~

\" National
College
Ireland

Optimizing Fog Computing Task Scheduling:
Selection and Superiority of Differential
Evolution Algorithm

MSc Research Project
MSc in Cloud Computing

Joan Bency
Student 1D: 21222959

School of Computing
National College of Ireland

Supervisor:  Prof. Punit Gupta




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Joan Bency
Student ID: 21222959
Programme: MSc in Cloud Computing
Year: 2023
Module: MSc Research Project
Supervisor: Prof. Punit Gupta
Submission Due Date: 18/09/2023
Project Title: Optimizing Fog Computing Task Scheduling: Selection and
Superiority of Differential Evolution Algorithm
Word Count: 7209
Page Count: 2]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Optimizing Fog Computing Task Scheduling:
Selection and Superiority of Differential Evolution
Algorithm

Joan Bency
21222959

Abstract

The increase in the number of Internet of Things (IoT) devices raises the amount
of data generated every day. Cloud computing provides storage, processing, and
analytical capabilities to handle such huge amounts of data. Furthermore, some ap-
plications cannot handle the elevated latency and consumption of bandwidth. To
solve this, the fog computing paradigm puts cloud services nearer to the network
edge. Yet, because fog resources are varied, resource-constrained, and distributed,
efficient task scheduling becomes crucial for increasing performance. Response time
to application requests, as well as bandwidth and CPU usage, can be decreased with
an efficient job scheduling algorithm. This work describes a thorough investigation
into task scheduling in fog computing using meta-heuristic techniques. Many evolu-
tionary and swarm-based methodologies were explored and simulated by combining
them with the PureEdgeSim simulator, which realistically simulates cloud-fog situ-
ations and differential evolution(specifically SADE) emerged as the best option due
to its superior performance. Compared to the Bees Algorithm, SADE showed a
decrease of 87.9% in failed tasks and compared to BaseGA, it showed a decrease of
15% in execution delay. Also compared to OriginalPSO, SADE exhibited a 5.4%
decrease in average bandwidth and a 23.2% decrease in average CPU usage. This
research advances the field of efficient fog computing optimisation while emphas-
ising the importance of method selection in tackling real-world difficulties.

1 Introduction

The Internet of Things(IoT) is one of the technologies that has the prospect of providing
a great deal of benefits to the world. Many of the devices and gadgets around us are
changing in a way that they are able to be connected to the internet and are able to
communicate with each other without any human intervention. According to a report
by McKinsey Global Institute(I]), IoT could have a potential economic impact of $3.9
trillion to $11.1 trillion per year by 2025 across several industries. Another report by
Accenture(2) found that industrial-level IoT has the possibility to add $14.2 trillion to
the global economy by 2030. As such communication happens the need for manual data
entry is reduced as data is collected from the environment using various sensors and
scanners and this data is stored and processed automatically. IoT environment produces
an unprecedented amount of data that needs to be stored, processed and analyzed all



the time. This data is used for various decision-making processes in the immediate and
distant future.(3)(4).

Even with all the advantages [oT has, its limitations make it harder to implement it
extensively. One major disadvantage was the limited computing and storage power. But
that was solved by integrating the Cloud with IoT for storage and computing. In cloud
computing, service users have access to efficient and adaptable services. In traditional
cloud computing, the two primary players are Cloud Providers and Cloud Users. Provider
resources like storage and processing are leased by users and are paid as per their use. A
high processing bandwidth is needed to transfer data between the end user and the cloud
which can cause delays (4))(5).

Thus, in industries like healthcare, emergency response and other such latency-sensitive
ones where speed is an important factor, the cloud can be a liability because of the delay
caused while transferring data to and from the cloud. Also, sending so much data to the
cloud for storage and processing is inefficient because it would saturate network band-
width and is not scalable(3]) (4]).

As a solution to these issues, it was proposed to use computing resources near IoT
sensors for local storage and initial data processing calling it edge computing. Edge Com-
puting would reduce network congestion and speed up analysis and decision-making as
a result. Yet, edge devices are incapable of managing multiple IoT applications compet-
ing for their limited resources. These constraints are overcome by fog computing which
quite easily integrates edge devices and cloud resources. By utilising cloud resources
and coordinating the use of geographically dispersed edge devices, it prevents resource
contention at the edge(4)).

Fog Computing is a highly virtualized platform that offers networking, storage, and
computing services between end devices and conventional cloud computing data centres,
which are typically but not always situated at the edge of the network. Essentially the
technology manages IoT data locally by relying on clients or edge devices close to users
to handle a sizable amount of storage, communication, control, configuration, and man-
agement. The method takes advantage of the close proximity of edge devices to sensors
while utilising the flexibility of cloud resources to scale on demand. Applications for data
processing or analytics running on distributed clouds and edge devices are included in fog
computing. Additionally, it makes it easier to manage and program storage, networking,
and computing services between data centres and endpoints(4))(6).

While having all these advantages, it is important to schedule the incoming tasks
efficiently in fog computing. While fog computing compensates for the limitations of
edge computing by integrating edge devices with the cloud, it is important to have a
good task scheduling method so that tasks will be assigned correctly. That is, tasks that
can be handled by edge devices need to be assigned to the edge and when the task is
too big or complicated and is outside the computing power of an edge device it needs
to be assigned to the cloud, or such methods need to be taken. All of these need to be
done while keeping in mind several metrics like delay, bandwidth, network usage, energy
consumption, etc. (7))

There are different types of task-scheduling algorithms in fog computing. Some of the
common types are:



|l!5 Cloud

Fog Layer

End User
Layer

Figure 1: Cloud Fog Environment Architecture

1.1 Heuristic Algorithms

Heuristic Algorithms are simple and fast and the rules they use are predefined. The
solutions they give may not always be optimal ones, but they can always handle large
and dynamic problems. Some examples of heuristic algorithms are First Come First
Serve(FCFS), Shortest Job First(SJF), Round Robin(RR) and Priority-based algorithms(8]).

1.2 Meta-heuristic Algorithms

These algorithms are intelligent and advanced and they use evolutionary or stochastic
techniques to find near-optimal methods to schedule tasks. These algorithms can handle
complex problems but may require more time and computational resources. A few ex-
amples are Genetic Algorithms(GA), Ant Colony Optimization(ACO) algorithm, Particle
Swarm Optimization(PSO) algorithm, and Differential Evolution(DE) algorithm (8.

In this paper, we will be presenting an efficient scheduling technique for a cloud-fog
computing environment. From all experiments, the suggested solution is a Differential
Evolution(DE) algorithm. This scheduling approach considers various features like delay,
tasks failed, network usage, bandwidth, and CPU usage. Furthermore, energy consump-
tion is also kept in mind. This solution has been utilized to schedule tasks, utilising
the PureEdgeSim simulator to confirm the results. The results of the experiment are
compared with other advanced evolutionary and swarm-based algorithms.

Fog computing is a paradigm for computing that allows for processing, storage and
communication at the network’s end. Large-scale applications can be processed and
stored using cloud resources with fog computing. In cloud fog architecture, the cloud
layer is the top layer, in the middle are the nodes or devices acting as the fog devices,
and the bottom layer consists of end users(7). Figure [1| presents the architecture of the
Cloud fog environment.

