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Praise Olamide Abimbola
22101012

Abstract

The adoption of Smart Mobile Devices (SMD) is increasing rapidly. Challenges
such as limited battery life, storage capacity, bandwidth, device heterogeneity, and
security are hindering the use of SMDs for computation-intensive tasks. To over-
come these challenges, Mobile Cloud Computing (MCC) provides a solution by
offloading such tasks to the cloud. It involves transferring data processing and
storage from mobile devices to the cloud infrastructure. The objective of this re-
search is to provide a solution to the management of SMD resources by developing
an offloading framework for a real-time speech recognition mobile application on a
SMD.

To achieve this, a real-time speech to text mobile application has been de-
veloped. This mobile application require considerable computational resources,
which can lead to performance and power consumption issues in the SMD. An of-
floading decision engine has been developed, the decision to offload is made based
on the battery life and the network strength of the SMD. If the battery life of the
SMD is below 20%, and the network is stable, the application will be offloaded to
the cloud using Google Speech API. If the battery life of the SMD is above 20%,
and the network is unstable, the application will run locally using flutter speech-
to-text package. The results shows that with a strong network connection and low
battery level, offloading resource and computation-intensive tasks to the cloud res-
ults in lower CPU and memory usage compared to local processing. However, in
situations with poor network connectivity or a good battery life, local processing
becomes the preferred choice.

1 Introduction

The use of Smart Mobile Devices (SMD) has grown significantly over the years. Accord-
ing to statista 1, the global count of active SMD reached nearly 15 billion in 2021 O’Dea
(2020). This surpasses the figure of just over 14 billion in the previous year. The number
of SMD is predicted to reach 18.22 billion by 2025, marking a substantial increase of
4.2 billion devices compared to the levels observed in 2020. Despite the advancements
in mobile devices, developing advanced applications for SMD remains a challenge due
to various resource limitations. These limitations include limited battery energy, slower
CPU speeds, inadequate storage space, and restricted network bandwidth. Also, as pro-
cessors become faster, screens become sharper, and devices incorporate more sensors, the

1https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/
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energy consumption of smartphones outpaces the battery’s ability to provide power. Un-
fortunately, current trends in battery technology suggest that these limitations are likely
to persist Biswas and Whaiduzzaman (2019a).

To address these challenges, researchers have explored architectural solutions that
can provide the necessary resources for SMDs to have a long lasting battery life. Cloud
computing (CC) is a potential solution. Cloud computing offers easily accessible comput-
ing power, which allows users to make use of Infrastructure-as-a-Service, Platform-as-a-
Service, and Software-as-a-Service services, provided by cloud providers such as Google,
Amazon, and Microsoft through concepts like on-demand computing, utility computing,
or pay-as-you-go computing.

The core concept of Cloud Computing involves offloading computation to remote
cloud servers Chang and Hung (2011). This enables users to efficiently use unlimited
cloud resources, develop mobile applications with ease and reduces power usage in the
mobile device.

Mobile Cloud Computing (MCC) is the integration of CC into the mobile computing
environment. MCC focuses on offloading tasks from the mobile devices to the cloud,
where they are processed, and the results are transmitted back to the mobile device. By
offloading tasks, smartphones benefit in terms of energy efficiency and execution time, as
they can offload computational loads to the more powerful cloud resources Qi and Gani
(2012). The architectural diagram of Mobile Cloud Computing is found in Figure 1.

Figure 1: Architectural Diagram of Mobile Cloud Computing

With the convergence of cloud computing and mobile computing, known as Mobile
Cloud Computing, numerous innovative smartphone applications and cloud services have
been developed.

The objective of this research project is to address the use and management of SMD
resources by creating an offloading framework to check when the device has a low bat-
tery of 20% or below and if the mobile device network is weak or strong. This affects
the decision of the application to be offloaded or not. This aims to enhance the user
experience while conserving the resources of the mobile devices. The results will have a
positive impact on the wider research community by advancing the field of mobile cloud
computing, and will lead to improved efficiency and longer battery life for mobile devices.
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Section 2 discusses the review of related works. It covers what has been done, the
results and the gaps. Section 3 illustrate the methodology with a case study. Section 4,
5, and 6 covers the design specifications, implementations and result evaluation. Finally,
Section 7 concludes this paper and discuss the potential future work.

2 Related Work

In a paper by Cuervo et al. (2010), the paper presents a popular approach to decrease the
energy consumption of mobile devices is through remote execution, where applications
leverage resource-rich infrastructure by offloading code execution to remote servers. This
paper introduces MAUI, an architecture designed to maximize energy savings by em-
ploying fine-grained code offloading while minimizing the impact on applications. MAUI
utilizes specific features of managed code environments, such as the Microsoft .NET Com-
mon Language Runtime (CLR). Firstly, MAUI leverages code portability to create two
versions of a smartphone application: one running locally on the device and the other
executing remotely in the infrastructure. Secondly, MAUI makes use of programming
reflection and type safety to automatically identify methods that is fit to be executed
remotely and use only the necessary program state for those methods. Thirdly, MAUI
profiles each method, determining its network shipping costs through serialization. It
combines the network and CPU costs with wireless connectivity measurements such as
bandwidth and latency, using a linear programming formulation to determine how to
partition the application at runtime for maximum energy savings based on the current
networking conditions. The paper presents MAUI’s program partitioning, profiling meth-
odology, and the formulation and solution of program partitioning as a 0-1 integer linear
programming problem. Throughout the presentation, the paper also highlights several
low-level challenges encountered during the implementation. For instance, the use of
power-save mode (PSM) during state transfer can actually increase energy consumption
when latency to the server is low. The results demonstrate impressive energy savings and
performance improvements achieved by MAUI, with some applications experiencing up
to an order of magnitude enhancement.

