

Scalability of Neural Network Models for

the Classification and Detection of Threats

in Network Traffic

Configuration Manual

MSc Research Project

Programme Name

Forename Surname

Student ID: 21176221

School of Computing

National College of Ireland

Supervisor: Punit Gupta

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Erick Ayala Rodríguez………………………………………………………………………………

Student ID:

21176221…………………………………………………………………………………………..……

Programme:

MSc in Cloud Computing………………………

Year:

2023…………………………..

Module:

Research Project …………………………………………………………………………….………

Lecturer:

Punit Gupta ……………………………………………………………………………….………

Submission
Due Date:

14/08/2023……………………………………………………………………………………….………

Project Title:

Scalability of Neural Network Models for the Classification and
Detection of Threats in Network Traffic…………………………………….………

Word Count:

1602…………………………… Page Count: 8 pages………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Erick Ayala Rodriguez………………………………………………………………………

Date:

12/08/2023………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Scalability of Neural Network Models for

the Classification and Detection of Threats

in Network Traffic
Configuration Manual

Erick Ayala Rodríguez

Student ID: 21176221

1 Hardware and tools

The present section will list the hardware, tools, and dependencies to set up the

environment needed to execute all the tests done in the research.

The hardware utilized for the tests was implemented in two architectures, the on-premise

architecture and the cloud architecture. The on-premise architecture has one AMD Ryzen 5

4600h1 CPU with 12 cores and one Nvidia RTX 2060 mobile2, for the cloud architecture was

created an EC2 instance g3.8xlarge3 from AWS. Ubuntu 22.04.2 LTS is the operating system

for the cloud architecture in the EC2 Instance and Windows 11 home for the on-premise

architecture.

The main tools are Jupyter Notebook as the web-based interactive computing platform to

create the machine learning algorithms and TensorFlow as the framework to manage the

workloads across the hardware available. To configure the tools to make use of all the

hardware available especially the GPUs is necessary to install all the dependencies with the

correct versions to make the tools installed to work properly. The dependencies are described

in the next section.

2 Dependencies
To do the correct use of the CPUs and GPUs available it is important to use versions that

are compatible with the version of TensorFlow installed. Here is the list of versions of

dependencies and drivers required for the test environments.

1. Pyhthon 3.9.17

1 https://www.amd.com/en/product/9086
2 https://www.nvidia.com/en-gb/geforce/gaming-laptops/compare-20-series/
3 https://www.amazonaws.cn/en/ec2/instance-types/

2

2. The Nvidia drivers version 535.86.05 for the cloud architecture which has two Nvidia

Tesla M60 and for the on-premise architecture the drivers version 536.67 which has

one Nvidia RTX 2060 mobile

3. CUDA libraries version 11.3.58

4. Miniconda for the creation of the TensorFlow virtual environments to allocate all the

dependencies, in the present research the name of the virtual environment was “tf”

5. PIP installer to install all the necessary dependencies

3 Framework and libraries
As mentioned in Section 1, TensorFlow is implemented to manage the workloads and

how are they distributed across the different CPUs and GPUs of the systems. The

TensorFlow version installed is 2.12.14 which is compatible with the CUDA version installed.

It is important to have installed versions that are compatible because if not, the framework

will work but it is not going to detect the GPU and in consequence, will not use it.

By default, TensorFlow will utilize the GPU to process data but to control how many

GPUs should be used for was necessary to configure a list with the device IDs and the

“tf.distribute.MirroredStrategy5” strategy to distribute the dataset in the devices configured.

Figure 1 shows how was configured the list and Figure 2 the strategy configuration.

Figure 1: TensorFlow mirror strategy definition for multiple GPUs.

Figure 2: TensorFlow mirror strategy implemented in the CNN model.

It is worth to mention that these lines od code in the configuration for the on-premise

architecture is not necesary because the have only one GPU and the Framework by default

will meke use of it.

4 https://www.tensorflow.org/install/pip#linux_1
5 https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy

3

To validate the correct use of the two GPUs can be used the command “nvidia-smi -l 26”

where the numeric value can be set as frequently as needed to refresh the information. Figure

3 shows the output using two GPUs in the cloud architecture.

Figure 3: EC2 Instace x2 Nvidia Tesla M60 GPUs in usage.

To configure the use of the CPU is necessary to setup the “os7” environmental variable

and set the value “-1” to disable the use of GPU at the beginning of the code as shown in

Figure 4, to then configure the number of threads to be split on the workload and control the

number of cores to be used in the tests as shown on Figure 5.

Figure 4: Disabling the use of GPUs.

Figure 5: Configuration of threads.

These configurations are needed in bout the on-premise and cloud architecture.

It is important to mention that these configurations need to be removed or commented if it

is required to use the code with GPUs, if not TensorFlow will skip the GPUs for data

6 https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries
7 https://docs.python.org/3/library/os.html

4

processing, and vice versa if the CPU configuration is needed, the code shown in Figure 1

must be eliminated or commented and the line number one in Figure 2 should be also

commented or removed in combination with the tabular space to avoid errors.