The Cloud Layer is the top layer of the cloud fog environment. This is the layer where
storing and processing of data happens over the internet. The cloud provides large-scale



Time | Bandwidth Cost Enerey cPy Convt.argence Makespan F!OW C02 Performance R?s.our-ce
Consumed| usage Time Time Emission Utilisation
(7] x s b
9] & ¥ x T =
[10] x
(11] = ¥ e %
[12] 7 =
[13] ¥ B =
[14] *
[15] x x x
[16] * * x
[17] x x X

Figure 2: This is a table comparing all Related Works

and centralized resources like storage and computing power. This layer should be used
for applications or tasks that are too large and complex for edge or fog devices. The
biggest disadvantage of the cloud layer is the high latency. Some examples where this
layer is used are data mining, machine learning, etc([7)).

The fog layer is the middle layer and is where cloud resources are spread to the edge of
the network, i.e. nearer to the end users and devices. Fog computing offers resources and
services that are distributed and in the middle. Applications that need low latency, and
high bandwidth, but not high performance should use fog computing. Fog computing is
widely used in smart cities, smart healthcare and vehicle networks(7).

The end layer, which contains numerous heterogeneous and mobile devices is the layer
closest to the end user. End devices most frequently run on batteries have comparatively
low CPU and memory capacities which has a negative impact on battery life. As the
processing and storage capacity is limited, data generated by end devices are mostly
processed or stored elsewhere. Gadgets like sensors(heart monitors), cell phones, and
cameras are some end devices in the Internet of Things(IoT) (7).

The remainder of the paper is arranged as follows: Second Section consists of the
related works. Section 3 covers Implementation. Implementation results will be discussed
in Section 4 and Section 5 will include the conclusion of the paper.

2 Related Work

The task scheduling and task allocation strategies that are currently in use to boost
performance in a cloud fog environment are covered in this section. The scheduling of jobs
from fog to the cloud is done by resource optimizations. By cutting down on execution
time, reducing network usage, lowering costs, etc., these schedules and allocations are
meant to deliver a higher QoS. Here is an overview of a few of these methods for task
scheduling.

In (7)), Arshed et al. proposed an efficient task-scheduling technique that is mainly
for IoT devices. This is a genetic algorithm that reduces reaction time to application
requests along with bandwidth and cloud service costs. Execution time is used as a
fitness function in the suggested solution to choose an effective module scheduling across
the available fog devices and in terms of execution time, financial gain and bandwidth this
solution performs way better than baseline algorithms. This solution performs 15-40%
better compared to simple algorithms, i.e. it is quicker, consumes less bandwidth and
has lower financial costs. But as it says even though it performs better, it is only better



than the simpler baseline algorithms.

In (9), Natesha and Guddeti proposed a technique primarily for IoT devices. Here,
using docker and containers a two-level resource provisioning fog framework was created,
and the service placement problem in the fog computing environment was formulated
as a multi-objective optimisation problem to reduce service time, cost, and energy con-
sumption. It makes use of the Elitism-based Genetic Algorithm((EGA). It was tested
on devices with 1.4 GHz 64-bit quad-core processors and a docker and container-based
fog computing testbed. In terms of service cost, energy consumption, service time, and
average CPU utilisation of fog nodes, the proposed method performs better than other
service placement strategies taken into consideration for performance evaluation. One of
the work’s limitations is that the method did not take into account the interconnected
[oT applications to evaluate how well the proposed EGA performed on the created fog
testbed.

In (10), Hoseiny et al. proposed a task-scheduling algorithm that serves primarily IoT
devices. A fundamental problem is how to effectively use the resources of the fog cloud
to carry out tasks that are offloaded from IoT devices. Here they proposed a fog-cloud
scheduling algorithm called PGA to maximise the multi-objective function, which is a
weighted average of total computation time, energy usage, and the proportion of tasks
that are completed by the deadline (PDST). The various task requirements as well as
the diverse makeup of the fog and cloud nodes were taken into account. To find the
best computing node for each task, they suggested a hybrid technique based on task
prioritisation and a genetic algorithm. It performs noticeably better than the compared
algorithms and offers a decent convergence time.

In (11, Abdel-Basset et al. proposed another algorithm that is primarily used for
IoT devices. It is an improved elitism genetic algorithm (IEGA) for Fog Computing (FC)
to solve the task scheduling issue and raise the QoS provided to users of IoT devices.
The two main phases of IEGA’s improvements are the manipulation of the mutation rate
and crossover rate, which enable the algorithms to explore the majority of the possible
combinations that could result in the near-optimal permutation and to mutate various
solutions based on a given probability in order to evade getting stuck in local minima and
discover a more acceptable solution. In terms of energy consumption, fitness function,
makespan, flow time, carbon dioxide emission rate, and fitness function, it is compared
with five recent powerful optimisation algorithms and EGA, and IEGA is superior in all
metrics. However, for task sizes greater than 700, the proposed approach outperforms
the others in terms of flow time, demonstrating its superiority for large-scale problems.

In (12), Ali et al. suggested an algorithm that minimises both the makespans and
total costs in a fog-cloud environment by solving a multi-objective task-scheduling optim-
isation problem. Then, we propose an optimisation model for the discrete multi-objective
task-scheduling problem based on a discrete non-dominated sorting genetic algorithm and
automatically assign tasks that should be executed either on fog or cloud nodes. Instead of
using continuous operators, which are resource-intensive and incapable of allocating suit-
able computing nodes, the NSGA-II algorithm is modified to discretize the crossover and
mutation evolutionary operators. To improve the execution, communications between the
cloud and fog tiers are formulated as a multi-objective function. The suggested model
organises the distribution of workloads among various computing resources at the fog and
allots computing resources that would run on either fog or cloud nodes. It is contrasted
with four peer mechanisms and a continuous NSGA-II (CNSGA-II) algorithm. Results
show that by reducing makespan and expenses in fog-cloud environments, the model can



achieve dynamic task scheduling. It can make use of the model to distribute batch tasks
involving large amounts of data in environments with fog clouds.

In (13]), Singhrova proposes an effective resource allocation algorithm in fog comput-
ing, which is a hybrid Prioritized Genetic Particle Swarm Optimization (P-GA-PSO)
algorithm. In comparison to GA, the proposed algorithm efficiently distributes tasks
among the resources, resulting in delays, waiting times, and energy consumption that are
reduced by 8.73%, 22.65%, and 17.81%, respectively, and improved resource utilisation
by 0.54%. When compared to the Round Robin algorithm, however, delays, energy con-
sumption and waiting times were reduced by 3.90%, 1.68%, and 21.99% respectively, and
improved resource utilisation was shown to be 12.51%. According to quantitative ana-
lysis, the proposed algorithm outperforms round-robin algorithms and GA and progresses
toward ideal solutions more quickly.