Biswas and Whaiduzzaman (2019b), discusses the current research on energy-efficient
execution offloading techniques and presents a mobile cloud-based application model.
Various offloading schemes are implemented, and the paper evaluates their combination
under suitable conditions to achieve optimal outcomes in MCC. The successful implement-
ation of offloading and effective use of Cloud Computing (CC) in the mobile environment
enable the development of improved applications and services, including mobile voice and
keyword search, picture search, mobile games, healthcare, e-commerce, and more. The
integration of MCC has the potential to improve our daily lives by addressing various
real-life problems.

2.1 Conventional Approach

In Chang and Hung (2011), the authors discuss the kernel-offload paradigm, which guides
the design of collaborative mobile cloud applications. They focus on system architec-
ture, application partitioning principles, computation offloading methods, and data access
control policies. The paper first presents the design of a cloud-assisted speech recogni-
tion (CSR) service and explains its implementation within the collaborative application
paradigm. To assess performance, the authors analyze latency, power consumption, and
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privacy concerns associated with the CSR service. However, configuring the filtering
mechanism for users can be cumbersome, especially when mobile applications and cloud
services undergo frequent updates. Additionally, developers face the task of defining and
creating an interface for offloading kernel functions to the cloud, followed by implementing
and deploying the offload service. Cloud computing technologies, like Google App Engine
(GAE), simplify deployment and management but raise privacy issues as developers gain
access to users’ personal information. The paper introduces an architecture and paradigm
for collaborative applications, making minor modifications to existing mobile and cloud
computing infrastructures. It includes a performance/power evaluation model to assess
the benefits of offloading kernel functions. The authors are still working on developing
the software infrastructure to support this paradigm. The speech recognition case study
demonstrates promising results by efficiently offloading the most time-consuming function
to a cloud server, reducing response time and smartphone power consumption.

The main contribution of the paper by Zhang et al. (2012) is a survey on recent mobile
cloud application models, assessing their strengths, weaknesses, and areas that require
further attention. They conducted a survey and discussed the distinctions between cloud
and mobile cloud computing, mobile cloud architecture, and the key entities influen-
cing computation offloading decisions. Parameters impacting mobile cloud application
models were highlighted, and a classification of application models was presented. The
paper analyzed and compared these models, addressing their issues and proposing future
research directions. Mobile cloud application models based on augmented execution of
smartphone clones in the cloud require synchronization between the smartphone and the
clone. This necessitates synchronization policies that ensure timely synchronization, con-
sidering factors like accuracy, execution delay, and bandwidth utilization. Furthermore,
smartphone clones store user data and licensed applications, making them vulnerable to
security attacks and piracy. A security mechanism is needed to protect clones from unau-
thorized access and safeguard smartphone users from malicious virtual machines (VMs)
executing in the cloud. There is also a need for a piracy control framework to prevent the
illegal installation of smartphone clones on devices of the same model by unauthorized
individuals.

The objective of this paper Guo et al. (2016), is to develop an energy-efficient dynamic
offloading and resource scheduling (eDors) policy that minimizes the energy expended by
mobile devices when executing applications. This paper introduces several contributions
compared to previous research. Firstly, it considers the influence of task precedence on
computation completion time and characterizes the energy expended as the energy con-
sumption in local computing and the computation completion time in cloud computing.
Secondly, the eDors problem is formulated as an energy consumption minimization prob-
lem with constraints on application completion time and task precedence requirements.
The formulation enforces a maximum completion time to accommodate different applic-
ation types, such as those sensitive to delays or tolerant of delays. Thirdly, to solve
the optimization problem, a distributed eDors algorithm is proposed for the selection of
computation offloading, clock frequency control, and transmission power allocation. Im-
portantly, it is discovered that the computation offloading decision depends not only on
the computing workload of a task but also on the maximum completion time of its imme-
diate predecessors, as well as the clock frequency and transmission power of the mobile
device. Lastly, the eDors policy is implemented on a testbed consisting of 20 Android
smartphones and a cloud server, and experimental results demonstrate that it effect-
ively reduces energy consumption and application completion time compared to existing
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policies. This work is the first to address dynamic offloading and resource scheduling
with the objective of minimizing energy consumption and application completion time
while considering completion time deadlines and task precedence requirements. It also
incorporates CPU clock frequency control in local computing and transmission power
allocation in cloud computing.

