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Performance Optimization of Task Scheduling in Fog
and Edge Computing using meta-heuristic algorithms

for IoT Networks: A Comparative Study

Pratyush Nigel Baxla
21179158

Abstract

In the dynamic landscape of edge computing, efficient task scheduling plays a
pivotal role in optimizing resource utilization and enhancing system performance.
In order to better understand how meta-heuristic algorithms can handle the com-
plexities of this situation, this study delves into the area of cloud-edge task schedul-
ing. Focusing on a simulated environment with varying edge device counts (50, 100,
and 200), our research investigates the performance of diverse algorithms in terms
of tasks executed, energy consumption, and waiting time. The results highlight
the complex interplay between orchestration strategies and execution location and
reveal refined patterns in task distribution between edge and cloud resources. Not-
ably, the Hybrid Grey Wolf - Whale Optimization Algorithm consistently stands out
in tasks executed, balancing edge and cloud utilization efficiently. However, each
algorithm showcases unique strengths and weaknesses, driving insightful discussions
around energy efficiency and waiting time trade-offs. This study highlights the need
for customized orchestration strategies in edge computing while also providing valu-
able insights for practitioners and researchers alike through a thorough analysis of
the results. Future research might concentrate on adjusting algorithmic paramet-
ers and investigating hybrid strategies to further optimize task scheduling in this
changing environment.

1 Introduction

The way we interact with technology has undergone a radical change as a consequence of
the Internet of Things (IoT) devices, which have grown exponentially in popularity. The
processing of data, latency, and resource management have all become more difficult as a
result of this rapid expansion. Even though it works well in many situations, traditional
cloud computing frequently cannot keep up with the demanding latency standards and
resource limitations of IoT applications. This constraint led to the development of the
fog and edge computing paradigms, which distribute computing, storage, and networking
resources closer to the Internet of Things devices, reducing latency and improving system
performance Buyya and Srirama (2019).

The challenges brought on by the enormous influx of data from IoT devices have a
promising solution in fog and edge computing. These paradigms lessen the need for data
transmission to remote cloud servers, thereby lowering network congestion and latency.
This is accomplished by relocating data processing and storage closer to the network

1



edge. Fog and Edge computing is ideal for time-sensitive and resource-constrained IoT
applications as a result of faster response times and real-time decision-making capabilities
Buyya and Srirama (2019).

Effective task scheduling is a vital component that is essential for maximizing the
potential of fog and edge computing. For optimal system performance, task scheduling
involves allocating computational tasks to the appropriate Fog and Edge computing in-
frastructure resources. The goals of efficient task scheduling have been to reduce response
times, save energy, maximize resource utilization, and make sure that the edge nodes of
the network are evenly distributed in terms of workload Guevara and da Fonseca (2021).

Given the dynamic and resource-constrained nature of Fog and Edge computing envir-
onments, traditional static task scheduling approaches fall short of achieving the desired
optimization. This has led to the exploration of meta-heuristic algorithms as promising
solutions to tackle the complex task scheduling problem in these distributed computing
environments. Meta-heuristic algorithms can handle massive search space to discover
better optimal solutions for task scheduling problems within a reasonable time N. Jay-
asena and Thisarasinghe (2019). Some examples of meta-heuristic algorithms used for
task scheduling in Fog and Edge computing include the Whale optimization algorithm
N. Jayasena and Thisarasinghe (2019), Hyper-Heuristic Scheduling (HHS) algorithm Rah-
bari (2022), Fireworks algorithm Wang et al. (2020), etc. These algorithms have shown
improvements in energy consumption, total execution cost, latency, total execution time
etc. compared to traditional static task scheduling approaches.

1.1 Research Objectives

The primary objective of this research is to conduct a comprehensive comparative study
of various meta-heuristic algorithms applied to task scheduling in Fog and Edge comput-
ing environments for IoT networks. The research aims to evaluate the performance of
these algorithms in terms of response time, energy consumption, and resource utilization,
seeking to identify which meta-heuristic algorithms are most effective in optimizing task
assignments and meeting the unique requirements of IoT applications.

1.2 Research Questions

• How do different meta-heuristic algorithms perform in optimizing task scheduling
for IoT networks in Fog and Edge computing environments?

• Which meta-heuristic algorithm(s) demonstrate superior performance in task schedul-
ing, energy consumption and waiting time in a cloud-edge architecture?

• How do the amount of edge devices impact the performance of various meta-
heuristic algorithms in Fog and Edge computing environments?

1.3 Conclusion

The effective execution of computational tasks in Fog and Edge computing environments
is crucial for IoT networks. In order to determine how well meta-heuristic algorithms can
optimize task scheduling for IoT networks, this study compares various meta-heuristic
algorithms. The results of this study will be helpful in deciding which meta-heuristic
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algorithms are most appropriate in a given situation, enhancing the general effectiveness
and responsiveness of fog and edge computing systems for IoT applications.

This research’s subsequent sections will go into comprehensive detail about its meth-
odology, experimental setup, performance metrics, and a comparison of the selected meta-
heuristic algorithms. The goal of this research is to contribute to the improvement of task
scheduling methods for Fog and Edge computing for the ever-expanding IoT landscape by
examining and contrasting these algorithms’ performances under various workloads and
scenarios. The end goal is to create a strong basis for IoT networks that are more resilient,
effective, and scalable and can fully utilize the Fog and Edge computing paradigms.

2 Related Work

The rapid growth of Internet of Things (IoT) devices has led to the adoption of Fog
computing as a promising model for resource management, making computer resources
more accessible to end-users. To efficiently manage and distribute resources among fog
and edge nodes in IoT networks, machine learning (ML)-based techniques and meta-
heuristic algorithms have been proposed as solutions Mehta et al. (2021). This literature
review aims to conduct a comprehensive comparative study of previous works that have
explored efficient and scalable ML-based techniques and meta-heuristic algorithms for
task scheduling in Fog and Edge computing environments for IoT networks.

In this section, we provide a critical and analytical overview of the significant literature
published on the topic of task scheduling in Fog and Edge computing environments for
IoT networks. We review various ML-based techniques and meta-heuristic algorithms
applied to task scheduling and identify their strengths, weaknesses, and limitations.