In (14), Kumar et al. proposed the energy-saving Green-Demand Aware Fog Com-
puting (GDAFC) solution. The suggested solution employs a prediction technique to de-
termine the working fog nodes (nodes that respond to requests as they come in), standby
fog nodes (nodes that step in when the working fog nodes’ computational capacity is
insufficient), and idle fog nodes in a fog computing infrastructure. Taking into account
the delay requirements of the applications, it also assigns a suitable sleep interval for the
fog nodes. Without impairing the performance of the delay requirement, this solution
can save up to 65% of energy. The study has shown that it is not necessary to keep every
fog node in an FCI active in order to deliver a requested service. The number of working
nodes in an FCI is thus dynamically determined by the proposed technique based on the
anticipated workload at a particular time. The system designates some of the fog nodes
in an FCI as standby nodes to prevent task dropping or delay-requirement violations
when the prediction accuracy is low.

In (15), Nguyen et al. introduce a method to reduce operating costs and execution
times when solving task scheduling issues for Bag-of-Tasks applications in a cloud-fog en-
vironment. The TCaS proposed algorithm was evaluated on 11 datasets of varying sizes.
In both a Fog environment and a Cloud-Fog system, TCaS outperformed three other
methods, namely MPSO, BLA, and RR. The results demonstrate a 15.11% improvement
over the Bee Life Algorithm (BLA) and an improvement of 11.04% over Modified Particle
Swarm Optimization (MPSO) while accomplishing a harmony between completion time
and operating expense. In terms of the trade-off between time and cost execution, RR
increased by 44.17% over 11 sets of tasks, particularly by obtaining a significantly shorter
scheduling length. The proposed method is cost-effective and has high-performance com-
puting power.

In (16]), Etemadi et al. proposed a technique that is mainly for ToT devices. IoT ap-
plications’ time-varying workloads in the fog network should be managed using a learning-
based resource provisioning approach, the proposal reads. Using the general three-tier
architecture of fog networks as our model, we create an extended resource provisioning
framework. The proposed method uses a hidden Markov model (HMM) as a decision-
maker and a nonlinear autoregressive neural network (NAR) as a prediction method to
decide how much fog resources to provision for IoT application workloads. Extension ex-
periments are used to assess effectiveness using two real-world datasets. According to the
iFogSim toolkit’s results, resource energy consumption is improved while the delay, cost,
and number of fog devices are reduced when compared to baseline mechanisms currently
in use.

In (I7), Duy La et al. using two case studies, suggest a strategy that uses device-



Initial Population H Evaluation }—)E:itnez Assignment
F

Reproduction Selection

Figure 3: A simple Evolutionary Algorithm Architecture

driven and human-driven intelligence as essential enablers to lower energy consumption
and latency in fog computing. The first is to perform adaptive low-latency Medium
Access Control (MAC)-layer scheduling among sensor devices using machine learning to
identify user behaviours and the other is to create an algorithm that will allow a smart
EU device to choose its offloading decision in the company of several nearby fog nodes
while minimising its own energy and latency goals. The first case study demonstrates
how human-driven data analytics can enhance resource scheduling context awareness and
network adaptability. The second case study shows that when task offloading is made
possible by a group of fog nodes, the energy consumption and latency for the EU device
are reduced.

3 Methodology

A subclass of evolutionary computation, the evolutionary algorithm (EA) is a general
stochastic search algorithm. A metaheuristic optimisation algorithm based on the pop-
ulation concept was used. Metaheuristics are higher-level processes designed to locate,
generate, or pick one or more lower-level processes or heuristics capable of performing
partial searches. It can be used for a variety of optimisation problems with constrained
computing power and incomplete or imperfect data. It offers a good enough solution in
such circumstances(19).

The processes of biological evolution, such as reproduction, mutation, recombination,
and selection, serve as inspiration for EAs. To maximise the quality function, a group
of prospect solutions is generated at random. The problem domain is then applied with
the quality function in the form of an abstract fitness function. On the basis of the
fitness function, some better candidates are chosen for the next generation. By using the
methods of recombination and/or mutation on them, this is accomplished. The binary
operator can be used to represent recombination. This operator can be used to create
one or more new candidates (children) by applying it to two or more chosen candidates
known as parents. While a mutation only affects one candidate and produces a single new
child. It generates a set of new candidates based on their fitness function after carrying
out this recombination or mutation. This procedure is iterative. It can go on indefinitely
as long as suitable candidates are found(19).

Below is how the evolutionary algorithms work:



1. Original problem space and problem-solving space are defined in the first step. It’s
referred to as representation. It is the environment in which evolution occurs. The
goal of representation is to close the gap between real-world issues and the world
of electronic games. Phenotypes are the items that make up the original problem
space’s potential solutions. The individuals within EA are referred to as genotypes
according to their corresponding encoding(19).

2. Finding the evaluation function (Fitness Function) is the second step. This func-
tion serves as the foundation for the selection process and makes improvements
possible(19)).

3. Population once defined as representation holds a potential resolution. The unit of
evolution is composed of multiple genotypes. The population is the total number
of individuals in a given representation(19).

4. By choosing parents who are of high quality, the individuals are chosen. Because
of this, the following generation has parents of high calibre(19).

5. Variation operators transform existing operators into new ones. Both mutation
and recombination are types of variation operators. A unary operator serves as the
mutation’s representation. It creates the offspring of a genotype when it is applied
to that genotype. Recombination, however, uses a binary operator. Recombination
combines the information from two or more parent genotypes to produce one or
more offspring genotypes(19).

6. Individuals are distinguished based on their merit through the survivor selection
process. It resembles the process of choosing parents quite a bit. However, it occurs
at various points in the evolution(19).

7. Individuals are chosen at random form the first population. Typically, an initial
population is formed using a particular heuristic with a higher fitness. Reaching
the ideal fitness level, which the issue is aware of, can cause the termination con-
dition to occur. EA, however stochastic, does not ensure an ideal outcome. As a
result, the algorithm never reaches the ideal fitness value. Therefore, it requires a
condition that unquestionably stops the algorithm. The maximum CPU time, the
total number of evaluations, the allotted time, etc. are some of the criteria used for
the same([19).

Evolutionary Programming (EP), Evolution Strategies (ES), Genetic Programming
(GP), and Genetic Algorithm(GA) are subfields of the evolutionary algorithm. Memetic
algorithms (MA) and distributed EA are two additional extensions that are recommended
to improve the overall performance of EA methods.

Local search heuristics are those that adopt a participant. The memetic algorithm
(MA) combines the EA and local inquiry. Hill Climbing, Ant systems, Particle swarms,
Simulated annealing, Differential Evolution, and Tabu Search are examples of search
heuristics. Due to the possibility of a very slow evaluation of the fitness functions or ex-
cessively large population size, distributed EAs are used to distribute the entire workload
across multiple computers and carry out all computations in parallel. The Master-slave
model, Independent run model, island model, unified hypergraph model, hybrid model,
and cellular EAs are examples of distributed EAs models(19).



Swarm intelligence, on the other hand, is also known as artificial groups of simple
agents, and is a term that describes the joint behaviour of self-organized and decentralised
techniques. Social insects’ collective nest-building, cooperative transportation, group
foraging, and collective sorting and clustering are all examples of swarm intelligence in
action (21]).

