~

W National
Collegeof
[reland

Configuration Manual

MSc Research Project
MSc. in Cloud Computing

Anshul Bharadwaj
Student ID: 21197911

School of Computing

National College of Ireland

Supervisor: Dr. Punit Gupta

National College of Ireland
Project Submission Sheet

School of Computing

National
Collegeof
Ireland

Student Name:

Anshul Bharadwaj

Student ID:

21197911

Programme:

MSc in Cloud Computing

Year:

2023

Module:

MSc Research Project

Supervisor:

Dr. Punit Gupta

Submission Due Date:

14/08/2023

Project Title:

Configuration manual

Word Count:

1272

Page Count:

11

| hereby certify that the information contained in this (my submission) is
informationpertaining to research | conducted for this project. All information
other than my own contribution will be fully referenced and listed in the relevant
bibliography section at therear of the project.

ALL internet material must be referenced in the bibliography section.
Students are required to use the Referencing Standard specified in the report
template. To use other author’s written or electronic work is illegal (plagiarism)
and may result in disciplinary action.

Signature:

Date: 14th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND
CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be
placedinto the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Anshul Bharadwaj
Student ID: 21197911

1 Introduction

The configuration guide outlines the procedure for applying Virtual Diagnosis by utilizing
heart sounds captured via a digital stethoscope, aimed at aiding medically underserved regions
through machine learning. Furthermore, it encompasses the overall arrangement necessary for
project tool installation. This instructional document is tailored to benefit students in academia
and other researchers, offering enhanced insights into the methodology deployed for executing
this research endeavor.

2 Pre-requisites

2.1 AWSEC2

An Amazon EC2 instance is a virtual server in the cloud offered by Amazon Web Services
(AWS). The instance type T2.2xlarge belongs to the T2 family and offers a balance of compute,
memory, and network resources, catering to various workloads. It features a substantial 8
vCPUs, 32 GB of memory, and the ability to burst CPU performance based on workload
demands. This instance type is particularly suitable for applications that require moderate
compute power and memory, making it an ideal choice for multitier web applications, medium-
sized databases, and development environments. With its versatility and scalability, the
T2.2xlarge instance provides a cost-effective solution for businesses seeking to optimize
performance while managing expenses in the AWS cloud environment.

2.2 Python

Python plays a pivotal role in the field of Machine Learning (ML) due to its rich ecosystem of
libraries and frameworks tailored for data manipulation, analysis, and modeling. Its simplicity
and readability make it an ideal language for researchers, developers, and data scientists to
implement intricate ML algorithms and techniques. Python's libraries like NumPy, pandas, and
scikit-learn provide essential tools for data preprocessing, feature engineering, and model
evaluation. Additionally, popular ML frameworks like TensorFlow and PyTorch enable the
creation of complex neural networks and deep learning models, driving advancements in image
recognition, natural language processing, and more. Python's versatility, combined with its
extensive community support, underscores its significance in enabling innovation and
advancements within the realm of Machine Learning.

2.3 Flask

Flask is a lightweight and versatile web framework for Python that simplifies the process of
building web applications. Known for its minimalistic design and flexibility, Flask allows
developers to create web applications quickly by providing essential tools for routing,

templating, and handling HTTP requests and responses. With its modular structure, developers
can choose the components they need, making it well-suited for both simple and complex
projects. Flask's extensive ecosystem of extensions further extends its functionality, enabling
tasks such as authentication, database integration, and API development. Its user-friendly
nature and scalability have made Flask a popular choice among developers seeking to create
efficient and customized web applications.

2.4 Google Colab

Google Colab, a cloud-based platform, has emerged as a valuable tool for Machine Learning
(ML) practitioners, offering a collaborative environment for creating, sharing, and executing
ML projects seamlessly. It provides free access to GPUs and TPUs, accelerating model training
and experimentation. With its integration of Jupyter notebooks, Colab facilitates code
development, visualization, and documentation in a single interface. Users can easily import
datasets, leverage popular libraries like TensorFlow and PyTorch, and share their work with
others. This democratization of resources and collaborative capabilities make Google Colab a
preferred choice for individuals and teams to efficiently explore, develop, and deploy Machine
Learning solutions.

