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1 Hardware and tools  
 

The present section will list the hardware, tools, and dependencies to set up the 

environment needed to execute all the tests done in the research. 

 

The hardware utilized for the tests was implemented in two architectures, the on-premise 

architecture and the cloud architecture. The on-premise architecture has one AMD Ryzen 5 

4600h1 CPU with 12 cores and one Nvidia RTX 2060 mobile2, for the cloud architecture was 

created an EC2 instance g3.8xlarge3 from AWS. Ubuntu 22.04.2 LTS is the operating system 

for the cloud architecture in the EC2 Instance and Windows 11 home for the on-premise 

architecture. 

 

The main tools are Jupyter Notebook as the web-based interactive computing platform to 

create the machine learning algorithms and TensorFlow as the framework to manage the 

workloads across the hardware available. To configure the tools to make use of all the 

hardware available especially the GPUs is necessary to install all the dependencies with the 

correct versions to make the tools installed to work properly. The dependencies are described 

in the next section. 

 

2 Dependencies  
To do the correct use of the CPUs and GPUs available it is important to use versions that 

are compatible with the version of TensorFlow installed. Here is the list of versions of 

dependencies and drivers required for the test environments. 

 

1. Pyhthon 3.9.17 

                                                             
 
1 https://www.amd.com/en/product/9086 
2 https://www.nvidia.com/en-gb/geforce/gaming-laptops/compare-20-series/ 
3 https://www.amazonaws.cn/en/ec2/instance-types/ 
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2. The Nvidia drivers version 535.86.05 for the cloud architecture which has two Nvidia 

Tesla M60 and for the on-premise architecture the drivers version 536.67 which has 

one Nvidia RTX 2060 mobile 

3. CUDA libraries version 11.3.58 

4. Miniconda for the creation of the TensorFlow virtual environments to allocate all the 

dependencies, in the present research the name of the virtual environment was “tf” 

5. PIP installer to install all the necessary dependencies  

 

3 Framework and libraries 
As mentioned in Section 1, TensorFlow is implemented to manage the workloads and 

how are they distributed across the different CPUs and GPUs of the systems. The 

TensorFlow version installed is 2.12.14 which is compatible with the CUDA version installed. 

It is important to have installed versions that are compatible because if not, the framework 

will work but it is not going to detect the GPU and in consequence, will not use it. 

 

By default, TensorFlow will utilize the GPU to process data but to control how many 

GPUs should be used for was necessary to configure a list with the device IDs and the 

“tf.distribute.MirroredStrategy5” strategy to distribute the dataset in the devices configured. 

Figure 1 shows how was configured the list and Figure 2 the strategy configuration. 

 

 

Figure 1: TensorFlow mirror strategy definition for multiple GPUs. 

 

 

Figure 2: TensorFlow mirror strategy implemented in the CNN model. 

It is worth to mention that these lines od code in the configuration for the on-premise 

architecture is not necesary because the have only one GPU and the Framework by default 

will meke use of it. 

 

                                                             
 
4 https://www.tensorflow.org/install/pip#linux_1 
5 https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy 
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To validate the correct use of the two GPUs can be used the command “nvidia-smi -l 26” 

where the numeric value can be set as frequently as needed to refresh the information. Figure 

3 shows the output using two GPUs in the cloud architecture. 

 

 

Figure 3: EC2 Instace x2 Nvidia Tesla M60 GPUs in usage. 

To configure the use of the CPU is necessary to setup the “os7” environmental variable 

and set the value “-1” to disable the use of GPU at the beginning of the code as shown in 

Figure 4, to then configure the number of threads to be split on the workload and control the 

number of cores to be used in the tests as shown on Figure 5. 

 

 

Figure 4: Disabling the use of GPUs. 

 

 

 

Figure 5: Configuration of threads. 

These configurations are needed in bout the on-premise and cloud architecture. 

 

It is important to mention that these configurations need to be removed or commented if it 

is required to use the code with GPUs, if not TensorFlow will skip the GPUs for data 

                                                             
 
6 https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries 
7 https://docs.python.org/3/library/os.html 
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processing, and vice versa if the CPU configuration is needed, the code shown in Figure 1 

must be eliminated or commented and the line number one in Figure 2 should be also 

commented or removed in combination with the tabular space to avoid errors. 