Metaheuristics called swarm optimisation algorithms were developed as a result of the
swarm intelligence phenomenon. They are employed to address a variety of optimisation
issues because of their ease of use, adaptability, and scalability. Particle swarm optim-
isation (PSO), ant colony optimisation (ACO), artificial bee colony (ABC), and grey
wolf optimisation are a few of the well-known swarm optimisation algorithms (GWO).
These algorithms search for the best solution in a given problem space by imitating the
behaviour of natural swarms, such as birds, fish, bees, and wolves(21)).

An optimisation algorithm works iteratively from a starting hypothesis. It might
eventually unite towards a sturdy solution, ideally the best solution to the relevant issue,
after a predetermined (sufficiently large) number of iterations. The solutions serve as
states in this self-organizing system, and the converged solutions serve as attractors.
A set of guidelines or a set of mathematical equations can guide the evolution of such
an iterative, self-organizing system. As an outcome, an intricate system like this can
interconnect and self-organize into specific converged forms, exhibiting some budding
self-organizational traits. In this sense, designing an optimisation algorithm that is both
effective and efficient is equivalent to figuring out how to mimic the evolution of a self-
organizing system (20)).

To determine which evolutionary and swarm-based algorithms work best in this situ-
ation, we will use a variety of them.

To simulate a cloud-fog environment, PureEdgeSim will be used. It is a simulation
framework that allows the assessment of resource managing techniques as well as the
performance of Cloud, Edge, and Mist Computing environments(22]).

So as mentioned above we will be finding an efficient task-scheduling algorithm from
several evolutionary and swarm-based algorithms.

4 Implementation

In this section, we are going to go through the practical implementation part of our
research where we will be focusing on the various meta-heuristic algorithms for efficient
task scheduling in a fog computing environment. First, we will be discussing the different
algorithms we used in this research. Then we will move on to the simulator we use
to imitate the Cloud fog environment and then we will discuss the different hardware
specifications of the device used to run the simulator and algorithms.

4.1 Genetic Algorithm

The Genetic Algorithm (GA), developed by John Holland in the year of 1975, is a search
optimisation technique based on way of natural selection. The primary idea behind this
algorithm is to replicate the concept of the law of the jungle. A new population is gener-
ated in GA with the use of certain genetic operators such as crossover, reproduction, and
mutation. A population can be represented as a string set (referred to as chromosomes).
In each generation, a new chromosome (a member of the population) is formed utilising



information from the preceding population’s fittest chromosomes. GA first spawns a pop-
ulation of viable solutions and connects them in such a way that their search is directed
toward more favourable portions of the search space. Each one of these viable solutions
is concealed as a chromosome, sometimes known as a genotype, and each one of these
chromosomes will be assigned a fitness function. The fitness function of a chromosome
influences its ability to survive and reproduce progeny. The higher the fitness value, the
more promising the solution is for maximising problems, and the lower the fitness value,
the more useful the solution is for minimization problems. The five major components
of a basic GA are a random number generator, a fitness evaluation unit, a reproduc-
tion process, a crossover process, and a mutation operation. Reproduction chooses the
population’s fittest candidates, whereas crossover is the process of merging the best chro-
mosomes and passing the greatest genes to the next generation, and mutation changes
part of the genes in a chromosome(21).

There are three variants of genetic algorithms implemented here, they are BaseGA,
EliteSingleGA and EliteMultiGA.

4.2 Differential Evolution

The Differential Evolution (DE) algorithm is similar to GA and is a population-based
method in that it uses the same operators, The key distinction between DE and GA is
that DE depends on mutation operations while GA relies on crossover operations to build
superior solutions. Storn and Price developed this algorithm in 1997. DE uses three
attributes to generate a new population iteratively: Target Vector, Mutation Vector,
and Trail Vector. The target vector is the vector that holds the answer to the search
space; the target vector’s mutation is the mutant vector; and the trailing vector is the
outcome of the crossover operation between the target vector and the mutant vector. As
previously noted, the primary steps of the DE algorithm are similar to GA with just
minor variations. The population initialization process is where DE begins, followed by
an evaluation to select the population’s most fitting individuals. The weighted difference
of the two population vectors is then added to the third vector to generate new parameter
vectors. This process is known as mutation. The vector is blended within the crossover,
and the algorithm performs a final selection step(21]).

We will be adopting the Self-Adaptive Differential Evolution(SADE) algorithm, which
is a variant of DE here.

Throughout the optimisation process, a self-adaptive differential evolution algorithm
(SaDE) can automatically alter its mutation and crossover parameters and tactics. It
does not necessitate that the user pre-specify these values, which can be difficult and
time-consuming to optimise for various problems. SaDE can improve its performance
and efficiency by learning from its own experience and adapting to the features of the
situation at hand. SaDE employs a self-adaptive process to determine the best muta-
tion approach and parameter values for each generation. It keeps a pool of mutation
techniques and assigns each one a chance based on its past performance. Qin and Sug-
anthan suggested SaDE in 2005 as a solution to overcome the constraints of the standard
differential evolution (DE) algorithm(18]).

10



4.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimisation approach developed in 1995 by
Kennedy and Eberhart. To lead the particles in their search for global optimal solu-
tions, it employs a simple technique that resembles swarm behaviour in birds flocking
and fish schooling. PSO has three basic behaviours: separation, alignment, and cohe-
sion. Separation is the avoidance of congested regional flockmates, whereas alignment
is the movement toward the direction of regional flockmates. The behaviour of moving
towards the average position of local flockmates is referred to as cohesion. By scanning
an entire high-dimensional problem space, PSO has proven to be an efficient optimisation
approach. It’s a stable stochastic optimisation technique established on swarm movement
and intelligence. It uses the notion of social exchange to solve problems and doesn’t em-
ploy the gradient of the issue being optimised, hence it does not need the optimisation
issue to be differential, as traditional optimisation methods do. PSO can be used to de-
termine the optimisation of irregular issues that are noisy and dynamic. PSO parameters
include the number of particles, the agent’s position in the solution space, velocity, and
agent neighbourhood (21)).

4.4 Artificial Bee Colony

Among the most current swarm intelligence algorithms is Artificial Bee Colony(ABC).
Dervis Karaboga proposed it in 2005. This algorithm is inspired by natural honey bees’
cognitive behaviour in identifying food sources, called nectar and exchanging knowledge
regarding that food source with other bees in the hive. The method is said to be as easy
and straightforward to execute as DE and PSO. The artificial agents are classified into
three sorts: employed bees, observer bees, and scout bees. Monitoring and remembering
the location of that source is done by employed bees. Because each hired bee is associated
with only one food source, the count of employed bees and food sources will be the same.
The employed bee in the hive provides information on the food supply to the spectator
bee. Following that, nectar is collected from one of the chosen food sources. The scout bee
is responsible for discovering new food sources and nectar sources. The ABC method’s
main process and the details of each stage are as follows: Initialization Phase, Employed
Bees Phase, Onlooker Bees Phase, Scout Bees Phase, Memorization of the best fitness
value and position, and Termination Checking Phase(21)).