Gu et al. (2018) proposes a comprehensive taxonomy of current partitioning and
offloading schemes, taking into account various parameters such as the offload infrastruc-
ture, augmentation model, communication model, partitioning model, programming lan-
guage, application partitioning, application profiler, optimization model, allocation de-
cision, and granularity. By analyzing well-known partitioning and offloading frameworks,
the performance of these frameworks is evaluated based on the parameters defined in
the taxonomy. The study also investigates critical decisions related to partitioning and
offloading that significantly impact performance. Considering the resource constraints,
applications running on devices should be divided into multiple components. While
previous research has focused on partitioning methods and strategy constraints, future
studies should implement lightweight approaches, adaptability, and context-awareness in
partitioning and offloading.

The increasing demands of computation-intensive mobile applications, such as speech
recognition, natural language processing, computer vision, machine learning, augmented
reality, and decision making, require more than just powerful SMDs. MCC necessit-
ates significant changes in cloud computing, including programming models for seamless
remote execution, a low-latency middle tier, optimized cloud infrastructure for mobile
applications, and essential mobile cloud services. In Bahl et al. (2012), the authors pur-
poses that these advancements will allow mobile users to effortlessly harness the benefits
of cloud resources without experiencing delays, interruptions, or energy concerns. By
empowering mobile users in this way, mobile cloud computing can overcome existing
limitations.

In addition, there are various frameworks that facilitate the remote processing of data-
intensive tasks on cloud servers. One notable example is the ASM computation offloading
framework, which demonstrated significant benefits in terms of energy consumption and
application turnaround time. Specifically, it reduced the energy consumption cost of
mobile devices by 33% and improved application turnaround time by 45%. This paper
contributes to the field in two key ways. Firstly, it classifies existing computation of-
floading frameworks, analyzing their approaches and identifying crucial issues. Secondly,
it presents open issues and challenges in computation offloading for mobile cloud com-
puting (MCC) that require further investigation and elaboration. The paper delves into
the concepts of cloud computing, mobile cloud computing, and computation offloading.
It provides an overview of existing frameworks for computation offloading, highlighting
the various techniques used to enhance smartphone capabilities through the utilization
of cloud resources. The paper Khadija Akherfi (2018), studies the challenges and issues
faced by current offloading frameworks in MCC. It also explores different approaches
employed by these frameworks, including static and dynamic offloading, all aiming to im-
prove smartphone capabilities by saving energy, reducing response time, and minimizing
execution costs. However, the authors acknowledge that current offloading frameworks
encounter challenges, such as the lack of standardized architectures, which complicates
the development and management of proposed frameworks. In conclusion, the paper
emphasizes the need for a lightweight paradigm or model that can overcome difficulties
and minimize efforts in developing, deploying, and managing offloading frameworks. The
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authors propose exploring alternative solutions, such as a middleware-based architecture
with an optimizing offloading algorithm, to enhance existing frameworks and provide
more efficient and flexible solutions for MCC users.

The primary focus of this paper Khan et al. (2014) is to conduct a comprehensive sur-
vey of the latest mobile cloud application models developed between 2008 and 2012. The
authors aim to identify the strengths, weaknesses, and unresolved issues in these mod-
els, highlighting areas that require further attention. Additionally, the paper explores
the differences between cloud computing and mobile cloud computing, providing insights
into mobile cloud architecture and the key factors influencing computation offloading
decisions. Furthermore, the authors examine the parameters that impact mobile cloud
application models and present a classification of these models. They critically com-
pare and analyze the different application models, addressing their significant unresolved
challenges, and propose potential directions for future research in the field.

Hwang (2015) proposed a cloud offloading approach specifically designed for web ap-
plications, aiming to optimize resource utilization on devices based on web standards. The
authors justify their research by highlighting the increasing popularity of smart devices
and the significant presence of web applications among smart mobile device users. By de-
veloping an advanced method for offloading web applications to leverage multiple devices,
they aim to provide mobile users with more flexible access to resources. Through their
experiments, the authors observe the potential for resource sharing among devices, where
the workload of web applications on one device can be executed on another device’s
browser. However, they also identify a performance limitation due to the network over-
head associated with the current WebRTC channel used for communication between
devices. They suggest that this limitation could be overcome by optimizing the channel’s
settings. The authors discusses various benefits from cloud offloading, including improved
performance, reduced processing time, and lower battery consumption. They introduce
WWF-D as an extension of WWF, emphasizing the importance of developing a unified
version that integrates resource utilization on both servers and devices. They outline fu-
ture research directions, which involve enhancing WebRTC latency, exploring intelligent
policy selection based on device conditions, and establishing a framework for incorporat-
ing different policies into WWF. Furthermore, they intend to research additional benefits
associated with WWF-D, such as improved battery life.

The current state code offloading for mobile devices is examined in this research
paper Jiao et al. (2013), along with the major challenges encountered when developing
a framework for cloud-based offloading that is more effective. It is also investigated how
current technologies may help with the implementation of such a framework. The paper
discuses MAUI technique, which performs computation offloading, treats an application
as a call graph represented by a directed graph G=(V,E), where a call graph is a directed
graph. Each vertex in G represents a method, and invocations are represented by edges.
The offloading is converted into a graph partitioning problem, with one partition running
locally and the other on the cloud. In order to maximise energy savings while taking
into account the overall execution time, an integer linear programme is used. Another
method examined in the paper is CloneCloud. CloneCloud also enables method-level
code for offloading. It makes use of profile trees built by the CloneCloud Profiler to
represent execution on mobile devices and execution in the cloud. The nodes and edges
of the tree indicate method calls and invocations, respectively. The call graph of MAUI
and CloneCloud are very similar. Without taking into account the resources used at the
offloading destination, MAUI and CloneCloud both place a higher priority on reducing
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energy consumption and improving application performance on the mobile device. This
paper reviews provides a comparison of both MAUI and CloneCloud. It draws attention
to the difficulties that prevent the development of an offloading framework that is more
effective and advises using current technology to aid in implementation.

