~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Tenzin Tsephel
Student ID: x21176574

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Tenzin Tsephel
Student ID: x21176574
Programme: Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Vikas Sahni
Submission Due Date: 14/08/2023
Project Title: Configuration Manual
Word Count: 1330
Page Count: p|

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Tenzin Tsephel

Date: 7th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Tenzin Tsephel
x21176574

1 Introduction

The kube-hunter implementation, containerization, and deployment are all covered in
the configuration manual, which focuses on enhancements made to probes and checks
utilizing the Role-Based Access Control (RBAC) algorithm. The project was created in
Python, packaged as a container image using a Dockerfile, and intended for deployment
within a Kubernetes pod.

Step-by-step instructions are provided in the manual for setting up the development
environment, cloning the repository, submitting contributions to the project, and other
crucial activities. Additionally, it contains extensive information about the unusual tech-
nology stack employed, which consists of Docker for containerization, Kubernetes for or-
chestration, and Visual Studio Code as the development editor. The goal of this manual
is to ensure that the setup procedure is well understood and to help users and developers
replicate the development and deployment environment. This makes it possible for the
kube-hunter project to be consistently tested, developed, and used, guaranteeing that
all stakeholders can interact with the system successfully. The main source code can be
found here: Kube-hunter Repository

2 Cloning the Github Repo

To download the project’s code to the local machine, it must first clone the repository.
The terminal would be used to accomplish the following: Go to the directory where the
project is to be kept by navigating there. Using the supplied URL, clone the repository:
git@github.com:aquasecurity /kube-hunter.git is cloned using $git

$ git clone git@github.com:aquasecurity/kube-hunter.git
$ cd kube-hunter

Enter the kube-hunter directory from the forked repo just made: The procedures
stated in the last letter can be done now and should be in the kube-hunter directory. The
cloning was made with a forked repository rather than the original one as it is a smart
idea with the intent to contribute to the project. So that it can send a pull request to
the original repository after pushing the changes of the fork.

3 Adding the RBAC Algorithm into the code

The kube_hunter directory houses all of the vulnerability checks that are currently in
use (collectively referred to as ”"hunters”) as well as the fundamental functionality of
kube-hunter.

https://github.com/tsephel24/kube-hunter/tree/tenz-ric

A subdirectory called modules can be found inside the kube_hunter directory, as shown
in the Figure [I| and it has further subdirectories that group the hunters into categories
based on the Kubernetes components they are intended to examine. There are directories
for things like finding, hunting, reporting, etc. The modules in the discovery directory
are in charge of finding the various parts of the Kubernetes cluster. There are several
modules that carry out vulnerability scanning in the hunting directory. A new Python
module in the kube_hunter/modules/hunting directory is created since the RBAC Policy
algorithm is directly tied to the Misconfiguration Check.

tsephel24@Tenzins-MacBook—Air modules % cd hunting
tsephel24@Tenzins-MacBook—Air hunting % 1ls -1
total 272
—IW-Ir—r——
—IW-Yr——Ir——
—-IW-r——r——
—IW-Y——Y——
—IW-r—Ir——
—IW-I——Ir——
—-IW-r——Ir——
—-IW-Y——Ir——
—IW-Yr——r——

tsephel24 staff 183 25 Jun 11:26 __init__.py
tsephel24 staff 5378 25 Jun 11:26 aks.py
tsephel24 staff 24381 25 Jun 11:26 apiserver.py
tsephel24 staff 1635 25 Jun 11:26 capabilities.
tsephel24 staff 1974 25 Jun 11:26 certificates.
tsephel24 staff 9280 25 Jun 11:26 cves.py
tsephel24 staff 1537 25 Jun 11:26 dashboard.py
tsephel24 staff 6163 25 Jun 11:26 etcd.py
tsephel24 staff 45914 25 Jun 11:26 kubelet.py
-IW=—Y——T—— tsephel24 staff 5484 25 Jun 11:26 mounts.py
-IW-Y——T—— tsephel24 staff 4156 25 Jun 11:26 proxy.py
-rw-r——r—-— 1 tsephel24 staff 2146 25 Jun 11:26 secrets.py
tsephel24@Tenzins-MacBook—Air hunting % [§

il
1
1
1
i
il
il
1
1
al
1

Figure 1: Algorithm structure Flow

A Kubernetes cluster’s Role-Based Access Control (RBAC) setup can be examined
and evaluated using the supplied algorithm. The script goal is several tests on role bind-
ings across namespaces using the Kubernetes client library. It first recognizes extremely
permissive roles, which are those that use wildcards ("*”) in resources or verbs. A re-
lated vulnerability event is recorded if certain overly permissive roles are found. If not,
it examines the role-binding subjects further to see whether they are of the types ”Ser-
viceAccount” or ”User.” The script then uses the check_access method to verify access
for each resource and verb in the rule, recording any violations of the least privilege
principle. This thorough analysis provides information on possible RBAC configuration
errors, strengthening cluster security.