4.5 Bacterial Foraging Optimization

Passino’s Bacteria Foraging Optimization Algorithm (BFOA) is a newbie to the family of
nature-inspired optimisation algorithms. The bacterial foraging optimisation algorithm
(BFOA) is a bio-inspired optimisation technique that simulates the foraging behaviour
of bacteria, such as Escherichia coli in search of nutrition. Chemotaxis, swarming, re-
production, and elimination-dispersal are the four processes of BFOA. Chemotaxis refers
to microorganisms moving towards or away from chemical gradients. Bacteria swarm-
ing is the creation of persistent patterns in nutrient-rich settings. Bacteria reproduce
by splitting into two identical cells. The abrupt change in bacterium sites caused by
environmental changes is known as elimination dispersal. By altering the settings and
methods of these processes, BFOA may handle both continuous and discrete optimisation
problems(23)).

11



200 o:‘ - B o1
* 3 e etV ;
Fi : . oo ‘. .
—_ : . Lel i )
» 150 % . . o Idle devices
o} Lo Sie 0 gt
° : «®e e LY i Active devices
: .
EE/ 100 Lo e L X '——. I SR - Dead devices
= e £3 .
=3 . "'.- e :'. P e Idle Edge data centers
3 50 A} ° -: M . :; Active Edge data centers
.
- % e S -
: -' B '
0 i g i
0 100 200

Width (meters)

Figure 4: Simulation Map

4.6 Bees Algorithm

Another bio-inspired optimisation tool is the Bees algorithm (BA), which simulates the
food-foraging behaviour of honey bees. BA has three types of bees: hired bees, bystand-
ers, and scouts. Employed bees are affiliated with a specific food source (solution) and
communicate with bystanders. Onlookers are bees who wait in the hive and choose a food
source based on information provided by hired bees. Scouts are bees that randomly ex-
plore new food sources in the search space. BA can strike a balance between exploration
and exploitation by employing different search algorithms for different bee groupings.

The probabilistic bees algorithm (PBA) is a variation of the BA that incorporates
probabilistic models to improve the algorithm’s performance and efficiency. PBA uses
an estimated distribution algorithm (EDA) to learn from previous solutions and generate
new ones based on a probability distribution. PBA additionally employs a self-adaptive
mechanism to dynamically alter the algorithm’s settings and tactics based on the features
of the challenge(24)).

4.7 Cat Swarm Optimization

The cat swarm optimisation algorithm (CSO) is a swarm-based optimisation technique
inspired by feline behaviour. CSO operates in two modes: searching and tracing. Cats in
seeking mode are passive and look about for probable prey. Cats are active and hunt after
their prey when in tracing mode. CSO controls the searching mode using four factors:
seeking memory pool (SMP), secking range of the selected dimension (SRD), counts of
dimension to change (CDC), and self-position considering (SPC). Each cat’s memory
size is determined by SMP. SRD calculates the mutation ratio for the dimensions chosen.
CDC specifies how many dimensions will be altered. SPC determines whether a cat’s
current posture is a candidate point or not. Using various distance metrics, CSO can
tackle both combinatorial and continuous optimisation problems(25)).

A simulation framework that allows the assessment of resource managing techniques as
well as the performance of Cloud, Edge, and Mist Computing environments. Every aspect
of Edge Computing’s modelling and simulation is covered. The modular architecture of
PureEdgeSim deals with a distinct element of the simulation with each module. The
Network Module, for instance, handles bandwidth allotment and data transport. The
Location Management module addresses the geo-allotment of devices and their mobility.
The Data Centers Manager module manages the heterogeneity of the device generation.

12



Tasks success rate
T T

©
o
T

—— Failed tasks

Success rate (%)

©
o
T

0O 1 2 3 4 5 6 7 8 9 10
Time (minutes)

Figure 5: Task Success Rate

The last module is the Orchestrator, which evaluates the offloading of tasks. These
modules also contain a default implementation and a collection of modifiable parameters
to aid with investigation and prototyping. The simulation’s outcomes show how effective
PureEdgeSim is at recreating complex, varied, and dynamic settings. Also, they stress
the benefits of putting Mist Computing into practice and the usefulness of the suggested
approach, which outperformed the alternatives in every test situation(22]).

With classical cloud computing, devices at the edge of the network unload their duties
to the cloud for processing. For a variety of reasons, including the restricted comput-
ing power of particular devices and the requirement to increase battery life for devices
with capacity-limited batteries, this task offloading may be necessary. Edge and Mist
Computing both utilise the identical offloading process. By offloading duties, edge nodes
can work together to improve system throughput. A related technique called Serendipity
allows mobile devices to remotely use the resources of other devices to execute their apps,
using much less local power and completing tasks 6.6 times faster. EdgeCloudSim is a
mobile edge computing simulator built on CloudSim that fixes some of the issues with
iFogSim. Since it automatically develops the needed number of edge devices, it is more
scalable. The network model is more precise, and it does encourage mobility to some
extent (22l)

For experiments, we have used an Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz (2.59
GHz) and 16 GB of main memory. The meta-heuristic algorithms were implemented in
Python using the mealpy and other libraries so that the application module could obtain
the optimum scheduling policy. This generated policy from the algorithms is then passed
to PureEdgeSim which simulates the fog system.

5 Evaluation

Figure [7| gives the results from the simulation using various algorithms.

5.1 Discussion of Results

In the experiment, the performance of various meta-heuristic algorithms namely the
Base Genetic Algorithm(BaseGA), Elite Single Genetic Algorithm(EliteSingleGA), Elite
Multi Genetic Algorithm(EliteMultiGA), Self-Adaptive Differential Evolution(SADE) Al-
gorithm, Original Particle Swarm Optimisation(OriginalPSO) Algorithm, Original Bac-

13



Cloud Layer

Fog Layer

{[T1][T4][T6][T2][TS}[T?][W}[Ta] }

Tasks
Scheduler

Tasks generated by 10T devices (T1, T2,T3,.....Tn)

(15 ) |[T18 ][ 15 ]|[ T2 |

loT Layer {T1]|[ T4 |[ T8 ]‘[ T2 | (13 ][ 17

B 5%’ 5 B

Figure 6: Architecture of the Task Scheduling in Cloud Fog environment

terial Foraging Optimization(OriginalBFO) Algorithm, Original Bees Algorithm(OriginalBeesA),
Probabilistic Bees Algorithm(ProbBeesA), Original Cat Swarm Optimisation(OriginalCSO)
Algorithm, and Original Artificial Bee Colony(Original ABC) Algorithm are compared
with each other to find the algorithm which performs the best. They are evaluated in
terms of task execution delay, number of successful/failed tasks, network usage, average
bandwidth per task, average CPU usage and energy consumption.

The graphs are created based on the results of the simulation in Figure [7] Here we
have chosen the results when the number of edge devices is 200 to create the graphs.