For the configuration of the models where used different python libraries listed below:

a) Numpy8: To work with tabular data from the UNSW-NB15 dataset (Moustafa, N., &

Slay, J. 2015).

b) Pandas9: To work with numerical data inside of the dataset.

c) Keras API10: Required to build sequential and convolutional neural networks in the

CNN and SNN models implemented in the research.

d) tensorflow-estimator (2.12.0): To simplify the mechanics of machine learning tasks

like training, evaluation, prediction, and export of the ML models.

e) tensorboard (2.12.3): TensorBoard provides visualization tools to understand, debug,

and optimize TensorFlow programs. It offers a suite of visualization tools to make it

easier to understand, debug, and optimize TensorFlow programs.

f) tensorflow-io-gcs-filesystem (0.32.0): This is an extension of TensorFlow that

provides support for the Google Cloud Storage (GCS) filesystem.

g) Keras (2.12.0): Keras is a high-level neural networks API, written in Python and

capable of running on top of TensorFlow. It allows for easy and fast prototyping and

supports both convolutional networks and recurrent networks.

h) scikit-learn (1.3.0): ML library for calculations and evaluations of how the models are

performing.

i) opt-einsum (3.3.0): This library can help to handle many operations required in the

layers on neurons of the neural network models tested. It optimizes TensorFlow

tensor contractions.

4 Machine learning models configuration
The configuration of the CNN model for the detection of network threads (binary

classification) is shown in Figure 6 where it has three Conv1D filters, two Dense layers of

neurons with dropout to prevent overfitting.

8 https://numpy.org/install/
9 https://pandas.pydata.org/docs/getting_started/install.html
10 https://keras.io/getting_started/

5

Figure 6: CNN model for binary classification.

Continuing with the configuration of the CNN model Figure 7 shows the code for the

classification of network threats (multi-class classification) where it has one Conv1D filter,

and one Dense layer of neurons with dropout to avoid overfitting.

Figure 7: CNN model for multi-class classification.

It is worth mentioning that the model has fewer layers than the CNN binary classification

because if it is added more neuron layers or filters are adding time to train the model but it is

not adding much improvement in accuracy, recall, precision, or F1 score.

To train the CNN model was configured with 10 epochs and a batch size of 128 because

even if the GPUs can handle all the data in parallel the model is not able to detect proper

patterns and the accuracy goes down. To measure the time to train was implemented the

“time” function. Figure 8 shows how these configurations were implemented in the code.

Figure 8: CNN model training configuration and time measurement.

For the configuration of the SNN implemented three Neuron layers in decreasing order

with relu and sigmode as activation methods. The training was configured with 10 epochs

and the default batch size of 32 because the training times were low and also because the

model showed to be more sensitive to changes and it is reflected in accuracy and precision.

The code is shown in Figure 9.

6

Figure 9: SNN model build and training configuration binary classification.

For the configuration of the SNN model for the classification of network threats (multi-

class classification) was removed one layer of neurons because is just adding time to train the

model and does not get any improvement in the evaluation metrics. Figure 10 shows the code

for the SNN in multi-class classification.

Figure 10: SNN model build and training configuration multi-class classification.

The configuration of the DTC model was implemented with a random state of 42 to

provide randomness in finding the best features to predict the results. Figure 11 shows the

configuration of the model.

7

Figure 11: DTC model build and training configuration binary classification.

And finally, for the classification of network threats with the DTC model, the

configurations follow the same structure as the binary classification. This is because the only

difference is the target variables which change from the “label” which determines if the

network packets represent a threat or not to the column “attack_cat” which contained the

classification of the network threats. This is also applicable to all the ML models tested

during the research.

5 Running the environment
To start Jupyter Notebook is needed to be activated in the environment created with

miniconda with the command “conda activate tf” where “tf” is the name of the virtual

environment. Then needs to be executed the command “jupyter notebook”. This will start

Jupyte Notebook being accessible from the web browser.

To make the local host available when is running in the EC2 instance it is needed to

create an SSH connection to the instance activate the conda environment and run the “jupyter

notebook” command. Open a different terminal and create a tunnel connection with the

command “ssh -i "x21176221_P4.pem" -L 8888:localhost:8888 ubuntu@ec2-3-253-95-

225.eu-west-1.compute.amazonaws.com” (the command needs to be changed every time the

EC2 instance restarts because the DNS name changes and the command will not be able to

create the tunnel) setting the tunnel on the port 8888, and now the link is accessible in the

web browser as shown in Figure 12.

Figure 12: Jupyter Notebook.

8

References

Moustafa, N., & Slay, J. (2015). UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set). 2015 Military Communications

and Information Systems Conference (MilCIS), 1-6.