4 Kubernetes Cluster Setup

Using a local Kubernetes cluster is strongly advised for the effective execution of the
kube-hunter modification. One popular option, Minikube, offers a single-node Kuber-
netes cluster inside a Virtual Machine (VM) on the local system, making it appropriate
for individuals looking for straightforward development and testing. Install kubectl, the
command-line interface for running tasks against Kubernetes clusters, first ($brew in-
stall kubectl), after updating Homebrew ($brew update) to ensure that it has the most
recent package information. To make it easier to create a local cluster, continue by in-
stalling Minikube ($brew install minikube) and starting it ($minikube start). Combining
Minikube and Kubectl makes it possible to manage pods, services, and deployment ef-

fectively. The given Figure [2| which makes it possible to test the Kube-Hunter script and
its RBAC modification.

$ brew install kubectl
$ brew update

$ brew install minikube
$ minikube start

TERMINAL

® Related issue: https://github.com/kubernetes/minikube/issues/9024

Preparing Kubernetes v1.26.3 on Docker 23.0.2 ...

Configuring bridge CNI (Container Networking Interface) ...

Verifying Kubernetes components...

s Using image docker.io/kubernetesui/dashboard:v2.7.0

s Using image gcr.io/k8s-minikube/storage—provisioner:v5

» Using image docker.io/kubernetesui/metrics-scraper:vl1.0.8

Some dashboard features require the metrics-server addon. To enable all features please run:

minikube addons enable metrics-server

Enabled addons: storage-provisioner, default-storageclass, dashboard
Done! kubectl is now configured to use "minikube" cluster and "default" namespace by default
(venv_armé4) tsephel24@Tenzins-MacBook-Air kube-hunter % minikube status
minikube
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

(venv_arm64) tsephel24@Tenzins-MacBook-Air kube-hunter % kubectl get po
NAME READY STATUS RESTARTS AGE

kube-hunter-pfdabk @/1 Completed @ 12d
(venv_arm64) tsephel24@Tenzins-MacBook-Air kube-hunter % [j

Figure 2: Minikube status after the start

The cluster can be accessed via a number of commands, including $minikube status,
$minikube stop, and $minikube delete, which can be used to eliminate the cluster if
necessary. Using a local environment like Minikube makes testing quick and affordable,
and it’s the best option for inspecting the kube-hunter modification to make sure the
RBAC configuration checks are implemented properly.

5 Push the code to DockerHub

The next step is to create a Docker image with the required kube-hunter change and up-
load it to Docker Hub after the local Kubernetes cluster has been set up using Minikube.
Building the image and uploading it to the repository may be done in this way $docker
build and $docker push to the DockerHub Account as can be found in the Figure[3| The
Role-Based Access Control (RBAC) configuration of the cluster, including ClusterRoles,
ClusterRoleBindings, and Jobs, may then be managed. Using commands like $kubectl
apply clusterrole rbac-check-role and $kubectl apply -f rbac-config.yaml, it is feasible to
remove existing setups. These configurations can be defined and used by using specialized
YAML files, such as ClusterRoleBinding.yaml, rbac-deployment.yaml, and rbac-job.yaml.

$ docker build -t tsephel24/kube-hunter-rbac.

$ docker push tsephel24/kube-hunter-rbac

$ kubectl apply clusterrole rbac-check-role
$ kubectl apply -f rbac-config.yaml

$ kubectl apply -f rbac-job.yaml

@ dockerhub | Q Search Docker Hub Explore Repositories Organizations Help ~ (Iﬁ-))\ tsephel24 ~

tsephel24 Repositories kube-hunter-rbac General Using 0 of 1 private repositories. Get more

General Tags Builds Collaborators Webhooks Settings

@ Add a short description for this repository Update

The short description is used to index your content on Docker Hub and in search engines. Its visible to users in search results.

® tsephel24 / kube-hunter-rbac Docker commands

- To push a new tag to this repository,
Description P 9 P ¥
This repository does not have a description /* docker push tsephel24/kube-hunter-rbac:tagname

(O Last pushed: 11 days ago

Figure 3: Image in DockerHub, latest change captured

Using kubect] commands like $kubectl logs kube-hunter-id and $kubectl describe pod
pod-id, the cluster may be monitored and debugged. This procedure makes sure that
the RBAC setup is looked at and any weaknesses are found. The kube_hunter library is
apparently functioning as expected, and the RBAC configuration appears to be secure,
according to the logs. Examining the final report or warnings/errors is crucial to figuring
out whether the scan was indeed successful and served the intended purpose.

$ kubectl logs {pod-id}
$ kubectl describe {pod-id}

The whole procedure required to build, push, and run the modifications made within
the code, as well as manage RBAC in the cluster, is summarized in this paragraph. Please
feel free to modify as necessary!