Figure [§| shows the graph of the number of tasks successfully executed by several al-
gorithms. Out of a total number of 20300 tasks, the number of successful tasks varies from
18030 for OriginalBeesA to 20026 for SADE. Along with that, comparing the successful

14



) Number of | Total tasks | Number of Tasks Average Energy consumption
Orchestration . Tasks | Network ) Average CPU )
Group Module . Edge execution | generated [successfully|, . bandwidth per of computing nodes
Algorithm N failed | usage (s) usage (%)
devices delay (s) tasks executed task (Mbps) (Wh)
100| 4695.7875 10150 9499| 651 78.127754 1288.113542 1.8741 51.3498
BaseGA 150| 7372.2375 15090 13927| 1163| 114.96197 1283.146291 1.9899 69.7026
200 10525.45 20300 18401| 1899| 154.36997 1269.237213 2.1386 87.3314
100 4554.85 10150 9650| 500 77.539262 1278.461234 1.7742 51.6946
GA EliteSingleGA 150| 7451.0375 15090 14090| 1000| 112.96449 1264.916468 2.0209 68.7908
Evoluti 200 10023.6 20300 18125| 2175| 152.17102 1258.787879 2.0568 87.551
volutional
v 100| 5459.2375 10150 9556| 594 75.143385 1255.508475 2.3128 52.5208
EliteMultiGA 150| 6785.0875 15090 13961| 1129| 115.6752 1267.526183 1.7398 68.8461
200 9724.45 20300 18373| 1927| 153.71126 1275.178633 1.9762 87.6345
100| 3782.7875 10150 10028| 122| 63.397908 1184.315271 1.2129 52.0841
DE SADE 150 6204.45 15090 14899 191| 98.859877 1197.749004 1.5593 70.8811
200 8937.075 20300 20026| 274| 142.62991 1210.695609 1.6738 87.7003
100| 4911.075 10150 9999| 151| 67.435262 1210.8188 1.9879 52.8814
PSO OriginalPSO 150| 6928.8625 15090 14133| 957| 112.48166 1264.642572 1.7521 69.4777
200| 10280.775 20300 18802| 1498| 154.29538 1280.206948 2.1803 87.3644
100| 4462.4125 10150 9560| 590| 73.561354 1249.916033 1.6073 52.1479
BFO OriginalBFO 150 7404.45 15090 13862| 1228| 115.30031 1266.47667 1.9873 69.755
200 10288.45 20300 18441 1859| 155.23938 1268.734271 2.1518 87.4008
100| 5344.475 10150 9652| 498| 72.286892 1253.941663 2.3315 52.2199
OriginalBeesA 150 7126.75 15090 14423| 667| 110.65458 1260.531548 1.966 69.2486
Swarm BeesA 200 9752.8 20300 18030| 2270| 154.35655 1273.493323 1.9432 87.3173
100| 5419.1375 10150 9776| 374| 72.036677 1249.54653 2.3558 52.43
ProbBeesA 150 7431.55 15090 13946| 1144| 114.32369 1275.319854 1.9818 69.6799
200 9540.025 20300 18397| 1903| 154.60382 1272.138837 1.9237 87.7787
OriginalCsO 100 5128.35 10150 9728| 422| 78.006646 1273.565937 2.1597 52.2517
CS0 (w_min=0.1) 150 7384.6 15090 13844| 1246| 112.87188 1259.68576 1.952 69.5606
- ) 200 9521.375 20300 18701| 1599| 153.25563 1266.487632 1.91 87.7489
100| 4758.975 10150 9640| 510| 75.043077 1254.747116 1.9405 52.2619
ABC QOriginalABC 150 6891.775 15090 14144| 946| 115.50665 1281.663905 1.7283 69.6189
200 9408.775 20300 18210| 2090| 152.88123 1266.854182 1.8309 87.0481
Figure 7: Table containing results of the simulation
Tasks successfully executed
20500
20026
20000
19500
19000 18802 18701
18401 18373 18441 18397
18500 18125 18210
18030
18000
17500
17000 — — — = — — _—
\g \a o NS O Q Aol & N 9
(_;2,(9 & L :9?“0 & & & & & N
3 <& > ) N NY Q & &
3 S &S 3 3 SIS
& <& o o & € £ %
X S 9) (&) &8 O\& &)
&
>
&
&
&

Figure 8: Graph comparing number of successful tasks

task count of other algorithms we have BaseGA with 18401 tasks, EliteSingleGA with
18125 tasks, EliteMultiGA with 18373 tasks, OriginalPSO with 18802 tasks, Original-
BFO with 18441 tasks, ProbBeesA with 18397 tasks, Original CSO with 18701 tasks and
Original ABC with 18210 tasks. Comparing the values of all the algorithms, the SADE
algorithm performs much better than the other algorithm with a difference of 1224 than
the second best performing one.

15




Tasks failed

ORIGINALABC 2090
ORIGINALCSO(W_MIN=0.1) 1599

PROBBEESA 1903

ORIGINALBEESA |

ORIGINALBFO |

ORIGINALPSO
SADE
ELITEMULTIGA

ELITESINGLEGA

BASEGA

0 500 1000 1500 2000 2500

Figure 9: Graph comparing number of failed tasks

Total tasks execution delay (s)

ORIGINALABC 9408.775
ORIGINALCSO(W_MIN=0.1) 9521.375

PROBBEESA 9540.025

ORIGINALBEESA

ORIGINALBFO 1

ORIGINALPSO

SADE

ELITEMULTIGA 9724.45

ELITESINGLEGA 10023.6

BASEGA 10525.45

8000 8500 9000 9500 10000 10500 11000

Figure 10: Graph comparing total tasks execution delay

Similarly, Figure [9]shows the graph of the number of tasks failed by several algorithms.
Out of a total number of 20300 tasks, the number of failed tasks varies from 2270 for
OriginalBeesA to 274 for SADE. Along with that, comparing the successful task count
of other algorithms we have BaseGA with 1899 tasks, EliteSingleGA with 2175 tasks,
EliteMultiGA with 1927 tasks, OriginalPSO with 1498 tasks, OriginalBFO with 1859
tasks, ProbBeesA with 1903 tasks, OriginalCSO with 1599 tasks and Original ABC with
2090 tasks. Comparing the values of all the algorithms, the SADE algorithm performs
much better than the other algorithm with a difference of 1224 than the second best
performing one.

Similarly, Figure shows the graph plotting execution delay for all the tasks of
each of the algorithms. SADE is the best-performing algorithm with the least delay of

16



NETWORK USAGE (S)

158
156 155.2393846

154.6038154
154.3699692 1537112615 154.2953846 154.3565538

154 152.1710154 153.2556308 15 8812308
152

150

148

146

144 142.6299077

142

140

138

136

Q@L’éy %\?

I

&‘ ¥

Figure 11: Graph comparing network usage

Average bandwidth per task (Mbps)

ORIGINALABC 1266.854182

ORIGINALCSO(W_MIN=0.1) 1266.487632

PROBBEESA 1272.138837

ORIGINALBEESA ||

ORIGINALBFO 1

ORIGINALPSO 1280.206948
SADE 1210.695609
ELITEMULTIGA 1275.178633
ELITESINGLEGA 1258.787879
BASEGA 1269.237213

y i ] |
1160 1180 1200 1220 1240 1260 1280 1300

Figure 12: Graph comparing average bandwidth per task

8937.075 seconds while BaseGA performs worst with a total delay of 10525.45 seconds.
Comparing the delay for the rest of them, we have EliteSingleGA with 10023.6 seconds,
EliteMultiGA with 9724.45 seconds, OriginalPSO with 10290.775 seconds, Original BFO
with 10288.45 seconds, OriginalBeesA with 9752.8 seconds, ProbBeesA with 9540.025
seconds, OriginalCSO with 9521.375 seconds and Original ABC with 9408.775 seconds.
The total delay for the SADE algorithm is much lower than all the other ones thus
performing much better than the rest.