In Kosta et al. (2012), the authors introduced ThinkAir, a framework built to make
it easier to migrate mobile applications to the cloud. ThinkAir enables method-level
compute offloading and makes use of smartphone virtualization in the cloud. The meth-
odology builds on earlier work by emphasising the elasticity and scalability of the cloud
and amplifying the power of mobile cloud computing by parallelizing method execu-
tion over many virtual machine (VM) images. They install ThinkAir and run a range
of benchmark tests, from simple micro-benchmarks to more complex applications. The
evaluation result show a considerable reduction in execution time and energy use. For
instance, the face recognition and virus scan applications both achieve one-order reduc-
tions in execution time and energy usage. However, the N-queens puzzle application
experiences a two-order reduction. It also shows how parallelizable applications execute
on several virtual machines (VMs) in the cloud, substantially reducing execution time
and energy usage. ThinkAir addresses CloneCloud’s limitations on applications, inputs,
and environmental conditions while also addressing MAUI’s scaling problems by develop-
ing a whole smartphone systems as virtual machines in the cloud. For a straightforward
integration with ThinkAir, they offer a toolchain and source code changes for the ap-
plication. The advantages of ThinkAir for profiling, code offloading, and adjusting to
changing computational needs are demonstrated in this studies with micro benchmarks
and computation-intensive applications.

Wei et al. (2017) introduces the MVR architecture, a method for offloading compu-
tation in mobile edge computing. The MVR architecture seeks to close the gap between
resource-rich Edge Cloud and computation intensive applications. There are a number
of different challenges that may arise in the future due to the emergence of technologies
like 5G. For instance, in a multi-dynamic environment, it is necessary to address the
optimisation problem of leasing cost, runtime, energy usage, delay time, and others. The
ability to create and sustain a reliable ”Mobile Federation” is a crucial issue to research.
There is also need to evaluate how effective these approaches works in environments with
numerous clouds and service providers. The implementation of privacy services in the
MEC environment is expected to make computation offloading more complex due to the
quick and frequent changes in security levels experienced by mobile users across various
locations. The future research focuses on finding more ways to address the difficulties
associated with compute offloading.

Lee and Shin (2013), offers a mobility model that takes the normal patterns in in-
dividual user mobility. The authors create a computation offloading decision-making
method based on user mobility by building on this model. They run trace-based sim-
ulations using actual log data traces from 14 Android users to evaluate the efficacy of
our method. The evaluation’s findings show that, when exhibit high mobility, the per-
formance of mobile devices is improved in terms of respect time and energy usage. This
paper proposes a method for offloading mobile compute, highlighting the significance
of user mobility-aware decision-making. Their method can predict near-future network
conditions and make wise offloading decisions by using user mobility models.

This research Bajaj et al. (2022), examines context-based offloading in ensuring that
IoT-enabled services achieve their performance requirements. In order to assess their
performance and novelty, a number of current frameworks including EMCO, MobiCOP-
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IoT, Autonomic Management Framework, CSOS, Fog Computing Framework, and others
are compared to MAUI, AnyRun Computing (ARC), AutoScaler, Edge Computing, and
Context-Sensitive Model for Offloading System (CoSMOS) frameworks. The report out-
lines potential future possibilities for offloading based on the conclusions and limits of
these frameworks. In order to understand the relevance of context in data offloading,
the paper gives a thorough examination and comparison of several data offloading sys-
tems. On the basis of their creative methods and results, certain current frameworks are
implemented and assessed. The analysis shows that offloading is essential for ensuring
that IoT-enabled services satisfy their performance requirements. Making judgements
about when and where to undertake offloading requires prior knowledge of the data
environment. Despite the fact that various learning approaches were used in some imple-
mentations, they were primarily restricted to mobile-based scenarios. In order to offload
compute, a smart middleware architecture that includes hybrid learning techniques is
still possible to construct. Due to the paucity of research in these domains, the report
also indicates possible future work in edge structures and edge-based cloud architectures
for offloading frameworks. In order to improve performance, fixed scheduling approaches
can also be used more effectively.

Jade is introduced in Huerta-Canepa and Lee (2008). A solution created to improve
Android applications with features for energy-aware compute offloading. Jade automat-
ically decides the best location for code execution based on the condition of the device
and the application. Based on changes in the workload, communication costs, and device
status, it dynamically alters the offloading approach. The creation of Jade was influenced
by earlier research on code offloading, remote execution, and programme partitioning. In
their MAUI proposal, Cuervo et al. focused on the energy-aware offloading of mobile
code to infrastructure. By annotating methods or classes as remotely accessible, MAUI
enables developers to first divide their applications. The MAUI solver chooses which re-
motable methods should run locally and which should be offloaded during runtime. Jade,
as opposed to MAUI, has a complex programming paradigm with extensive APIs, giving
developers full control over how the application is divided, where code is offloaded, and
how remotable code interacts with local code. Jade gets rid of dependencies between
remotable tasks, which spares the profiler and optimizer from having to perform a thor-
ough programme analysis. As a result, compared to MAUI, the energy cost associated
with programme profiling and cost model computation is reduced.