2.1 Reinforcement Learning-Based Task Scheduling

Reinforcement learning (RL) has garnered considerable interest as a potential solution
for task scheduling in fog and edge computing environments due to its ability to adapt to
dynamic and uncertain conditions. Mehta et al. (2021) proposed using machine learning
(ML) techniques to automate and optimize resource management in fog computing. RL-
based methods, including Q-learning, Deep Reinforcement Learning (DRL), and Deep
Q Networks (DQN), have been investigated for resource management in fog and edge
computing environments.

One of the notable advantages of RL is its capacity to learn through trial-and-error
interactions with the environment, making it suitable for problems with no prior know-
ledge or fixed rules. Several studies have shown the efficiency of RL-based techniques
in resource management for fog computing environments Fahimullah et al. (2022). For
instance, Li et al. (2019) proposed a Deep Reinforcement Scheduling (DRS) algorithm for
mobile crowdsensing in fog computing. Through experimental analyses, the study high-
lights the potential of this strategy and demonstrates its superiority to other approaches.
The innovative use of deep reinforcement learning and its practical applicability are its
main advantages. However, there are some restrictions that need attention. A thorough
examination of possible challenges and practical applications is lacking in the work. The
comparative analysis could be more thorough, going beyond conventional approaches to
emphasize the special advantages of the suggested approach. The simulation-based eval-
uation could be improved methodologically to take into account constraints and data
variations from the real world.
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In order to address the complex problem of energy-efficient task scheduling in fog-
based IoT environments, Swarup et al. (2021) introduces a novel and promising method
called ”CDDQLS” that makes use of deep reinforcement learning. With a comprehensive
approach that minimizes service delay while also optimizing energy consumption, this
method seems to be a significant advancement in the field. The paper makes an effort to
balance exploration and exploitation, which is essential for developing optimal schedul-
ing policies, by utilizing reinforcement learning techniques. The proposed algorithm,
CDDQLS, performs better than more established techniques like FCFS and Q-learning
scheduling. This shows how deep reinforcement learning can improve task scheduling
tactics for fog computing scenarios. Although the results are encouraging, the paper
does not go into much detail about the challenges and potential negative effects of ap-
plying deep reinforcement learning in actual fog environments. Furthermore, as shown
by the tuning experiment, the proposed approach’s sensitivity to hyperparameters shows
the demand for a thorough examination of the algorithm’s reliability and adaptability in
various contexts.

Task scheduling in IoT environments is addressed thoroughly in Shadroo et al. (2021).
The key contribution of this work is the integration of deep learning methods for deal-
ing with the complex issues of task distribution in Fog and Cloud layers, such as Self-
Organizing Maps (SOM) and Autoencoders. The suggested two-phase approach is well-
designed, providing a structured process for task allocation decision-making. The use
of autoencoders for feature extraction is a noteworthy feature that makes clustering ef-
fective. Additionally, the practicality of the suggested solution is improved by taking
into account elements like task privacy and data heterogeneity. However, the proposed
method relies on a dataset created for the study, so the absence of real-world datasets
and benchmarks is a significant weakness. This leaves it unclear how well the method
will perform in practical situations. Additionally, the work could have demonstrated
the originality and superiority of the suggested approach by making a more thorough
comparison with current scheduling techniques. Although the article asserts that the
AE-SOM method outperforms other algorithms, its claims would be strengthened by a
more thorough analysis of the trade-offs and advantages.

In conclusion, while RL shows promise, there are challenges to consider. RL methods
may require significant computational resources and time for training, particularly in
large-scale IoT networks, leading to delayed decision-making and potential convergence
issues. Additionally, the design and tuning of RL algorithms require domain-specific
expertise, and the performance heavily depends on the choice of hyperparameters.

2.2 Application Placement in Fog Computing with AI Approach

The efficient placement of applications in fog computing environments is crucial for op-
timizing resource utilization and meeting performance requirements. To address this chal-
lenge, researchers have turned to AI-based approaches for application placement. Nayeri
et al. (2021) presented a comprehensive taxonomy of application placement strategies
that leverage various AI techniques.

AI-based methods offer the advantage of automating the decision-making process and
exploring complex search spaces to find near-optimal solutions. For instance, Reinforce-
ment Learning (RL) algorithms have been applied to determine the optimal placement of
applications on fog nodes Fahimullah et al. (2022). RL agents interact with the fog envir-
onment, learning from trial-and-error experiences to make intelligent decisions regarding
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application placement.
Furthermore, Deep Learning (DL) techniques, such as Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs), have been employed to analyse applic-
ation characteristics and predict their resource requirements Iftikhar et al. (2023). These
AI models enable Fog computing systems to dynamically adjust application placements
based on real-time data and workload demands.

Despite the promising results, AI-based approaches for application placement in Fog
computing do have some limitations. The computational complexity of training AI mod-
els and the need for large datasets for accurate predictions may hinder their real-time
deployment in resource-constrained Fog and Edge computing environments.

To overcome these challenges, future research should focus on developing lightweight
AI models that can be efficiently trained and deployed on Fog nodes with limited re-
sources. Additionally, explainable AI techniques could be integrated to provide transpar-
ent insights into the decision-making process, enhancing the trustworthiness and reliab-
ility of AI-assisted application placement in Fog computing.

2.3 Adaptive and Real-Time Task Scheduling in Cloud-Edge
and Cloud-Fog Environments for Intelligent Applications

An in-depth analysis of the dynamic and time-sensitive task scheduling methods used
in cloud-edge and cloud-fog environments, with a focus on how they apply to intelligent
systems. The performance of intelligent applications is optimized in these works through
a thorough investigation of methods that adapt to changing circumstances and give real-
time execution the highest priority. The integration of distributed computing resources to
improve resource allocation, responsiveness, and efficiency. These thorough studies aim to
improve task scheduling’s efficiency and effectiveness in modern computing environments
for the benefit of a variety of intelligent applications.

Abohamama et al. (2022) offers a thorough investigation of the crucial role that IoT
technology plays in a variety of industries, including healthcare, manufacturing, agri-
culture, retail, and transportation, through applications that call for instantaneous re-
sponses. In comparison to more traditional methods like First Fit and Backtracking
Local Search Algorithm, the proposed semi-dynamic real-time task scheduling algorithm
exhibits improved performance in terms of optimal makespan and minimized execution
costs. A notable strength is the integration of fog resources with cloud services to meet
low-latency requirements. Despite being superior in most ways, the proposed algorithm’s
longer elapsed run time raises questions about its efficiency. Despite this, the paper
opens up possibilities for further investigation into dynamic container-based environ-
ments, workflow scheduling, load balancing, and perhaps even the incorporation of in-
novative optimization techniques like shark or whale optimization, further enhancing the
potential for innovation in the field.