6 Running it as a POD within the cluster

Following Minikube creation of the local Kubernetes cluster, generate and manage pods
to test the functionality of the RBAC configuration. It is also good to ensure that
contianer are running as expected as the Figure [illustrates. Apply the ClusterRole and
ClusterRoleBinding first using the $kubectl apply -f command and the relevant YAML
files, such as ClusterRoleBinding.yaml and rbac-config.yaml. Another way to build the
RBAC-related Job is to save the script into a YAML file, such as rbac-job.yaml, and
then apply it. The kube-hunter pod will be deployed to test the RBAC algorithm within
the cluster once these roles and bindings have been established. This might have pod
restarts throughout this process as a result of unclean exits, which can be brought on by
problems like unhandled exceptions or memory conditions.

Commands like $kubectl logs pod-id and $kubectl describe pod pod-id can be used
to identify these crashes where the Figure [5 provides insight into it. These will shed
light on the pod’s condition and any underlying problems that contributed to the crash.

4

Containers

Container CPU usage @ Container memory usage @ Show charts

Q_ Search] [] Only show running containers Delete
Image CPU (%) = Port(s) Actions

Runnin 0%
295443522024 0 (AT b -

- Running
3f99e449c5e6 I

Exited

Figure 4: Minikube status in Docker

To deploy the script, examine the logs, and get the ClusterRole and ClusterRoleBinding
details, it can be run into a variety of kubectl commands. By following these steps, it
can be easily concluded that the local environment is set up to investigate the kube-
hunter modification and validate the RBAC configuration checks, providing a rapid and
affordable option to carry out the necessary testing.

2 : 3 NSO TERMIN.
~ TERMINAL

2023-07-23 00:37:34,509 DEBUG root <class 'kube_hunter.modules.hunting.proxy.KBsVersionDisclosureProve'> subscribed ~Script has st

ubeProxyExposed"

2023-@7-23 00:37:34,510 DEBUG root <class 'kube_hunter.modules.hunting.secrets.AccessSecrets'> subscribed to <class 'kube_hunter.modules.discovery.hosts.Runnin
PodEvent'=

2023-07-23 00:37:34,511 INFO rbac-scanner Starting execution of LheckRBALHL;conf1qurat10ns

2023-07-23 00:37:34,513 b About to list role bindi

2023-07-23 00:37:34,522 DEBUG kubernetes.client.rest respon body "k 5" iVer = ! C Failure","message rolebindings
ac.authorization.k8s.io is forbidden: User \"system:serviceaccount H er-sa\" cannot list resource \ rolehlndinq \" in API group \"rbac.authoriza
n.k8s.io\" at the cluster scope","reas orbidden", "details’ rbac.authorization.k8s.io","kind":"rolebindings"},"code":403

2023-07-23 00:37:34, INFO rbac-scanner Script has started:5
2023-87-23 0@:37:34,522 ERROR rbac-scanner Exception occurre
Traceback (most recent call last)
File "/kube_hunter/modules/hunting/rbac.py", line 88, in CheckRBACMisconfigurations
rolebindings = v1.list_role_binding_for_all_namespaces()
File “/usr/local/lib/python3.8/site-packages/kubernetes/client/api/rbac_authorization_vl_api.py", line 2599, in list_role_binding_for_all_namespaces
return self.list_role_binding_for_all_namespaces_with_http_info(xtkwargs) # noga a1

fu;r/lufal-’llh"pythonB 8/site-packages/kubernetes/client/api/rbac_authorization_v1_api.py", line 2782, in list_role_binding_for_all_namespaces_with_htty

pi_client.call_api(
/1ib/python3.8/site-packages/kubernetes/client/api_client.py”, line 348, in call_api
call_apilresource_path, method,
File "/usr/local/lib/python3.8/site-packages/kubernetes/client/api_client.py"”, line 188, in __call_api
response_data = self.request(
File "/usr/loc lib/python3. ite ges/kubernetes/client/api_client.py", line 373, in request
return self.rest_client.GET(url,
File "/usr/local/lib/python3.8/site-packages/kubernetes/client/rest.py"”, line 239, in GET
turn self.request
File "/usr/local/lib/python3.8/site-packages/kubernetes/client/rest.py", line 233, in reque
raise ApiException(http_resp=r)
kubernetes.client aptions.ApiE
Reason: Forbidden
HTTP response headers: H'I'I'F‘HeadtrDlLtH Audit-Id': '36021047— C]?S -lh"f a399- Lbddﬂfﬁdaﬂzd' Cache-Control 'no-cache, private', 'Content-Type': 'application/j
', 'X-Content-Type-Options’) - e 6 , 'X-Kubernetes-Pf-Prioritylevel-Uid": 'ee7bb62
ch8-440e _143c~3d7t1a[2525 2
HTTP response body: s i "\.'1“ "me 1d¢fa t - rolebindings. rbac.authorization.k8s.io is forbidden: User \"{
tem: serviceaccoun 8 \ i g \ C. za . .io\ e clus ", "reason":"Fo
dden","details

Figure 5: Output of the Kubectl commands

	Introduction
	Cloning the Github Repo
	Adding the RBAC Algorithm into the code
	Kubernetes Cluster Setup
	Push the code to DockerHub
	Running it as a POD within the cluster