In Ning et al. (2019), the paper presents a three-layer offloading framework for intel-
ligent Internet of Vehicles (IoV) systems is proposed. The objective is to reduce total
energy consumption while meeting user delay constraints. The authors break down the
issue into two components: flow redirection and offloading decision, to address its high
computational complexity. To solve the problem, they provide a deep reinforcement
learning-based approach. The performance assessments, which are based on actual taxi
traces in Shanghai, China, show how successful their techniques are. Their method deliv-
ers an average energy consumption decrease of about 60% when compared to the baseline
algorithm.

2.2 Machine Learning Approach

In this paper Cao and Cai (2018), the researchers evaluates the development of an ef-
ficient distributed algorithm for multi-user computation offloading in a cloudlet-based
mobile cloud computing (MCC) system. In this system, each SMD independently de-
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cides between local computing and cloud computing based on energy consumption and
time cost. However, in a multi-channel environment, efficient coordination of wireless
access among multiple devices is crucial. Without proper coordination, simultaneous of-
floading on the same channel can lead to collisions and significantly reduced transmission
rates, resulting in low energy efficiency and long transmission times. The researchers
identify two key challenges for achieving efficient computation offloading in a distributed
cloudlet-based MCC system: individual decision-making between local and cloud com-
puting for each mobile device, and channel selection without information exchange with
other devices to achieve high transmission rates. To address these challenges, the re-
searchers formulate the multi-user computation offloading decision-making problem as a
non-cooperative game. Mobile devices act in their own interests and make local offloading
decisions based on strategic interactions with other devices to reach a mutually satisfact-
ory solution. By analyzing the game’s structure, they prove that it is an exact potential
game, ensuring the existence of at least one pure-strategy Nash Equilibrium Point (NEP).
To achieve NEPs in a fully distributed manner, they introduce machine learning tech-
nology and propose a fully distributed computation offloading (FDCO) algorithm. This
algorithm enables each SMD to learn from individual information and independently and
automatically adjust its behavior towards the NEPs. Simulation results are presented to
demonstrate the convergence behavior and advantages of the proposed FDCO algorithm
compared to other methods.

Due to its safe, open, and decentralised nature, blockchain technology has recently
grown in mobile applications. However, due to their constrained computing and storage
capacities, mobile devices make it difficult to carry out complex operations like mining
blockchains and running computation-intensive data applications. This paper Nguyen
et al. (2020), presents a blockchain network based on mobile edge computing (MEC) that
allows multiple mobile users (MUs) to participate as miners in order to solve this problem.
They use wireless channels to outsource their data processing and mining operations to
a nearby MEC server. With our strategy, workload offloading, user privacy protection,
and mining profit all function as a single optimisation issue. In order to minimise long-
term system offloading utility and increase privacy levels for all blockchain users, they
model it as a Markov decision process. They initially suggested an offloading technique
based on reinforcement learning (RL). With the help of this system, MUs may choose the
best offloading options depending on the characteristics of wireless channels, power hash
states, and blockchain transaction states. They created a deep RL method employing a
deep Q-network to enhance offloading performance for larger-scale blockchain scenarios.
Without any prior knowledge of the system dynamics, this approach effectively solves
a huge state space. In comparison to benchmark offloading methods, their RL-based
offloading techniques dramatically improve user privacy, lower energy use and compute
delay, and minimise offloading costs.

The authors of Ali Shakarami (2020), presented a thorough analysis of computation
offloading strategies based on machine learning (ML) in the context of mobile edge com-
puting (MEC). The goal is to identify and classify the current mechanisms according to
a traditional taxonomy and to draw attention to unresolved issues. The proposed tax-
onomy divides the three primary categories ML-based offloading mechanisms into three
main fields: reinforcement learning-based, supervised learning-based, and unsupervised
learning-based mechanisms. The classes are compared based on including performance
measures such as, case studies, methodologies, and evaluation tools. They also talk about
each class’s benefits and drawbacks. In the MEC context, granularity and segmentation
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are essential for increasing the effectiveness of time or resource-constrained applications.
Granularity is divided into two groups: coarse-grained and fine-grained. They also discuss
on the four partitioning kinds of virtual machine (VM), application, task, and method.