In exceptionally busy scenarios, Zeng et al. (2021) presents a thorough investiga-
tion aimed at improving the quality of service (QoS) for edge intelligent applications.
The study explores the intricate relationship between task scheduling and model de-
ployment strategies to enhance performance. The authors tackle the problems brought
on by storage and resource limitations by formulating various algorithms. The suggested
coarse-grained and fine-grained model deployment strategies efficiently control where and
how to deploy models based on immediate needs and the amount of storage available.
The paper also presents an adaptive task scheduling algorithm that uses directed acyc-

5



lic graphs (DAGs) to represent task dependencies and is based on task priorities and
the determination of earliest start and end times. The effectiveness of these strategies
is robustly validated through a series of simulation experiments, demonstrating their
superiority to traditional industry approaches. The theoretical framework and concrete
results of this paper collectively advance the field of real-time, data-intensive applications
in edge computing environments, even though a more thorough theoretical analysis and
more extensive real-world testing might offer a more comprehensive point of view.

2.4 Heuristic Algorithm-Based Task Scheduling

Heuristic-based mechanisms for fog task scheduling are techniques that assign tasks
to devices in a fog computing environment by using best practices or general rules of
thumb. These mechanisms rely on straightforward, instinct- or experience-based decision-
making rules rather than machine learning techniques. Heuristic-based mechanisms can
be straightforward and simple to use, but they might not always produce the best task dis-
tribution. They also don’t learn from past mistakes or adjust to changing circumstances
like machine learning-based approaches do Hosseinzadeh et al. (2023).

A comprehensive algorithm addressing task scheduling challenges for heterogeneous
fog networks is introduced in Liu et al. (2019), which is one of the research papers related
to heuristic-based algorithms. The innovative Performance Evaluation (PE) concept in-
tegration of computing resources and communication capabilities, which enables a more
comprehensive optimization approach, is its main strength. A structured and decentral-
ized solution is offered by the PCRC and STS algorithms. The complexity of the paper,
however, is a limitation that might make it difficult to implement practically and scale up
in the real world. The simulation results are encouraging, but additional real-world test-
ing and taking into account variables like energy consumption could make the algorithm
more robust. Despite these drawbacks, the article makes an excellent effort to address
latency reduction in fog networks and provides new directions for future study.

In Addition to that, Hosseini et al. (2022) introduces an innovative approach to address
task scheduling challenges in mobile fog computing. The authors propose a priority-based
scheduling framework integrated with the Fuzzy Analytical Hierarchy Process (FAHP) to
optimize cost-latency trade-offs. They meticulously construct a comparative experimental
environment, evaluating their approach against various scenarios. The paper’s strengths
lie in its comprehensive methodology and FAHP application. However, it could further
clarify the FAHP process for readers unfamiliar with the technique. While the approach
shows promise, addressing scalability and providing a more comprehensive benchmark
against existing algorithms would enhance its impact. Overall, the paper contributes to
advancing task scheduling techniques in fog computing, although additional clarity and
broader evaluation would strengthen its validity.

2.5 Meta-Heuristic Algorithm-Based Task Scheduling

Task scheduling in meta-heuristic algorithms takes place in a random solution space.
They can be used to resolve various optimization issues by making a few small adjust-
ments to metaheuristic algorithms. The meta-heuristic algorithms are independent of
the problem. Meta-heuristic algorithms for fog task scheduling have shown promise for
enhancing resource utilization and lowering latency in distributed fog computing envir-
onments. This section reviews a few studies on task scheduling using meta-heuristics in
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the fog environment Hosseini et al. (2022).
Meta-heuristic algorithms, including Genetic Algorithms (GA), Particle Swarm Op-

timization (PSO), and Ant Colony Optimization (ACO), have been widely applied to
task scheduling in Fog and Edge computing. Alkayal et al. (2016) demonstrated the
effectiveness of a multi-objective PSO in optimizing performance metrics in cloud com-
puting environments. These algorithms are capable of exploring complex search spaces
and finding near-optimal solutions. However, they may face challenges in handling large
search spaces and complex optimization objectives in Fog and Edge computing settings
Rahbari (2022). Furthermore, they may require fine-tuning and parameter adjustment
for optimal performance, which can be time-consuming.

2.5.1 Evolutionary Algorithm-Based Task Scheduling

Evolutionary algorithms (EAs), a class of meta-heuristic algorithms, have shown promise
in optimizing resource distribution among fog nodes. Reddy et al. (2020) proposed a
Genetic Algorithm (GA) for context-aware smart cities’ resource management in the fog
layer. The GA optimizes the distribution of computing resources among fog nodes based
on processing demands, energy consumption, and Quality of Service (QoS) constraints.
The study demonstrated that the GA approach effectively reduces energy consumption
while maintaining desired QoS levels.

Similarly, Guerrero et al. (2019) evaluated the performance of different EAs, including
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Weighted-
Sum Genetic Algorithm (WSGA), and Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) for service placement optimization in fog architectures. The MOEA/D ap-
proach outperformed the other two algorithms, achieving a better balance between the
metrics of services deployed, overall energy consumption, and latency of service deploy-
ment.

Despite their success, EAs also face challenges in task scheduling for fog and edge com-
puting. These algorithms may struggle to handle large-scale and dynamic IoT networks
efficiently. The choice of appropriate genetic operators and their parameter settings signi-
ficantly impact the performance of EAs, necessitating careful tuning for optimal results.

2.5.2 Hybrid Algorithm-Based Task Scheduling

Hybrid algorithm-based approaches, which combine different meta-heuristic algorithms,
have emerged as a compelling strategy for optimizing task scheduling in fog computing en-
vironments. Rafique et al. (2019) proposed a novel bio-inspired hybrid algorithm, named
NBIHA, for resource management in fog computing. The NBIHA combined Modified
Particle Swarm Optimization (MPSO) and Modified Cat Swarm Optimization (MCSO)
to enhance the convergence rate and search capability of existing algorithms. The study
demonstrated that the NBIHA outperformed traditional scheduling algorithms, such as
First Come First Serve (FCFS) and Shortest Job First (SJF), in terms of resource util-
ization, response time, and energy efficiency.