3 Packages and library used.

3.1 Scikit-learn

Scikit-learn, a widely utilized Python open-source machine learning library, equips
developers and data scientists with an extensive toolkit spanning various facets of machine
learning. Through its intuitive and coherent interface, scikit-learn simplifies processes such as
data preprocessing, feature selection, model training, and evaluation. Its extensive range of
algorithms encompasses classification, regression, clustering, and beyond, offering users an
efficient means to explore and implement models. The library's seamless integration with
other Python libraries, coupled with its emphasis on documentation and best practices,
establishes it as an invaluable asset catering to both novices and seasoned experts in the
machine learning domain.

3.2 Numpy

NumPy, a fundamental library for numerical computations in Python, provides essential data
structures and functions to manipulate large arrays and matrices efficiently. Its array-oriented
programming capabilities enable mathematical operations, broadcasting, and element-wise

computations, making it an essential foundation for various scientific and data analysis tasks.

3.3 Pandas

Pandas, a versatile data manipulation library, simplifies data analysis in Python by
introducing data structures like DataFrames that organize and manipulate structured data.
With powerful tools for data cleaning, transformation, and exploration, Pandas streamlines
tasks such as indexing, aggregation, and merging, enabling users to effectively handle and
analyze tabular and time-series data for insightful decision-making.

3.4 Librosa

Librosa is a Python package specifically designed for analyzing and working with audio and
music data. It offers tools to extract various audio features, visualize audio data, and perform
tasks like spectrogram computation, beat tracking, and tempo estimation, making it an

invaluable resource for researchers and practitioners in the field of audio signal processing
and music analysis.

3.5 Node

Node.js is a runtime environment that allows developers to execute JavaScript code on the
server-side, enabling the creation of scalable and efficient network applications. It utilizes an
event-driven, non-blocking architecture, which makes it particularly well-suited for handling
asynchronous operations and building real-time web applications, APIs, and backend
services.

3.6 NPM

npm (Node Package Manager) is the default package manager for Node.js, providing a vast
repository of open-source libraries and tools that developers can easily integrate into their
projects. It simplifies dependency management, version control, and package distribution,
streamlining the process of building and maintaining Node.js applications by enabling
developers to access and share modular code solutions.

4 Configurations

4.1 EC2
In this paper we have used t2.2xlarge instance with 32 GB storage.
Amazon macOS Ubuntu Windows Red Hat SUSE Li Q
Linux
> Browse more AMls
aws ubuntu® =- Microsoft ‘ RedHat Cg“ Including AMIs from
Mac sSuUs AWS, Marketplace and
the Community

Amazon Machine Image (AMI)

Ubuntu Server 22.04 LTS (HVM), SSD Volume Type Free tier eligible
ami-01dd271720c1ba44f (64-bit (x86)) / ami-090b049bea4780001 (64-bit (Arm)) v
Virtualization: hvm ENA enabled: true Root device type: ebs

Description

Canonical, Ubuntu, 22.04 LTS, amd64 jammy image build on 2023-05-16

Architecture AMI ID
64-bit (x86) v ami-01dd271720c1ba44f

v Instance type info

Instance type

t2.2xlarge
Family:t2 8vCPU 32 GiB Memory Current generation: true (®» All generations
On-Demand RHEL pricing: 0.5332 USD per Hour v
On-Demand Windows pricing: 0.4652 USD per Hour

On-Demand Linux pricing: 0.4032 USD per Hour

On-Demand SUSE pricing: 0.5032 USD per Hour

Compare instance types

4.2 Installations on EC2

These are the packages need to install on EC2.
ubuntu@ip-172-31-47-76:~$% cd
ubuntu@ip-172-31-47-76:~$% cd ai-doc/
ubuntu@ip-172-31-47-76:~/ai-doc$ 1ls
Heart_Sound.npy README.md dataset_heart.csv heart_monitoring_flask.py std.log
ubuntu@ip-172-31-47-76:~/ai-doc$ history
1 1s
2 git clone https://github.com/jps1001/ai-doc.git
3 cd ai-doc/
4 1s
5 pip install Flask
6 sudo apt install python3-pip
7 pip install Flask
8 pip install scikit-learn
9 pip install numpy
10 pip install pandas
11 pip install librosa
12 sudo apt install nodejs
13 sudo apt install npm
14 sudo npm install pm2 -g
15 python3 heart_monitoring_flask.py
16 pm2 start "python3 heart_monitoring_flask.py" ——name heart