Similarly, Figure[IT]shows the graph plotting network usage for all the tasks of each of
the algorithms. SADE is the best-performing algorithm with the least network usage of
142.629 S while Original BFO performs worst with network usage of 155.239 S. Comparing
the network usage for the rest of them, we have BaseGA with 154.359 EliteSingleGA with
152.171 S, EliteMultiGA with 153.711 S, Original PSO with 154.295 S, OriginalBeesA with
154.356 S, ProbBeesA with 154.603 S, Original CSO with 153.255 S and Original ABC with
152.881 S. The network usage for the SADE algorithm is much lower than all the other
ones thus performing much better than the rest.

17



Average CPU usage (%)
25

2.1386 2.1803 2.1518
2.0568 ]
1.9762

2 1.9432 1.9237 1.91
1.8309

1.6738

0.5

(;j7
6\4
637
R
o |
e}
.
5
6)C‘

Figure 13: Graph comparing average CPU usage

Energy consumption of computing nodes (Wh)

M BaseGA ™ EliteSingleGA m EliteMultiGA ™ SADE
M OriginalPSO M OriginalBFO M OriginalBeesA m ProbBeesA

m OriginalCSO(w_min=0.1) m Original ABC

OriginalABC I ——————— 87.0481
OriginalCS 0 (w_min=0. 1) | 87.7489
ProbBees A el 87.7787

OriginalBeesA ) 4 87.3173
OriginalBFO 4 87.4068
OriginalPSO 4 87.3644
SADE E 4 87.7003

M Ul A el 87.6345
S iN gl e G A  ———————— 87 .55 1
BaseGA Il 87.3314

Figure 14: Graph comparing energy consumption

Similarly, Figure [12| shows the graph plotting the average bandwidth per task of each
of the algorithms. SADE is the best-performing algorithm with the least average band-
width of 1210.695 Mbps while Original PSO performs worst with an average bandwidth of
1280.206 Mbps. Comparing the average bandwidth for the rest of them, we have BaseGA
with 1269.237 Mbps, EliteSingleGA with 1258.787 Mbps, EliteMultiGA with 1275.178
Mbps, Original BFO with 1268.734 Mbps, OriginalBeesA with 1273.493 Mbps, ProbBeesA
with 1272.138 Mbps, Original CSO with 1266.487 Mbps and Original ABC with 1266.854
Mbps. The average bandwidth per task for the SADE algorithm is much lower than all
the other ones thus performing much better than the rest.

Similarly, Figure [13| shows the graph plotting average CPU usage for all the tasks of
each of the algorithms. SADE is the best-performing algorithm with the least CPU
usage of 1.6738% while OriginalPSO performs worst with an average CPU usage of

18



2.1803%. Comparing the CPU usage for the rest of them, we have BaseGA with 2.1386%,
EliteSingleGA with 2.0568%, EliteMultiGA with 1.9762%, Original BFO with 2.1518%,
OriginalBeesA with 1.9432%, ProbBeesA with 1.9237%, OriginalCSO with 1.91% and
Original ABC with 1.8309%. The average CPU usage for the SADE algorithm is much
lower than all the other ones thus performing much better than the rest.

Similarly, Figure [14] shows the graph of energy consumption of computing nodes by
several algorithms. Out of all the algorithms used, comparing the energy consumption
of each algorithm we have BaseGA with 87.331, EliteSingleGA with 87.551, EliteMul-
tiGA with 87.634, SADE with 37.7, OriginalPSO with 87.364, Original BFO with 87.406,
OriginalBeesA with 87.317, ProbBeesA with 87.778, OriginalCSO with 87.748 and Ori-
ginal ABC with 87.048. Comparing the values of all the algorithms, the Original ABC
algorithm performs much better than the other algorithm but there is only a negligible
difference between the energy consumption of computing nodes of all the algorithms.

5.2 Observations

From the results, we saw that some algorithms specifically SADE algorithms perform
better than the rest of the algorithms. Omne thing that has been observed during the
simulations is that when using some of those meta-heuristic algorithms when the number
of tasks successfully executed increases, tasks allocated to the cloud increase and tasks
allocated to edge and mist decrease. At the same time, for some algorithms when there
are fewer tasks allocated to the cloud and more to edge and mist devices, the number of
tasks failed increases.

While on execution delay SADE has a decrease of 15.09% compared to BaseGA, Ori-
ginalBeesA has an increase of 11.07% on the number of successful tasks and a decrease of
87.93% when it comes to the number of failed tasks. While compared with OriginalPSO,
SADE has a decrease of 5.43% in average bandwidth per task and a decrease of 23.23% in
average CPU usage. Also on network usage, SADE has a decrease of 8.12% compared to
Original BFO and on energy consumption, SADE only has an increase of 0.27% compared
to the average of all other algorithms.

6 Conclusion and Future Work

The Internet of Things(IoT) is a technology that is rapidly developing day by day. The
scale of growth is so huge, that it is being adopted into almost everywhere that it is
now present in every part of our life. The more it grows, the more the resources to
adopt it increase, whether its storage or computational and processing power. Cloud was
a good solution at one point, but now that [oT is being integrated into real-time and
latency-sensitive applications cloud computing is not enough anymore and that’s how we
adopted cloud fog environments. However, due to the heterogeneous nature of fog devices,
it is important to have a good task-scheduling algorithm in fog computing. Out of the
multiple meta-heuristic algorithms that we experimented with, differential evolution or
specifically Self-Adaptive Differential Evolution(SADE) had the best performance. The
results show that SADE based solution improves the performance by 5-88% when it comes
to execution delay, successful/failed tasks, network usage, average bandwidth, and CPU
usage. And also although it doesn’t have the best performance when it comes to energy
consumption, it showed that values were quite good.

19



In the future, it will be a good decision to find an algorithm that can decrease energy
consumption as it is key in today’s world. Another suggestion to keep in mind for the
future is to have an algorithm that would decrease the number of tasks assigned to the
cloud without compromising the tasks’ success.

References

[1] McKinsey (2015). By 2025, Internet of things applications could have
$11  trillion impact. [online] McKinsey & Company. Available at:
https://www.mckinsey.com/mgi/overview /in-the-news/by-2025-internet-of-things-
applications-could-have-11-trillion-impact.

[2] Accenture (2015). Industrial Internet of Things Will Boost Economic Growth
but Greater Government and Business Action Needed to. [online] Accenture.com.
Available at: https://newsroom.accenture.com/news/industrial-internet-of-things-
will-boost-economic-growth-but-greater-government-and-business-action-needed-to-
fulfill-its-potential-finds-accenture.htm.

[3] Atlam, H., Walters, R. and Wills, G. (2018). Fog Computing and the Internet
of Things: A Review. Big Data and Cognitive Computing, [online] 2(2), p.10.
doi:https:/ /doi.org/10.3390 /bdcc2020010.