In another study, Gill et al. (2019) introduced the ROUTER approach, which utilized
a hybrid decision-making model based on Particle Swarm Optimization (PSO) and fuzzy
logic for intelligent resource management in cloud-based smart home IoT devices. The
hybrid approach effectively optimized the distribution of computing resources among fog
nodes and the cloud, resulting in reduced power consumption, improved response time,
and enhanced system performance.
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Gaggero and Ababneh (2021) proposes a new solution for cloud task scheduling using
the Hybrid Grey Wolf-Whale Optimization (HGWWO) algorithm. By combining two ex-
isting optimization methods, Grey Wolf Optimization (GWO) and Whale Optimization
Algorithm (WOA), the study aims to address the challenges of optimizing resource utiliz-
ation, minimizing costs, and reducing energy consumption in cloud computing. The paper
presents a detailed algorithm design, thorough experimental evaluation, and comparison
against GWO and WOA. The results consistently show HGWWO’s superior perform-
ance, making it a promising approach for cloud task scheduling. However, the article
could enhance its impact by discussing real-world applications and providing background
on the constituent algorithms. Additionally, visual aids could help clarify complex con-
cepts. Overall, this study contributes valuable insights to the optimization techniques
used in cloud resource management.

The work of Wang et al. (2020) offers a comprehensive exploration of task scheduling
enhancement in fog computing, presenting innovative approaches within the Cloud-Fog
Computing Architecture. The proposed task clustering and resource integration mod-
els provide a structured framework for optimized resource allocation, while the I-FASC
method enhances scheduling precision, resulting in reduced task completion times and
improved load distribution. The introduction of the Improved Firework Algorithm (I-FA)
with its explosion radius detection mechanism shows promise in enhancing convergence
speed and solution accuracy. However, while the simulation results demonstrate signific-
ant improvements, the study could benefit from a more extensive real-world validation
and comparison against a broader range of existing algorithms. Additionally, the con-
sideration of energy consumption and other service indicators in fog computing could
further enhance the practicality of the proposed methods. Despite these limitations, this
work presents a valuable contribution to the field, shedding light on the potential of these
methods to enhance fog computing efficiency and real-time capabilities.

Hybrid algorithm-based approaches offer the advantage of leveraging the strengths
of multiple meta-heuristic algorithms, resulting in improved performance and efficiency.
However, designing efficient hybrid algorithms may require extensive experimentation
and customization to suit specific fog and edge computing scenarios.

2.6 Conclusion

The literature review presents a comprehensive assessment of ML-based techniques, heur-
istic algorithms, and meta-heuristic algorithms employed in task scheduling for Fog and
Edge computing in IoT networks. These strategies show promise for improving metrics
like response time, energy efficiency, and resource management. However, in dynamic and
resource-constrained environments, scalability, adaptability, and convergence challenges
continue to exist. Additionally, it is clear that in sizable IoT networks, a need for more
efficient resource management solutions exists.

Our research contributes by evaluating existing methodologies focusing on meta-
heuristic task scheduling algorithms via simulations. We aim to validate the applicability
and constraints of these techniques in actual contexts through thorough evaluations and
experiments. Understanding how these algorithms perform based on our emphasis on
validation through empirical research. By exploring their strengths and weaknesses, we
can provide insights into their potential feasibility and areas for improvement.

In conclusion, our research is essential for comparing and evaluating the performance
of tried-and-true techniques. We aim to improve the general understanding of these
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techniques’ applicability and provide guidance for future research by evaluating their
performance.

3 Methodology

The research methodology for this study focuses on investigating the effectiveness of sev-
eral meta-heuristic algorithms for task scheduling in an edge computing environment.
The goal is to optimize task assignments in a cloud-edge architecture, considering the
trade-offs between the cloud and edge resources. The research process involves the fol-
lowing steps:

1. Problem Identification: The primary challenge associated with task scheduling
in a cloud-edge computing environment is identified by the study. The difficulty
comes from the need to efficiently distribute workloads while accounting for the
various properties of cloud and edge resources, the fluctuating workload demands,
and the real-time demands of applications.

2. Literature Review: A comprehensive literature review is conducted to under-
stand the existing research on task scheduling in cloud-edge environments. Various
meta-heuristic algorithms are explored, and their applicability to the task schedul-
ing problem is examined. The review helps identify the strengths and limitations
of each algorithm in the context of cloud-edge task scheduling.

3. Research Objectives: Clear research objectives are defined, focusing on evalu-
ating the performance of selected meta-heuristic algorithms for task scheduling in
the cloud-edge architecture. The objectives include comparing the algorithms’ ef-
fectiveness in optimizing task distribution, energy consumption, and waiting time
in both cloud and edge resources.

4. Experimental Setup: To conduct the experiments, we utilize the PureEdgeSim
simulator, a sophisticated tool designed specifically for emulating cloud-edge ar-
chitectures realistically. The simulator enables us to create various test scenarios,
configure different workload conditions, and evaluate the algorithms’ performance
in a controlled environment.

5. Selection of Meta-Heuristic Algorithms: Based on the literature review and
research objectives, a set of meta-heuristic algorithms is chosen for evaluation. The
selected algorithms include:

• Hybrid Grey Wolf - Whale Optimization Algorithm.

• Honey Badger Algorithm.

• Sand Cat Swarm Optimization.

• Artificial Rabbits Optimization.

• Dwarf Mongoose Optimization Algorithm.

• Genetic Algorithm(GA).

• Coral Reefs Optimization.

• Particle Swarm Optimization(PSO).
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6. Performance Metrics: To assess the efficiency of each algorithm, three perform-
ance metrics are defined:

• Total Tasks Executed in Cloud vs. Edge This metric aims to analyze the
distribution of tasks between the cloud and edge resources. It provides insights
into how well the meta-heuristic algorithms can offload tasks to the edge nodes,
thereby optimizing the overall task execution and resource utilization.

• Energy Consumption in Cloud vs. Edge Energy efficiency is a crucial aspect
of cloud-edge computing. We measure the energy consumed by tasks in both
the cloud and edge resources. The objective is to identify algorithms that
can effectively allocate tasks to energy-efficient nodes, reducing overall energy
consumption.

• Waiting Time in Cloud vs. Edge The waiting time experienced by tasks in
the cloud and edge nodes is another essential performance metric. A shorter
waiting time indicates efficient task scheduling and better responsiveness of
the system.