Computation offloading, which involves moving time-sensitive and computationally
heavy mobile application operations to distant cloud-based data centres, has recently
come to light as a feasible method for overcoming the limits of mobile devices (MDs).
Offloading to edge points can have substantial advantages in the setting of cyber-physical-
social systems (CPSS), such as traffic infraction tracking cameras in smart cities. The
authors take into account the existence of mobile edge computing networks (MECNs)
in diverse geographies. These networks include different access points, numerous edge
servers, and N MDs, each of which has M separate real-time massive tasks. Through
mobile networks or access points, MDs can connect to MECNs. Each task may be handled
locally by the MD or offloaded remotely. Alfakih et al. (2020) presents the state-action-
reward-state-action (SARSA) algorithm, a reinforcement learning-based algorithm, to
address the resource management issue in the edge server and make the best decisions for
offloading with the goal of minimising system cost, which includes energy consumption
and computing time delay. Reinforcement learning is used in this method, known as OD-
SARSA (offloading decision-based SARSA), to identify the best offloading technique and
reduce system costs in terms of energy use and processing latency. As an optimisation
challenge, they create a MEC system model that takes into account both compute time
delay and power usage. They propose the OD-SARSA technique in particular, which
uses reinforcement learning to decide on offloading choices optimally and reduces system
cost in terms of energy usage and computation latency.

Due to the paucity of computing capacity on front-end devices, deep learning is only
used in existing AR applications, limiting its potential to improve Augmented Reality
(AR) devices. To solve this problem, the authors provide a distributed system that links
front-end hardware with more potent back-end ”helpers” to allow deep learning tasks to
be executed locally or offloaded remotely. With the help of intelligently utilising network
conditions, back-end server loads, and application needs, this framework strives to choose
the best decision. Ran et al. (2017) presents the initial exploration into putting such a
framework into practise, with smartphones as the presumptive front-end devices. One of
their contributions is the creation of an Android app that can identify objects in real-
time, either locally on the smartphone or remotely on a server. Additionally, by taking
into account system variables like video quality, deep learning model size, and offloading
selections, they analyse the trade-offs between object identification accuracy, latency, and
battery usage.

Huang et al. (2020) focuses on a Mobile Edge Computing (MEC) network powered by
wireless technology that employs a binary offloading strategy, where compute tasks from
wireless devices (WDs) are either fully offloaded to a MEC server or done locally. The
goal of the research is to provide an online algorithm that can optimise wireless resource
allocations and task offloading choices based on dynamically changing wireless channel
circumstances. The DROO framework makes use of a deep neural network as a scalable
method to learn the binary offloading choices based on past experiences, obviating the
requirement to solve combinatorial optimisation issues and drastically lowering computing
cost, especially in large networks. They offer an adaptive method that dynamically
modifies the DROO algorithm’s parameters in real-time to further increase efficiency. In
comparison to existing optimisation techniques, numerical results show that the proposed
approach achieves near-optimal performance and drastically decreases computing time.
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For instance, DROO’s CPU execution latency is less than 0.1 seconds in a network of 30
users, enabling real-time and ideal offloading even in rapid fading situations.

Offloading computation tasks in mobile Fog environments is difficult because various
mobile devices have different resource needs in terms of time and space. In order to give
low-latency service to mobile service users, the authors of Alam et al. (2016), present
a code offloading method based on reinforcement learning. The method makes use of a
distributed reinforcement learning technique to offload basic code blocks in a decentralized
manner, allowing the deployment of mobile codes around mobile Fog nodes that are
spread out geographically. They ran simulations with OMNeT++ to assess the suggested
prototype while taking into consideration the fluctuating service needs of mobile users
as well as the dynamic resource availability of mobile Fog environment. The result show
that the proposed approach lowers execution time and latency for using mobile services,
as well as guaranteeing that mobile devices use less energy. They also acknowledge that
addressing mobility and context-aware offloading are difficult problems that must be
solved for mobile Fog computing to succeed. In the context of mobile Fog computing, the
continuing research focuses on topics like virtualization, mobility management, privacy
issues, and resolving end-user concerns.

The paper Ran et al. (2017), present a distributed algorithm for offloading in a mobile
edge computing (MEC) system that is based on model-free deep reinforcement learn-
ing. In this method, each device can decide which tasks to offload without reference
to task models or decisions made by other devices. They use methods like long short-
term memory (LSTM), duelling deep Q-network (DQN), and double-DQN to enhance
the estimation of long-term costs. They show through simulations that their approach
efficiently makes use of the processing power of edge nodes, lowering the average latency
and dropped job ratio in comparison to other techniques. Their goal in this work is to
address the job offloading problem inside a MEC system’s unknown dynamics of load
levels at edge nodes. Compared to previous works done, the method takes a more real-
istic MEC scenario into account. They analyse non-divisible tasks with queuing systems,
in contrast to prior studies that either assume divisible tasks or ignore queuing systems,
taking into consideration the real-world scenarios where task processing and transmission
might take place over a number of time slots. This poses difficulties since the introduc-
tion of new tasks may cause those from earlier time slots to be delayed. Furthermore,
they concentrate on delay-sensitive activities with processing deadlines, in contrast to
prior works that mostly deal with delay-tolerant tasks. This increases complexity since
the deadlines affect the load levels at edge nodes and, as a result, the delay of tasks
that have been offloaded. The MEC system’s interconnected activities make it difficult
to apply traditional methods like game theory and online optimisation. They suggest
using deep Q-learning, a model-free deep reinforcement learning approach, to address
these issues. They can efficiently handle the MEC system’s complexity by using deep
Q-learning, which also offers a reliable task offloading method.

In Table 1 presents a table of comparisons between various code offloading frameworks
and approaches.

