

rose jack

treatment type: check, address: temp,notes: temp, ch level:60, bp_s1:120, weight Ib:

Figure 7: Patient Retrieval Interface

TERMINAL

[InFO] [GL] NPOT texture support is available

validate rose qwerty

[DEBUG] [Starting new HTTP connection (1)] 127.0.0.1:8000

[DEBUG] [http 1//127.0.0.1:8000 "POST /log: tient HTTP/1.1" 200 90

login success {'message’: 'Login successful’, ‘shared key': 'pR3/GXigmHv6/mraDA200pbv3QLLSskfccD2T7c1F+o="}
I

Figure 8: Shared Key for Secure Communication

	Introduction
	System Configuration
	Software Installation
	Docker Installation
	Kivy Installation
	Required Kivy Dependencies

	Implementation
	Evaluation