7. Experimentation and Data Collection: Experiments are conducted using di-
verse workload scenarios and datasets. The performance metrics are measured,
and data is collected for each algorithm under various edge conditions and task
distributions.

8. Result Analysis: The collected data is analyzed to compare the performance of the
selected meta-heuristic algorithms. The impact of each algorithm on task scheduling
efficiency, energy consumption, and waiting time in the cloud-edge environment is
evaluated.

9. Conclusion and Findings: The research findings are presented, highlighting the
performance of each algorithm in task scheduling for the cloud-edge architecture.
The conclusions drawn from the analysis provide insights into the suitability of
different algorithms for specific task scheduling scenarios in edge computing.

10. Discussion and Future Work: The study concludes with a discussion of the
results and their implications for cloud-edge task scheduling. Future research dir-
ections and potential areas for improvement in optimizing task scheduling using
meta-heuristic algorithms in edge computing environments are also explored.

By following this research methodology, the study aims to contribute valuable insights
into the performance of various meta-heuristic algorithms for task scheduling in a cloud-
edge environment. The results obtained will aid in understanding the strengths and
limitations of each algorithm, guiding the development of more efficient and optimized
task scheduling solutions for edge computing scenarios.

4 Design Specification

In this section, we present the detailed design specifications for the implementation of
the research methodology, focusing on the techniques, architecture, and framework that
underlie the task scheduling evaluation in the cloud-edge computing environment. Ad-
ditionally, we outline the specific requirements and considerations that guide the imple-
mentation of the proposed research.
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Figure 1: Methodology

1. Cloud-Edge Architecture: The cloud-edge architecture serves as the funda-
mental framework for our research. It consists of a centralized Cloud Data Center,
symbolizing the cloud infrastructure that hosts a vast pool of computing and storage
resources for task processing. Connected to the cloud are Edge Devices, represent-
ing a network of decentralized devices and nodes located closer to the end-users
or data sources. The network connection between the cloud and edge compon-
ents facilitates seamless communication and data exchange, enabling efficient task
distribution and offloading.

2. PureEdgeSim Simulator: To emulate the cloud-edge environment realistically
and ensure a controlled experimentation environment, we leverage the state-of-
the-art PureEdgeSim simulator. This powerful simulation tool provides a com-
prehensive platform for creating realistic edge computing scenarios. PureEdgeSim
incorporates various edge conditions, such as limited resources, varying network
latencies, and dynamic edge capabilities. By simulating these conditions, we can
evaluate the performance of different task scheduling algorithms under diverse and
real-world-like scenarios.

3. Meta-Heuristic Algorithms: The heart of our research lies in the evaluation
of several meta-heuristic algorithms for task scheduling optimization. These al-
gorithms are chosen based on their potential to address the key challenges of dy-
namic edge conditions and varying task requirements. The selected meta-heuristic
algorithms include, but are not limited to, the following:

• Hybrid Grey Wolf - Whale Optimization Algorithm: This algorithm combines
the strengths of both Grey Wolf and Whale Optimization techniques to en-
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hance global exploration and local exploitation for optimal task allocation
Gaggero and Ababneh (2021).

• Honey Badger Algorithm: Leveraging self-adaptation and dynamic parameter
tuning, the Honey Badger Algorithm exhibits robust adaptability to changing
edge conditions and workload patterns.

• Sand Cat Swarm Optimization: Inspired by the collective behaviour of sand
cats, this algorithm explores swarm intelligence to achieve efficient task schedul-
ing in the cloud-edge environment Seyyedabbasi and Kiani (2023).

• Artificial Rabbits Optimization: Drawing inspiration from the foraging beha-
viour of rabbits, this algorithm optimizes task allocation strategies using a
population-based approach Wang et al. (2022).

• Dwarf Mongoose Optimization Algorithm: Emulating the foraging patterns
of dwarf mongooses, this algorithm utilizes cooperation and collaboration
between individuals to optimize task scheduling outcomes Agushaka et al.
(2022).

• Genetic Algorithm (GA): Inspired by the principles of natural selection and
genetic evolution, GA applies genetic operators to evolve a population of solu-
tions and find optimal task assignments Lambora et al. (2019).

• Coral Reefs Optimization: Inspired by the ecological interactions of coral
reefs, this algorithm employs bio-inspired communication mechanisms for task
scheduling optimization Tsai et al. (2014).

• Particle Swarm Optimization (PSO): Mimicking the social behaviour of birds
flocking or fish schooling, PSO seeks an optimal solution by iteratively updat-
ing particles’ positions Gad (2022).

4. Performance Metrics: To evaluate the effectiveness of each meta-heuristic al-
gorithm, three key performance metrics are considered:

(a) Total tasks executed in the cloud vs. edge: This metric quantifies the distri-
bution of tasks between the cloud and edge resources, indicating the efficiency
of task offloading and allocation strategies.

(b) Energy consumption in the cloud vs. edge: This metric measures the energy
consumed in the cloud and edge resources during task execution, providing
valuable insights into the overall energy efficiency of the task scheduling al-
gorithms.

(c) Waiting time in the cloud vs. edge: This metric assesses the waiting time
experienced by tasks in the cloud and edge, reflecting the responsiveness and
performance of the task scheduling algorithms. Minimizing waiting time is
crucial for enhancing user experience and overall system efficiency.

5. Algorithm Functionality:

(a) Hybrid Grey Wolf - Whale Optimization Algorithm: The Hybrid Grey Wolf -
Whale Optimization Algorithm combines the strengths of both the Grey Wolf
Algorithm and the Whale Optimization Algorithm. Grey Wolf Algorithm is
known for its effective local search capability, while Whale Optimization Al-
gorithm excels in global exploration. By integrating these two approaches,
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the hybrid algorithm achieves a balance between exploration and exploitation,
making it adept at finding optimal task assignments in the cloud-edge environ-
ment. The hybrid approach enhances the algorithm’s convergence speed and
overall efficiency in handling the dynamic task scheduling scenarios character-
ized by edge resource limitations and varying workloads Gaggero and Ababneh
(2021).

(b) Honey Badger Algorithm: The Honey Badger Algorithm is a self-adaptive
optimization technique that dynamically tunes its parameters based on en-
vironmental conditions and task workload. Its ability to adapt and fine-tune
its operation makes it highly resilient to changes in edge conditions, such as
fluctuations in available edge resources and workload patterns. The algorithm
employs a robust search strategy to explore the solution space efficiently and
converge on optimal task allocations. Its self-adaptive nature enables it to re-
spond effectively to the ever-changing edge environment, making it well-suited
for real-world task scheduling challenges.