17 1s

18 cd ai-doc/

19 git pull

20 pm2 restart heart
21 git pull

22 cat std.log
23 pm2 restart heart
24 cat std.log

25 1s

26 cd ai-doc/

27 1s

28 cat heart_monitoring_flask.py
29 exit

30 1s

31 cd ai-doc/

32 1s

33 cat Heart_Sound.npy

34 1;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2cl;2c
35 1s

36 cat

37 1s

38 c¢d ai-doc/

S Machine Learning Model

5.1 Dataset retrieval

import warnings # To ignore any warnings
warnings.filterwarnings(“ignore")

%matplotlib inline

%pylab inline

import os

import pandas as pd

import librosa

import librosa.display

import glob

import matplotlib.pyplot as plt

%config InlineBackend.figure_format = 'retina

Populating the interactive namespace from numpy and matplotlib

parent folder of sound files
INPUT_DIR="My Drive/"

16 KHz

SAMPLE_RATE = 16000

seconds

MAX_SOUND_CLIP_DURATION=12

set_a=pd.read_csv(INPUT_DIR+"set_a.csv")

set_a.head()

dataset
0 a
1 a
2 a
3 a
4 a

fname
set_a/artifact__201012172012.wav
set_a/artifact__201105040918.wav
set_a/artifact__201105041959.wav
set_a/artifact__201105051017.wav

set_a/artifact__201105060108.wav

set_b=pd.read_csv(INPUT_DIR+"set_b.csv")

set_b.head()

dataset
0 b
1 b
2 b
3 b
4 b

label sublabel

artifact
artifact
artifact
artifact

artifact

fname

NaN
NaN

NaN

set_b/Btraining_extrastole_127_1306764300147_C... extrastole
set_b/Btraining_extrastole_128_1306344005749_A... extrastole
set_b/Btraining_extrastole_130_1306347376079_D... extrastole
set_b/Btraining_extrastole_134_1306428161797_C... extrastole

set_b/Btraining_extrastole_138_1306762146980_B... extrastole

Number of Audio Samples per Category

label sublabel

NaN
NaN
NaN
NaN

NaN

|
|
400 1
|
£ 300 1
o
o
o
9
Q
£ 200
wn
100 1
o

None,dataset

(fname, a)
(fname, b)
(sublabel, a)
(sublabel, b)

x]
=
©
[
%
3

5.2 Reading Audio File

print(‘'Minimum samples per category =
print(‘Maximum samples per category =

Minimum samples per category = 19
Maximum samples per category = 351

artifact

*, min(train_ab
*, max(train_ab

.label.value_counts()))
.label.value_counts()))

xtrastole

o
Category

murmur
normal

normal_file=INPUT_DIR+"set_a/normal__201106111136.wav"

heart it

import IPython.display as ipd
ipd.Audio(normal_file)

b 0:00/004 e o)

6 Feature Extraction

Feature Extraction is a crucial step in training a ML model. In this paper we have waveplot
the audio file.

Load use wave
import wave
wav = wave.open(normal_file)

print(“Sampling (frame) rate = ", wav.getframerate())
print("Total samples (frames) = ", wav.getnframes())
print("Duration = ", wav.getnframes()/wav.getframerate())

Sampling (frame) rate = 44100
Total samples (frames) = 218903
Duration = 4.963786848872562

Load use scipy
from scipy.io import wavfile
rate, data = wavfile.read(normal_file)

print("Sampling (frame) rate = ", rate)
print("Total samples (frames) = ", data.shape)
print(data)

Sampling (frame) rate = 44100
Total samples (frames) = (218903,)
[-22835 -22726 -22595 ... -474 -450 -439]

7 MFCC Extraction — Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) constitute a widely employed feature set
within audio and speech processing, serving purposes like speech recognition, speaker
identification, and music genre classification. These coefficients are formulated based on the
Mel scale, a perceptual pitch scale designed to mimic the human auditory system's sensitivity
to varying frequencies.