3 Methodology

This section discusses the steps taken to achieve the object of this research. As stated
earlier in the paper, the aim of this research is to provide a solution to the management
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Table 1: Comparison of code offloading frameworks
Offloading
Framework

Offloading
Mechanism

Pros Cons

MAUI Mobile
Assistance Using
Infrastructure

Supports
dynamic profiling
and migration

Not as widely
used as other
frameworks

Think Air Context-aware
offloading
approach

Dynamic resource
allocation and
parallel execution

More complex to
implement

Clone Cloud Code execution
offloading
to cloud servers

Automatic code
offloading

Requires a cus-
tomized Android
branch

of SMD resources by creating an offloading framework for a real-time speech recognition
mobile application. This is achieved by developing a real-time speech recognition as the
case study. An offload decision engine that uses the current device context to determine
whether or not a computing intensive task should be offloaded is developed.

3.1 Application Tools used

To carry out this research, an Android mobile speech recognition application is developed.
This application is a real-time speech to text a application. The decision to offload is
made based on the battery life of the SMD and the network strength. If the decision
made is to execute locally, flutter speech-to-text package is called and used. If the decision
made is to offload to the cloud, Google Speech API is called and used. To develop this
application, Dart programming language and Flutter SDK is used. Android Studio IDEs
are also used for developing and testing on Android and iOS devices.

3.2 Offloading Decision Engine

The application partitioning used to carry out this research is dynamic which means that
the decision to offload is made during the runtime of the application. The conditions
or requirements to carry out this decision is based on the SMD’S battery life and the
available Network. The application checks the battery percentage of the SMD. If the
battery is 20% or below, the compute intensive part of the application is offloaded to
the cloud and the application switches to a cloud-based speech recognition to offload the
computation to the Google Speech API Anggraini et al. (2018). Also, if the network
strength of the SMD is strong, then the application will be offloaded as well. Otherwise,
the speech recognition application will run locally using flutter speech-to-text package to
process the speech input and provide the text output. These requirements are monitored
using Android Studio profiler. The profiler is used to check the resources being used when
the application is running.

3.3 Real-time Monitoring

As stated earlier, the application partition is dynamic. This allows the offloading decision
to be made during runtime. The SMD application developed is a real-time speech to text
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application. The application listens to the user’s voice through the SMD’s microphone
and converts the speech into text in real-time. The application is continuously mentioned
with Android Studio profiler, once the battery life drops below the threshold, based on
the offloading decision condition, the application offloads and switches to the a cloud-
based application. If the battery percentage increases above 20%, it switches back to a
local application.

3.4 Case Study – Speech to text mobile application

The speech to text application runs on android devices. It is a real-time application
with a simple user interface that has a record button. When the user presses the record
button, the application starts to listen to the user’s speech and the recognized text is
displayed on the screen in real-time. The package used to perform this task locally
is flutter speech-to-text package Eze (2022) which is a well-known and used plugin for
speech recognition in flutter applications. This package provides real-time speech to
text conversion locally on the SMD and it supports configurations such as language and
punctuation. The API used to perform this task on the cloud is google speech API which
is a cloud-based speech recognition service provided by Google Cloud. This API provides
accurate speech recognition, supports various languages but in this case study, English
language is used. It also provides automatic punctuation, and streaming recognition for
real-time processing. To evaluate this, android studio profiler is used to compare the
accuracy, speed, and battery consumption of local and cloud-based speech recognition
under different scenarios.

4 Design Specification

The flow chat in Figure 2 shows the workflow of the application and offloading process.
Firstly, there is the SMD which has the speech to text application running on it. Secondly,
the decision engine decides whether to offload the task to the cloud or run it locally based
on the battery life and network of the device. Thirdly, the result of the application is
displayed on the screen in real-time. For the application to successfully run locally,
flutter speech-to-text package is implemented. The SMD requires access to the device’s
microphone to capture the users audio input for the speech-to-text plugin to process. On
the other hand, for the application to successfully run on google cloud, google speech. API
is used to implement this. The application needs strong active internet connection for
easy communication with the google speech API, send audio data to the API and receive
recognized words to be displayed back on the users screen. The application constantly
monitors the network availability and battery life of the SMD to make offloading decision.

The application starts with a splash screen, the user is then required to login if an
account has been created or sign up if an account has not been created. The users
authentication is stored in a database on firebase. The user logs into the application
and is presented with the main interface. When the user presses the record button,
the application request for the user permission to access the device’s microphone. The
application begins local speech to text process if the battery is above the threshold as
started in the offloading decision engine. While the application is running, the battery
life and network availability is monitored and if there is a drop in the battery life which
is below the threshold then the application offloads to the cloud. The speech recognition
result remains the same. It is displayed in real-time on the mobile device.
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Figure 2: Flow chat of workflow of the application and offloading process

5 Implementation

The real-time speech-to-text mobile application is primarily written in Dart programming
language. The application is built for Android platform using Android Studio IDE. The
application combines both local and cloud-based speech recognition packages. For the
offloading, Google Speech API is called. The application integrates flutter frameworks and
plugins such as ‘flutter-sound-lite‘ for audio recording, ‘permission-handler‘ for managing
device permissions, and ‘connectivity‘ for monitoring network availability. For the testing,
two SMDs are used. The details are given in the configurations manual.