(c) Sand Cat Swarm Optimization: Inspired by the collective behaviour of sand
cats, the Sand Cat Swarm Optimization algorithm leverages swarm intelligence
to optimize task scheduling in the cloud-edge environment. The algorithm
mimics the cooperative foraging patterns of sand cats, where individuals in the
swarm collaborate and communicate to find the best solutions. This collab-
orative approach allows the algorithm to effectively search the solution space
and discover promising task assignments. Sand Cat Swarm Optimization is
particularly suitable for dynamic edge environments with limited resources, as
it can adapt to changing conditions and efficiently allocate tasks to available
edge nodes Seyyedabbasi and Kiani (2023).

(d) Artificial Rabbits Optimization: The Artificial Rabbits Optimization algorithm
draws inspiration from the foraging behaviour of rabbits to optimize task
scheduling strategies. The algorithm employs a population-based approach
where a group of artificial rabbits explores the solution space. By mimick-
ing the natural foraging behaviour, the algorithm strikes a balance between
exploration and exploitation, efficiently searching for task assignments that
optimize the overall system performance. The collective intelligence of the
rabbit population enables the algorithm to handle various task distributions
and edge conditions effectively Wang et al. (2022).

(e) Dwarf Mongoose Optimization Algorithm: Inspired by the cooperative for-
aging patterns of dwarf mongooses, the Dwarf Mongoose Optimization Al-
gorithm emphasizes collaboration and teamwork among individuals. This al-
gorithm is particularly well-suited for task scheduling in a cloud-edge environ-
ment with multiple edge nodes. The cooperation among individual agents in
the algorithm allows for efficient exploration and exploitation of the solution
space, leading to improved task allocations. The collaborative nature of the
algorithm enables it to handle complex task distributions and dynamic edge
conditions, making it an excellent candidate for real-world edge computing
scenarios Agushaka et al. (2022).

(f) Genetic Algorithm (GA): Genetic Algorithm (GA) is a powerful optimization
technique based on the principles of natural selection and genetic evolution.
It maintains a population of potential solutions (chromosomes) and applies
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genetic operators such as selection, crossover, and mutation to evolve and
refine the population over generations. GA is highly effective in exploring
the solution space and finding optimal task assignments in the cloud-edge
environment. Its evolutionary approach allows it to adapt to changing edge
conditions and dynamic task requirements, making it a versatile and widely-
used algorithm in various optimization problems, including task scheduling
Lambora et al. (2019).

(g) Coral Reefs Optimization: The Coral Reefs Optimization algorithm is inspired
by the ecological interactions of coral reefs. In this algorithm, artificial coral
reefs represent potential solutions to the task scheduling problem. The al-
gorithm employs bio-inspired communication mechanisms, such as spawning
and broadcast spawning, to exchange information among the coral reefs. This
communication allows the reefs to cooperate and share knowledge, leading to
efficient exploration and exploitation of the solution space. Coral Reefs Op-
timization is particularly suitable for dynamic edge environments, as it adapts
to changing conditions and effectively allocates tasks to available cloud and
edge resources Tsai et al. (2014).

(h) Particle Swarm Optimization (PSO): Particle Swarm Optimization (PSO)
draws inspiration from the social behavior of birds flocking or fish schooling.
In PSO, particles represent potential solutions, and they explore the solution
space by adjusting their positions based on their own experience and the ex-
perience of their neighbors. The collective intelligence of the particle swarm
enables efficient task scheduling, as the particles cooperate to converge on
promising solutions. PSO is known for its simplicity, effectiveness, and ability
to handle dynamic edge conditions and varying task requirements, making it
a popular choice for task scheduling optimization in cloud-edge environments
Gad (2022).

By adhering to the design specifications outlined above, we aim to conduct a com-
prehensive evaluation of the selected meta-heuristic algorithms for task scheduling in
the cloud-edge computing environment. The design considerations ensure a robust and
realistic experimentation process, leading to valuable insights into the algorithms’ per-
formance and their suitability for addressing the challenges of task scheduling in dynamic
edge environments.

5 Implementation

In the implementation phase, the proposed solution was developed and executed to eval-
uate the performance of various orchestration algorithms in the cloud-edge environment.
The focus was on the final stage of the implementation, which involved the execution of
the simulation and the generation of results for analysis. The outputs produced during
this phase included transformed data, performance metrics, and analysis results, which
were instrumental in assessing the efficiency of different orchestration algorithms.

5.1 Simulation Execution and Data Collection

The implementation process began with the configuration of the simulation parameters
based on the specified scenario. The simulation framework, which included the Pur-
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eEdgeSim simulator, was utilized to emulate the cloud-edge architecture with the defined
orchestration algorithms. The simulation was run for a predefined time interval, which
allowed for the execution of tasks and the collection of relevant performance data.

5.2 Outputs Produced

Upon the completion of each simulation run, various outputs were generated, contributing
to the evaluation and analysis of the orchestration algorithms:

1. Performance Metrics Data: During the simulation, metrics such as total tasks
executed, execution delay, waiting time, tasks executed in the cloud vs. edge, and
energy consumption were collected for each orchestration algorithm. These metrics
provided insights into the efficiency and effectiveness of each algorithm in task
scheduling and resource utilization.

2. Results Comparison: The collected data was organized and analyzed to compare
the performance of different orchestration algorithms under various scenarios. This
comparison facilitated the identification of algorithmic strengths and weaknesses in
terms of execution time, task allocation, and waiting time.

3. Transformation of Simulation Outputs: The collected data was transformed
into structured formats, such as tables and graphs, to enable easier interpretation
and visualization. This facilitated the presentation and communication of the sim-
ulation results to stakeholders and readers.

5.3 Tools and Languages

The implementation was carried out using the following tools and languages:

• PureEdgeSim Simulator: The simulation framework allowed for the emulation
of the cloud-edge architecture and the execution of orchestration algorithms.

• Python: Python scripting was employed to configure simulation parameters, auto-
mate simulation runs, and process the collected data.

• Mealpy Library: is the largest Python library for a wide range of advanced
population-based meta-heuristic algorithms. In the field of approximate optimiz-
ation, population meta-heuristic algorithms (PMA) are the most widely used al-
gorithms Van Thieu and Mirjalili (2023).