Visualize the MFCC series

Mel-frequency cepstral coefficients (MFCCs)
plt.figure(figsize=(12, 3))
librosa.display.specshow(mfccs, x_axis="time")
plt.colorbar()

plt.title('Mel-frequency cepstral coefficients (MFCCs)')
plt.tight_layout()

Mel-frequency cepstral coefficients (MFCCs)

200
100

-100
-200
-300

-400
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

oenv = librosa.onset.onset_strength(y=y, sr=sr)

Detect events without backtracking

onset_raw = librosa.onset.onset_detect(onset_envelope=oenv, backtrack=False)
Backtrack the events using the onset envelope

onset_bt = librosa.onset.onset_backtrack(onset_raw, oenv)

Backtrack the events using the RMS values

rms = librosa.feature.rms(S=np.abs(librosa.stft(y=y)))

onset_bt_rms = librosa.onset.onset_backtrack(onset_raw, rms[@])

Plot the results

plt.figure(figsize=(16, 6))

plt.subplot(2,1,1)

plt.plot(oenv, label='Onset strength’)

plt.vlines(onset_raw, ©, oenv.max(), label="Raw onsets')
plt.vlines(onset_bt, @, oenv.max(), label='Backtracked', color="r")
plt.legend(frameon=True, framealpha=0.75)

plt.subplot(2,1,2)

plt.plot(rms[@], label="RMS')

plt.vlines(onset_bt_rms, @, rms.max(), label='Backtracked (RMS)', color='r")
plt.legend(frameon=True, framealpha=8.75)

8 Installing packages and Feature Selection

from sklearn.model_selection import StratifiedKFold
import os

import time

import xgboost as xgb

from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import precision_score

import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.feature_selection import SelectFromModel
from sklearn.model_selection import GridSearchCv, RandomizedSearchCv
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import RidgeClassifier
from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

Feature Selection
start_time = time.time()
mod = RandomForestClassifier()
param = {"n_estimators": [1@@],
"criterion”: ["gini","entropy"],
“max_features”: [“auto”,"sqrt","log2",None],
"oob_score": [True, False]}

grid = GridSearchCV(mod, param, n_jobs=1)
grid.fit(Xtrain,Ytrain)

clf5 = RandomForestClassifier(n_estimators=grid.best_params_["n_estimators”],criterion=grid.best_params_["criterion"],max_features=grid.best_params_["max_fe

clf5.fit(Xtrain,Ytrain)

clf5.feature_importances_

modi = SelectFromModel(clf5, prefit=True)

Xtrain = modi.transform(Xtrain)

Xtest = modi.transform(Xtest)

print("--- %s seconds ---" % (time.time() - start_time))
print("Feature Selection Code...... ")

9 Machine Learning Models code snippets
This model is trained by Random Forest, KNN, SVM RBF, Logistic Regression etc. The best
performance algorithm is SVM RBF.

Classification Models

SvM
start_time = time.time()
mod = SVC()

SVR-Sigmoid
g = [pow(2,-15),pow(2,-14),pow(2,-13),pow(2,-12),pow(2,-11),pow(2,-10),pow(2,-9),pow(2,-8),pow(2,-7),pow(2,-6),pow(2,-5),pow(2,-4),pow(2,-3),pow(2,-2),pow(2
C = [pow(2,-5),pow(2,-4),pow(2,-3),pow(2,-2),pow(2,-1),pow(1,0),pow(2,1),pow(2,2),pow(2,3),pow(2,4),pow(2,5),pow(2,6),pow(2,7),pow(2,8),pow(2,9),pow(2,18),F

param = {"kernel": ["sigmoid"],
"gamma": g,
"c":C}
random_search = RandomizedSearchCV(mod,param,n_jobs=1,n_iter=160)
random_search.fit(Xtrain,Ytrain)
clfe = SVC(kernel=random_search.best_params_["kernel"],gamma=random_search.best_params_["gamma"],C=random_search.best_params_["C"])
print (“Check 1")
print("--- %s seconds ---" % (time.time() - start_time))
print("SVR-Sig------ ")