5.1 Offloading Decision Engine

As mentioned in section 3.2, and shown in algorithm 1, the offloading decision engine is
used to check the SMD’s for the conditions stated. The performSpeechToText() function
has a Future void which represents a potential value that is expected in the future and
the function marked as ‘async‘, means it can use ‘await‘ to wait for other asynchronous
operations to complete. The bool isNetworkConnected = await checkNetworkConnectiv-
ity() is used to place a hold on the application until the network is checked if the device
has an stable connection and it returns a boolean result. The result is stored in the
variable ‘isNetworkConnected‘, which will hold a ‘true‘ value if the network is connec-
ted, and ‘false‘ otherwise. To check the battery level, the ‘bool isBatteryLow = await
checkBatteryLevel();‘ similar to the previous line, uses ‘await‘ to wait for the ‘checkBat-
teryLevel()‘ function to complete and return a result. The result of ‘checkBatteryLevel()‘
is stored in the variable ‘isBatteryLow‘, which will hold a ‘true‘ value if the battery life
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is low, and ‘false‘ otherwise. ‘if (isNetworkConnected && !isBatteryLow) ... else ... ‘;
is the if. . . else condition statement. If both conditions are true, the device has an active
network connection and the battery life is not low, the code block inside the ‘if‘ statement
will be executed. Otherwise, if any of the conditions is false, the code block inside the
‘else‘ statement will be executed. The ‘performCloudSpeechToText(); and performLoc-
alSpeechToText();‘ functions also have a Future void. The await performCloudSpeechTo-
Text(); is called if the condition is true, otherwise, the performLocalSpeechToText(); is
called.

Algorithm 1 Speech Recognition Algorithm

function performSpeechToText

isNetworkConnected← checkNetworkConnectivity()

isBatteryLow ← checkBatteryLevel()

if isNetworkConnected && isBatteryLow then

await performCloudSpeechToText

else

await performLocalSpeechToText

end if

end function

This is a successful implementation of a real-time speech-to-text mobile application
that uses both local and cloud-based speech recognition. The developed model and
decision engine addresses the limitations of SMDs.

6 Evaluation

This section evaluates the result gotten from the implementation of the project. To do
this, two SMDs are used. An android emulator called Pixel 2 API 33 is used to run the
application of a battery life of 100% while a physical android device called CLT L09 is
used to test the application at a battery percent of 18%. Android studio profiler measures
the CPU, memory and Energy level of the resources begin used on both devices.

6.1 Experiment 1 / Offloading Locally

The image in Figure 3 illustrate the resource usage (CPU, memory, and energy level)
when running the application locally on Pixel 2 API 33.
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Figure 3: Android Studio Profiler - CPU, Memory and Energy usage

6.2 Experiment 2 / Offloading on the cloud

The image Figure 4 illustrates the resource usage (CPU, memory, and energy level) when
running the application locally on CLT L09.

Figure 4: Android Studio Profiler - CPU, Memory and Energy usage
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Table 2: Offloading Decision Engine Test
Scenario SMD Context Offloading Decision

1 Battery – 100%, Network – Strong Local
2 Battery – 18%, Network – Strong Cloud
3 Battery – 20%, Network – weak Local

6.3 Discussion

This evaluation shows that the case study with a strong network connection and low
battery level, offloading resource and computation-intensive tasks to the cloud results
in lower CPU and memory usage compared to local processing. In situations with poor
network connectivity, local processing becomes the preferred choice to ensure the real-time
application is responsive. The evaluation of the research results provides valuable insights
into SMD resource usage analysis and the results of offloading tasks to the cloud versus
local processing. It also highlights the significance of network connectivity and battery
life in determining the most optimal processing approach. This research contribute to
the existing literature on resource optimization in mobile application development, and
offer guidance to making design decisions for enhancing application performance and user
experience when using SMDs.

7 Conclusion and Future Work

In this research, a framework for offloading the computing-intensive part of a real-time
speech recognition android application on a SMD was developed. In this framework, the
decision to offload is based on the battery life of the SMD and the network connectiv-
ity. To achieve this, an offloading decision engine which made use of the SMDs current
context at runtime to decide if the application should run locally or on the cloud has
been developed. To evaluate this, android studio profiler is used to monitor the resources
used while the application was running. The obtained results indicate that with a strong
stable network connectivity and low battery level, offloading tasks to the cloud resulted in
reduced CPU and memory usage, leading to optimized battery consumption. Conversely,
in situations with poor network connectivity and high battery levels, local processing was
more preferable to ensure app responsiveness and user satisfaction. This research study
also explored the trade-offs between cloud-based processing and local execution based
on network connectivity and battery life on SMDs and contributes to the broader goal
of improving the battery life of SMDs. Overall, the research successfully addressed the
research question and achieved the aim of the research. In comparing the results with
existing research, it is found that the research is consistent with them. The research con-
tributes to the body of knowledge on SMD resource optimization and provides practical
guidance for developers to make offloading decisions.

While this research addresses a limitation of SMDs, there are many other aspects
of SMDs and offloading that need to be explored. One of which includes researching
the integration of edge computing techniques to offload resource-intensive tasks to edge
servers when available and analysing the effect of edge computing on mobile applications.
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