• Data Analysis Libraries: Pandas, Matplotlib and Seaborn were used to perform
data manipulation, transformation, and analysis.

In conclusion, we executed the simulations using the PureEdgeSim simulator and
Python scripting. The generated data forms the basis for our analysis of different orches-
tration algorithms within the cloud-edge environment. The results obtained will drive our
research’s final insights and conclusions, providing a valuable understanding of algorithm
performance and implications.
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6 Evaluation

In this section, we provide a comprehensive analysis of the results obtained from the
experiments conducted to evaluate the performance of various orchestration algorithms
in a cloud-edge environment. The evaluation is based on the outcomes of multiple exper-
iments with different numbers of edge devices (50, 100, and 200). The primary focus is
on the tasks executed, energy consumption, and waiting time for each orchestration al-
gorithm. The results are discussed in the context of the research question and objectives,
highlighting the strengths and weaknesses of different algorithms.

Table 1: Abbreviations Used in Tables
Abbreviation Full Form

ARO Artificial Rabbits Optimization
DMOA Dwarf Mongoose Optimization Algorithm
GA Genetic Algorithm
HBA Honey Badger Algorithm

HGWOA Hybrid Grey Wolf - Whale Optimization Algorithm
OCRO Optimized Coral Reefs Optimization
PPSO Parallel Particle Swarm Optimization
SCSO Sand Cat Swarm Optimization
50ED 50 Edge Devices
100ED 100 Edge Devices
200ED 200 Edge Devices
Wh Watt-hour (Energy Consumption)
s Seconds (Waiting Time)

6.1 Experiment - Tasks Executed

The first set of experiments aimed to assess the efficiency of orchestration algorithms in
terms of tasks executed. The analysis revealed interesting insights into the allocation of
tasks between edge and cloud resources.

For 50 Edge Devices: Among the tested algorithms, Optimized Coral Reefs Op-
timization exhibited the highest number of tasks executed in both the edge and cloud
environments. This algorithm efficiently balanced the task distribution, resulting in a
higher number of tasks executed in both locations compared to other algorithms. Con-
versely, Hybrid Grey Wolf - Whale Optimization Algorithm achieved the lowest number
of tasks executed in the cloud environment, indicating potential inefficiencies in task
allocation.

For 100 Edge Devices: In this scenario, Dwarf Mongoose Optimization Algorithm
(DMOA) stood out by achieving a high number of tasks executed in both the edge and
cloud resources. Its balanced distribution of tasks between the edge and cloud envir-
onments indicates its effectiveness in managing the task allocation process. Notably,
Honey Badger Algorithm exhibited a relatively higher number of tasks executed in the
edge environment compared to the cloud. This could be attributed to its specific task
distribution strategy, which favours edge execution. However, DMOA’s ability to achieve
comparable performance in both edge and cloud environments highlights its adaptability
and efficiency in task allocation.
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For 200 Edge Devices: Artificial Rabbits Optimization demonstrated the highest
number of tasks executed in both the edge and cloud environments. Interestingly, Honey
Badger Algorithm again showed an effective task distribution strategy by achieving a
higher number of tasks executed in the edge environment. They stand out as the most
effective algorithms for the 200 edge devices scenario, based on their consistently high per-
formance in terms of tasks executed in both the edge and cloud environments. However,
the other algorithms also demonstrate competitive performance, suggesting a variety of
options for optimizing task scheduling in cloud-edge environments with a large number
of edge devices.

Overall, the Honey Badger Algorithm consistently performs well in terms of tasks
executed across different scenarios and numbers of edge devices.

Table 2: Tasks Execution Results
Algorithm 50ED 100ED 200ED
ARO 2400 / 2540 5660 / 4490 12720 / 7580
DMOA 3130 / 1810 5100 / 5050 9790 / 10510
GA 2360 / 2580 5250 / 4900 10370 / 9930
HBA 3070 / 1870 6650 / 3500 9850 / 10450
HGWOA 3200 / 1740 4170 / 5980 9740 / 10560
OCRO 3340 / 1600 4200 / 5950 9490 / 10810
PPSO 3220 / 1710 3230 / 5980 8780 / 11440
SCSO 2440 / 2500 5630 / 4520 10930 / 9370

Figure 3: Tasks Executed in Cloud vs Edge for 50 Edge Devices
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Figure 4: Tasks Executed in Cloud vs Edge for 100 Edge Devices

Figure 5: Tasks Executed in Cloud vs Edge for 200 Edge Devices

6.2 Experiment - Energy Consumption

The evaluation of energy consumption provided insights into the efficiency of orchestration
algorithms in managing energy resources. The analysis considered energy consumption
in both edge and cloud environments.

For 50 Edge Devices: In terms of energy consumption, the algorithms show varying
performance. Dwarf Mongoose Optimization Algorithm demonstrates the most energy-
efficient execution both in the edge and cloud environments. This efficiency can be
attributed to its task distribution strategy, optimizing energy utilization in both settings.
Conversely, the Honey Badger Algorithm exhibits higher energy consumption in the edge
environment compared to the cloud, possibly due to its resource-intensive nature.

For 100 Edge Devices: Among the algorithms, Dwarf Mongoose Optimization
Algorithm continues to excel by achieving lower energy consumption in both the edge
and cloud environments. Its ability to balance task execution efficiently leads to reduced
energy usage. Notably, Honey Badger Algorithm showcases a trade-off, consuming less
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energy in the cloud while displaying relatively higher energy consumption in the edge
environment.

For 200 Edge Devices: Artificial Rabbits Optimization achieves the lowest energy
consumption in both the edge and cloud environments, indicating its energy-efficient
execution strategy. However, the Honey Badger Algorithm once again demonstrates an
interesting trend with higher energy consumption in the edge environment. This could
be attributed to its resource allocation approach, which utilizes more energy in the edge
setting.

Overall, from the energy consumption results, it can be observed that the Artificial
Rabbits Optimization algorithm consistently exhibits higher energy consumption both in
the edge and cloud environments across all three cases (50, 100, and 200 edge devices).
On the other hand, algorithms like Dwarf Mongoose Optimization Algorithm, Genetic
Algorithm and Hybrid Grey Wolf - Whale Optimization Algorithm tend to show lower
energy consumption values, indicating their efficiency in managing energy resources.