SVM RBF

start_time = time.time()
param= {'gamma’': g,
‘kernel': ['rbf'],
C': ¢}
grid_search = RandomizedSearchCV(mod,param,n_jobs=1,n_iter=100)
grid_search.fit(Xtrain,Ytrain)
clfl = SvC(gamma = grid_search.best_params_[“gamma"],kernel=grid_search.best_params_["kernel"],C=grid_search.best_params_["C"])

SVR-RBF

SVR-RBF

clfe.fit(Xtrain,Ytrain)
z@=c1f0.predict(Xtest)
print (z@,Ytest)

pred = pd.DataFrame(z@)
pred_df_svms = pd.concat([pred_df_svms,pred])

clfl.fit(Xtrain,Ytrain)
z1=clfl.predict(Xtest)

pred = pd.DataFrame(zl)
pred_df_svmr = pd.concat([pred_df_svmr,pred])

Logistic Regression

Logistic Regression
start_time = time.time()
g = [pow(2,-15),pow(2,-14),pow(2,-13),pow(2,-12),pow(2,-11),pou(2,-18),pow(2, -9),pow(2, -8) ,pow(2,-7),pou(2,-6),pow(2, -5) ,pow(2, -4) ,pow(2, -3) ,pow(2, -2) , pow(2

C = [pow(2,-5),pow(2,-4),pow(2,-3),pow(2,-2),pow(2,-1),pow(1,0),pow(2,1),pow(2,2),pow(2,3),pow(2,4),pow(2,5),pow(2,6),pow(2,7),pow(2,8),pow(2,9),pow(2,10),F
mod = LogisticRegression()

param = {"penalty":['11'],
"dual": [False],

RGR=C
"fit_intercept”: [True, False],
"solver”: ["liblinear"]}

grid = GridSearchCV(mod, param,n_jobs=1)
grid.fit(Xtrain,Ytrain)

clf2 = LogisticRegression(penalty=grid.best_params_["penalty"],dual=grid.best_params_["dual"],C=grid.best_params_["C"],fit_intercept=grid.best_params_["fit_

print("--- %s seconds ---" % (time.time() - start_time))
print("LR-L1------ ")

Random Forest

Random Forest
start_time = time.time()

mod = RandomForestClassifier()

param = {"n_estimators": [1@0,500],

"criterion": ["gini","entropy"],
“max_features": ["auto"”,"sgrt","log2",None],
"oob_score": [True, False]}

grid = GridSearchCV(mod, param, n_jobs=1)
grid.fit(Xtrain,Ytrain)

clf5 = RandomForestClassifier(n_estimators=grid.best_params_["n_estimators”],criterion=grid.best_params_["criterion"],max_features=grid.best_params_["max_fe

clf5.fit(Xtrain,Ytrain)
z5 = clf5.predict(Xtest)

pred = pd.DataFrame(z5)
pred_df_rfc = pd.concat([pred_df_rfc,pred])

print("Random Forest: ",accuracy_score(z5,Ytest))

print("--- #s seconds ---" % (time.time() - start_time))
print("Random Forest ------ ")
print (“check 5")

KNN

start_time = time.time()
mod = KNeighborsClassifier()
param = {"n_neighbors": range(1,100,1),
"weights": [“"uniform”, "distance"],
“algorithm": ["auto","ball_tree","kd_tree","brute"],
"p:[1,2]}
grid = RandomizedSearchCV(mod,param,n_jobs=1,n_iter=100)
grid.fit(Xtrain,Ytrain)
clf11 = KNeighborsClassifier(n_neighbors=grid.best_params_["n_neighbors"],weights=grid.best_params_["weights"],algorithm=grid.best_params_["algorithm"],p=gr
print("--- %s seconds ---" % (time.time() - start_time))
clf1l.fit(Xtrain, Ytrain)
z11 = clfll.predict(Xtest)

pred = pd.DataFrame(z11)
pred_df_knnc = pd.concat([pred_df_knnc,pred])

print("KNN: ",accuracy_score(zll,Ytest))
print (“check 7")