 

For the configuration of the models where used different python libraries listed below: 

 

a) Numpy8: To work with tabular data from the UNSW-NB15 dataset (Moustafa, N., & 

Slay, J. 2015). 

b) Pandas9: To work with numerical data inside of the dataset. 

c) Keras API10: Required to build sequential and convolutional neural networks in the 

CNN and SNN models implemented in the research. 

d) tensorflow-estimator (2.12.0): To simplify the mechanics of machine learning tasks 

like training, evaluation, prediction, and export of the ML models. 

e) tensorboard (2.12.3): TensorBoard provides visualization tools to understand, debug, 

and optimize TensorFlow programs. It offers a suite of visualization tools to make it 

easier to understand, debug, and optimize TensorFlow programs. 

f) tensorflow-io-gcs-filesystem (0.32.0): This is an extension of TensorFlow that 

provides support for the Google Cloud Storage (GCS) filesystem. 

g) Keras (2.12.0): Keras is a high-level neural networks API, written in Python and 

capable of running on top of TensorFlow. It allows for easy and fast prototyping and 

supports both convolutional networks and recurrent networks. 

h) scikit-learn (1.3.0): ML library for calculations and evaluations of how the models are 

performing. 

i) opt-einsum (3.3.0): This library can help to handle many operations required in the 

layers on neurons of the neural network models tested. It optimizes TensorFlow 

tensor contractions. 

 

4 Machine learning models configuration  
The configuration of the CNN model for the detection of network threads (binary 

classification) is shown in Figure 6 where it has three Conv1D filters, two Dense layers of 

neurons with dropout to prevent overfitting. 

 

 

                                                             
 
8 https://numpy.org/install/ 
9 https://pandas.pydata.org/docs/getting_started/install.html 
10 https://keras.io/getting_started/ 
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Figure 6: CNN model for binary classification. 

Continuing with the configuration of the CNN model Figure 7 shows the code for the 

classification of network threats (multi-class classification) where it has one Conv1D filter, 

and one Dense layer of neurons with dropout to avoid overfitting.  

 

 

Figure 7: CNN model for multi-class classification. 

It is worth mentioning that the model has fewer layers than the CNN binary classification 

because if it is added more neuron layers or filters are adding time to train the model but it is 

not adding much improvement in accuracy, recall, precision, or F1 score. 

To train the CNN model was configured with 10 epochs and a batch size of 128 because 

even if the GPUs can handle all the data in parallel the model is not able to detect proper 

patterns and the accuracy goes down. To measure the time to train was implemented the 

“time” function. Figure 8 shows how these configurations were implemented in the code. 

 

 

Figure 8: CNN model training configuration and time measurement. 

For the configuration of the SNN implemented three Neuron layers in decreasing order 

with relu and sigmode as activation methods. The training was configured with 10 epochs 

and the default batch size of 32 because the training times were low and also because the 

model showed to be more sensitive to changes and it is reflected in accuracy and precision. 

The code is shown in Figure 9. 

 



6 
 

 

 

Figure 9: SNN model build and training configuration binary classification. 

For the configuration of the SNN model for the classification of network threats (multi-

class classification) was removed one layer of neurons because is just adding time to train the 

model and does not get any improvement in the evaluation metrics. Figure 10 shows the code 

for the SNN in multi-class classification. 

 

 

Figure 10: SNN model build and training configuration multi-class classification. 

The configuration of the DTC model was implemented with a random state of  42 to 

provide randomness in finding the best features to predict the results. Figure 11 shows the 

configuration of the model. 
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Figure 11: DTC model build and training configuration binary classification. 

And finally, for the classification of network threats with the DTC model, the 

configurations follow the same structure as the binary classification. This is because the only 

difference is the target variables which change from the “label” which determines if the 

network packets represent a threat or not to the column “attack_cat” which contained the 

classification of the network threats. This is also applicable to all the ML models tested 

during the research. 

 

5 Running the environment   
To start Jupyter Notebook is needed to be activated in the environment created with 

miniconda with the command “conda activate tf” where “tf” is the name of the virtual 

environment. Then needs to be executed the command “jupyter notebook”. This will start 

Jupyte Notebook being accessible from the web browser. 

 

To make the local host available when is running in the EC2 instance it is needed to 

create an SSH connection to the instance activate the conda environment and run the “jupyter 

notebook” command. Open a different terminal and create a tunnel connection with the 

command “ssh -i "x21176221_P4.pem" -L 8888:localhost:8888 ubuntu@ec2-3-253-95-

225.eu-west-1.compute.amazonaws.com” (the command needs to be changed every time the 

EC2 instance restarts because the DNS name changes and the command will not be able to 

create the tunnel) setting the tunnel on the port 8888, and now the link is accessible in the 

web browser as shown in Figure 12. 

 

 

Figure 12: Jupyter Notebook. 
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