Table 3: Energy Consumption Results
Algorithm 50ED (Wh) 100ED (Wh) 200ED (Wh)
ARO 18.9722 / 3.0284 21.2326 / 5.1944 25.0972 / 10.6696
DMOA 19.2431 / 2.5069 20.8785 / 5.8763 23.5868 / 13.5776
GA 19.2951 / 2.4067 20.566 / 6.4779 24.4514 / 11.913
HBA 19.0556 / 2.8679 21.2014 / 5.2546 23.7743 / 13.2166
HGWOA 19.2951 / 2.4067 20.316 / 6.9593 24.0451 / 12.6952
OCRO 19.1181 / 2.7476 20.4097 / 6.7788 24.2118 / 12.3743
PPSO 19.2951 / 2.5378 21.9965 / 7.3809 30.4521 / 13.0573
SCSO 18.6493 / 3.6501 20.8576 / 5.9164 24.0243 / 12.7353

Figure 6: Energy Consumption in Cloud vs Edge for 50 Edge Devices
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Figure 7: Energy Consumption in Cloud vs Edge for 100 Edge Devices

Figure 8: Energy Consumption in Cloud vs Edge for 200 Edge Devices

6.3 Experiment - Waiting Time

The analysis of waiting time shed light on the responsiveness of orchestration algorithms
and their impact on task execution delay.

For 50 Edge Devices: All the algorithms have a negligible waiting time since
the number of edge devices considered is significantly small. This suggests efficient task
distribution and execution, minimizing waiting time in both edge and cloud environments.

For 100 Edge Devices: Hybrid Grey Wolf - Whale Optimization Algorithm and
Optimized Coral Reefs Optimization exhibited minimal waiting times of 0.85 seconds,
indicating effective task distribution and quick execution in both the edge and cloud
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environments. On the other hand, the Dwarf Mongoose Optimization Algorithm and Ge-
netic Algorithm demonstrated relatively low waiting times of around 7 seconds, indicating
efficient task allocation. Interestingly, Honey Badger Algorithm displayed significantly
higher waiting time, suggesting possible challenges in task distribution.

For 200 Edge Devices: Hybrid Grey Wolf - Whale Optimization Algorithm and
Optimized Coral Reefs Optimization maintained their efficiency with waiting times of
186.525 seconds and 157.9625 seconds, respectively. Dwarf Mongoose Optimization Al-
gorithm and Genetic Algorithm also showed reasonable waiting times of around 206.75
seconds and 269.5875 seconds, respectively. Honey Badger Algorithm demonstrated a
waiting time of 188.975 seconds, indicating effective task distribution in the edge envir-
onment.

Overall, the algorithms generally exhibited efficient task distribution and execution,
resulting in relatively low waiting times in various scenarios.

Table 4: Waiting Time Results
Algorithm 50ED (s) 100ED (s) 200ED (s)
ARO 0.0 16.775 528.55
DMOA 0.0125 7.4625 206.75
GA 0.3875 7.325 269.5875
HBA 0.025 51.625 188.975
HGWOA 0.0375 0.85 186.525
OCRO 0.0625 0.85 157.9625
PPSO 0.0 36.775 321.6125
SCSO 0.0 5.85 347.5875

Figure 9: Waiting Time for 50 Edge Devices
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Figure 10: Waiting Time for 100 Edge Devices

Figure 11: Waiting Time for 200 Edge Devices

6.4 Discussion

The comprehensive evaluation of the orchestration algorithms provides valuable insights
into their performance in the cloud-edge environment. The strengths and weaknesses ob-
served in the experiments highlight the importance of algorithm selection for optimal task
execution, energy consumption, and responsiveness. The results suggest that different al-
gorithms excel under varying scenarios, emphasizing the need for adaptive algorithms
that can adapt to changing edge conditions.

While some algorithms consistently performed well across different scenarios, others
showed varying levels of efficiency. These variations may be attributed to the algorithms’
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underlying strategies for task allocation, energy management, and responsiveness. We
also considered the implications of the findings from both academic and practical per-
spectives, addressing potential areas for improvement and future research.

7 Conclusion and Future Work

7.1 Conclusion

In this study, we set out to address the challenges of task scheduling in a cloud-edge
computing environment through the evaluation of various orchestration algorithms. The
research question focused on identifying the most efficient algorithms for task execu-
tion, energy consumption, and waiting time in scenarios with varying numbers of edge
devices. Our objectives were to assess the performance of different algorithms, analyze
their strengths and weaknesses, and provide insights for improved resource allocation.

Through rigorous experimentation and analysis, we successfully evaluated the orches-
tration algorithms’ performance in terms of tasks executed, energy consumption, and
waiting time. We analyzed the results for three different edge device counts (50, 100, and
200) and identified notable trends and patterns in algorithm behaviour. The key findings
highlighted the significance of algorithm selection in achieving efficient task execution
and resource utilization within a dynamic cloud-edge environment.

7.2 Implications and Limitations

The implications of our research extend to both academic and practical domains. From
an educational perspective, this study contributes valuable insights into the orchestration
algorithms’ performance, aiding researchers in understanding their trade-offs and areas
of expertise. Practically, the findings offer decision-makers and practitioners guidance in
selecting suitable orchestration algorithms for specific edge-computing scenarios.

However, it’s essential to acknowledge the limitations of this research. The simula-
tion environment, while realistic, is still an abstraction of real-world complexities. The
proposed algorithms’ performance might differ in actual deployments due to factors bey-
ond the simulation scope. Additionally, the algorithms’ parameters and behaviours were
considered static, without accounting for adaptive variations.

7.3 Future Work

As we conclude this study, several avenues for future research and development emerge.
To meaningfully extend this work, future research projects could explore:

1. Dynamic Algorithm Adaptation: Investigate the potential of developing al-
gorithms that dynamically adjust their parameters and strategies based on changing
edge conditions, further enhancing efficiency and adaptability.

2. Machine Learning Integration: Integrate machine learning techniques to pre-
dict and optimize task allocation and resource utilization, enhancing the algorithms’
decision-making process.

3. Real-world Validation: Conduct real-world experiments to validate the algorithms’
performance in actual edge computing scenarios, taking into account the unpredict-
abilities of real-world networks and device behaviours.
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In conclusion, this research sheds light on the complex interplay of orchestration al-
gorithms in cloud-edge environments. The findings lay a strong foundation for future
research endeavours that aim to refine and expand the capabilities of orchestration al-
gorithms to address the evolving challenges and opportunities in edge computing.
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