10 Deployment

The deployment process involves deploying a machine learning model that utilizes Flask for
handling HTTP requests. The application encompasses three key functions: feature
extraction, prediction, and API calls. For feature extraction, the librosa library is employed to
extract relevant features from audio data, enabling effective analysis. The extracted features
are then fed into the prediction function, where a Support Vector Machine (SVM) with a
Radial Basis Function (RBF) kernel is employed. This SVM-RBF model, achieving an
accuracy of 74.34%, efficiently predicts the characteristics of sound data. Lastly, an API call
function is implemented to enable external interaction with the deployed model. This
integrated approach, utilizing Flask, librosa, SVM-RBF, and API calls, ensures a seamless
deployment pipeline that empowers users to analyze sound data, predict outcomes accurately,

and access the model's capabilities through a user-friendly interface.
i t pandas as pd
t numpy as np
librosa
t os
1 sklearn.preprocessing import LabelEncoder
1 sklearn.svm import SVC
1 sklearn.model_selection imp GridSearchCV
1 flask import Flask, request, jsonify

jef extract_features(audio_path):
= librosa.load(audio_path, duratio
= librosa.feature.mfcc(y=y, sr=sr, n
n mfccs

=f predict(sound_data):
n = data[“Label"].value_counts()[0]
target = data.pop(“label").values
training = train_dataset
sound_data = sound_data.reshape((1, 40 * 173))
le = LabelEncoder()
target = le.fit_transform(target.astype(str))
g = [pow(2,-15),pow(2,-14),pow(2,-13),pow(2,-12),pow(2,-11),pow(2,-10),pow(2,-9),pow(2,-8),pow(2,-7),pow(2,-6),pow(2,-5),po

C = [pow(2,-5),pow(2,-4),pow(2,-3),pow(2,-2),pow(2,-1),pow(1,0),pow(2,1),pow(2,2),pow(2,3),pow(2,4),pow(2,5),pow(2,6),pow(2
param= {'gamma’:

'kernel’: ['rbf'],

. cr
mod = SVC()
grid_search = GridSearchCV(mod,param)
grid_search.fit(training, target)
clfl = SVC(gamma = grid_search.best_params_["gamma”],kernel=grid_search.best_params_["kernel"],C=grid_search.best_params_["
clfl.fit(training, target)
preds = clfl.predict(sound_data)
extracti most confident predictio
heart_class = le.inverse_transform(pred
t "The Class is : " + str(heart_class)

n t
Define the Flask app

app = Flask(__name_)

f ar

('/predict’,

. methods=
f predict_heart_sound_data():

sound_file = request.files['sound data']
sound_file:
¥ Save the
temp_file_path "temp.wav '
sound_file.save(temp_file_path)

t = predict(features)

Cles p the tenm
os.remove(temp_file_path)

porary T1le

n jsonify({"prediction”: t})

jsonify({"error”: "No sound data received."}), 400
t Exception as e:
jsonify({"error”: str(e)}), 500
if _name__ == '__main__':
app.run(debug=True)

11 Testing HTTP through Postman

POST v http://34.254.35.17:5000/predict
Params Authorization Headers (8) Body e Pre-request Script Tests Settings
none @ form-data x-www-form-urlencoded raw binary GraphQL
Key Value
sound_data Bunlabelledtest_103_130503193197... X
Select Files
Body Cookies Headers (5) Test Results @ 200 OK 1973 ms 212B
Pretty Raw Preview Visualize JSON v =
1
2 "prediction": "The Class is : artifact"
3 B

Cookies

» Bulk Edit

[2) Save as Example oco

@ Q

K. Vanisree and J. Singaraju, 2011. “Decision support system for congenital heart disease
diagnosis based on signs and symptoms using neural networks,” International Journal of

Computer Applications, vol. 19, no. 6, pp. 6-12.

Liang, H., Lukkarinen, S. and Hartimo, I., 1997, September. Heart sound segmentation
algorithm based on heart sound envelogram. In Computers in Cardiology 1997 (pp. 105-108).

IEEE.

Numpy (2009). NumPy. [online] Numpy.org. Available at: https://numpy.org/.