[4] Dastjerdi, A.V. and Buyya, R. (2016). Fog Computing: Helping the
Internet of Things Realize Its Potential. Computer, 49(8), pp.112-116.
doi:https://doi.org/10.1109/mc.2016.245.

[5] Nabi, S. and Ahmed, M. (2021). OG-RADL: overall performance-based resource-
aware dynamic load-balancer for deadline constrained Cloud tasks. The Journal
of Supercomputing, 77(7), pp.7476-7508. doi:https://doi.org/10.1007/s11227-020-
03544-7.

[6] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S. (2012). Fog computing and its role
in the internet of things. Proceedings of the first edition of the MCC workshop on
Mobile cloud computing - MCC ’12. doi:https://doi.org/10.1145/2342509.2342513.

[7] Jawad Usman Arshed, Ahmed, M., Muhammad, T., Afzal, M., Arif, M. and Banchi-
gize Mekcha Bazezew (2022). GA-IRACE: Genetic Algorithm-Based Improved Re-
source Aware Cost-Efficient Scheduler for Cloud Fog Computing Environment. 2022,
pp.1-19. doi:https://doi.org/10.1155/2022/6355192.

[8] Yang, X. and Rahmani, N. (2020). Task scheduling mechanisms in fog comput-
ing: review, trends, and perspectives. Kybernetes, ahead-of-print(ahead-of-print).
doi:https://doi.org/10.1108/k-10-2019-0666.

[9] Natesha, B.V. and Guddeti, R.M.R. (2021). Adopting elitism-based Genetic Al-
gorithm for minimizing multi-objective problems of IoT service placement in fog
computing environment. Journal of Network and Computer Applications, p.102972.
doi:https://doi.org/10.1016/j.jnca.2020.102972.

20



[10]

[11]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Farooq Hoseiny, Azizi, S., Shojafar, M., Fardin Ahmadiazar and Rahim Tafazolli
(2021). PGA: A Priority-aware Genetic Algorithm for Task Scheduling in Heterogen-
eous Fog-Cloud Computing. Conference on Computer Communications Workshops.
doi:https://doi.org/10.1109/infocomwkshps51825.2021.9484436.

Abdel-Basset, M., Mohamed, R., Chakrabortty, R.K. and Ryan, M.J.
(2021). IEGA: An improved elitism-based genetic algorithm for task schedul-
ing problem in fog computing. International Journal of Intelligent Systems.
doi:https://doi.org/10.1002/int.22470.

Ali, .M., Sallam, K.M., Moustafa, N., Chakraborty, R., Ryan, M.J. and Choo, K.-
K.R. (2020). An Automated Task Scheduling Model using Non-Dominated Sorting
Genetic Algorithm II for Fog-Cloud Systems. IEEE Transactions on Cloud Comput-
ing, pp.1-1. doi:https://doi.org/10.1109/tcc.2020.3032386.

Singhrova, A. (2020). PRIORITIZED GA-PSO ALGORITHM FOR EF-
FICIENT RESOURCE ALLOCATION IN FOG COMPUTING. In-
dian Journal of Computer Science and Engineering, 11(6), pp.907-916.
doi:https://doi.org/10.21817 /indjcse/2020/v11i6/201106205.

Pg. Ali Kumar, Dk.S.N.K., Newaz, S.H.S., Rahman, F.H., Lee, G.M., Kar-
makar, G. and Au, T.-W. (2022). Green Demand Aware Fog Computing: A
Prediction-Based Dynamic Resource Provisioning Approach. Electronics, 11(4),
p.608. doi:https://doi.org/10.3390/electronics11040608.

Nguyen, B.M., Thi Thanh Binh, H., The Anh, T. and Bao Son, D. (2019). Evolution-
ary Algorithms to Optimize Task Scheduling Problem for the IoT Based Bag-of-Tasks
Application in Cloud-Fog Computing Environment. Applied Sciences, 9(9), p.1730.
doi:https://doi.org/10.3390/app9091730.

Etemadi, M., Ghobaei-Arani, M. and Shahidinejad, A. (2020). A learning-
based resource provisioning approach in the fog computing environment.
Journal of Experimental & Theoretical Artificial Intelligence, pp.1-24.
doi:https://doi.org/10.1080/0952813x.2020.1818294.

La, Q.D., Ngo, M.V., Dinh, T.Q., Quek, T.Q.S. and Shin, H. (2019).
Enabling intelligence in fog computing to achieve energy and latency
reduction. Digital Communications and Networks, [online] 5(1), pp.3-9.
doi:https://doi.org/10.1016/j.dcan.2018.10.008.

Mahamed, Salman, A.A. and Engelbrecht, A.P. (2005). Self-adaptive Differential
Evolution. pp.192-199. doi:https://doi.org/10.1007/11596448 _28.

Vikhar, P.A. (2016). Evolutionary algorithms: A crit-
ical  review and its  future  prospects. [online] IEEE  Xplore.

doi:https://doi.org/10.1109/ICGTSPICC.2016.7955308.

Yang, X.-S. (2013). Swarm intelligence based algorithms: a critical analysis. Evolu-
tionary Intelligence, 7(1), pp.17-28. doi:https://doi.org/10.1007/s12065-013-0102-2.

Ab Wahab, M.N., Nefti-Meziani, S. and Atyabi, A. (2015). A Comprehens-
ive Review of Swarm Optimization Algorithms. PLOS ONE, 10(5), p.e0122827.
doi:https://doi.org/10.1371 /journal.pone.0122827.

21



[22]

[23]

[24]

[25]

Mechalikh, C., Taktak, H. and Moussa, F. (2019). PureEdgeSim: A Sim-
ulation Toolkit for Performance Evaluation of Cloud, Fog, and Pure
Edge Computing Environments. 2019 International Conference on High
Performance  Computing &  Simulation (HPCS), [online] pp.700-707.
doi:https://doi.org/10.1109/HPCS48598.2019.9188059.

Das, S., Biswas, A., Dasgupta, S. and Abraham, A. (2009). Bacterial For-
aging Optimization Algorithm: Theoretical Foundations, Analysis, and Ap-

plications. Foundations of Computational Intelligence Volume 3, pp.23-55.
doi:https://doi.org/10.1007/978-3-642-01085-9 2.

Bahari, M.S., Nur Athirah Azmi, Zahayu Md Yusof and Duc Truong Pham (2021).
Bees Algorithm with Integration of Probabilistic Models for Global Optimization.
Springer eBooks, pp.269-277. doi:https://doi.org/10.1007/978-981-16-0866-7_22.

Yuce, B., Packianather, M., Mastrocinque, E., Pham, D. and Lambiase, A. (2013).
Honey Bees Inspired Optimization Method: The Bees Algorithm. Insects, 4(4),
pp.646-662. doi:https://doi.org/10.3390/insects4040646.

22



	Introduction
	Heuristic Algorithms
	Meta-heuristic Algorithms

	Related Work
	Methodology
	Implementation
	Genetic Algorithm
	Differential Evolution
	Particle Swarm Optimization
	Artificial Bee Colony
	Bacterial Foraging Optimization
	Bees Algorithm
	Cat Swarm Optimization

	Evaluation
	Discussion of Results
	Observations

	Conclusion and Future Work

