
Improving Probes and checks in
Kube-Hunter to evaluate and repair Security
Vulnerabilities in the Kubernetes manifest

file.

MSc Research Project

Cloud Computing

Tenzin Tsephel
Student ID: x21176574

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Tenzin Tsephel

Student ID: x21176574

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 14/08/2023

Project Title: Improving Probes and checks in Kube-Hunter to evaluate and
repair Security Vulnerabilities in the Kubernetes manifest file.

Word Count: 4081

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Tenzin Tsephel

Date: 7th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Improving Probes and checks in Kube-Hunter to
evaluate and repair Security Vulnerabilities in the

Kubernetes manifest file.

Tenzin Tsephel
x21176574

Abstract

This work is to solve the common security flaws discovered in Kubernetes mani-
fest files that can be used to alter or obtain unauthorized access to objects in
the Kubernetes cluster adept at identifying vulnerabilities at the cluster level, the
Kube-Hunter program has limits when it comes to protecting it. In order to improve
Kube-Hunter and make it more efficient at identifying and fixing file vulnerabilities,
this work adds new code to its probes and checks. The algorithms for Role-Based
Access Control (RBAC) Policy Misconfiguration Check be used to detect and fix
improper container communication and excessively permissive access permissions,
respectively. By delivering a more thorough security assessment of Kubernetes set-
tings and encouraging safer Kubernetes usage in businesses, this research covers a
better Kube-Hunter. Title: Does the Role-Based Access Control (RBAC) Policy
Misconfiguration Check and Network Policy Misconfiguration Check algorithm en-
hances the Kube-hunter tool to detect and remediate security vulnerabilities?

Keywords:Kube-hunter, Role Base Access Control(RBAC), Kubernetes, Docker, Python.

1 Introduction

The digital revolution has fundamentally changed how organizations function and provide
value. Businesses have embraced containerized solutions as a result of the requirement
for digital infrastructure that is high-performing, resilient, and scalable. Kubernetes is
a noteworthy solution that has surfaced in the modern digital scene. Kubernetes auto-
mates the deployment, scaling, and management of containerized applications as a potent
open-source solution. Basically, it orchestrates container activities, greatly streamlining
complicated procedures Burns et al. (2022).

Due to its extensive feature set, Kubernetes has swiftly taken over as the industry
norm for container orchestration. It provides a wide range of capabilities that improve the
productivity and effectiveness of software delivery. Just a few examples of Kubernetes’
features include automated rollouts and rollbacks, horizontal scalability, load balancing,
service discovery, and storage orchestration Burns et al. (2022). In Table 1 gives a brief
overview of each component in general and This is a nice little introduction with some
Architecture Workflow Figure 1

Nevertheless, despite the numerous benefits Kubernetes provides, using it is not
without difficulties. Ensuring the security of Kubernetes manifest files is one of the

1



Kubernetes
Component

Basic Use-Case

Pod Smallest unit in Kubernetes model you create or
deploy.

Service Exposes an application running on a set of Pods
as a network service.

Kube-proxy Network proxy which reflects services as defined in
Kubernetes API on each node.

API Server Serves the Kubernetes API and acts as the fron-
tend for Kubernetes control panel.

Scheduler Schedules pods onto Nodes, considering resource
availability.

etcd Stores all cluster data used by Kubernetes to man-
age its state.

Controller Responds to events within the cluster to maintain
desired state of workloads.

Kubelet-agent Ensures that containers are running in a pod on
the node.

Secret Stores sensitive information, like passwords and
keys.

Table 1: Basic Use-Cases of Kubernetes Components

key challenges involved with this system. In the Kubernetes design, Kubernetes manifest
files are essential. The instructions for building and administering Kubernetes objects,
including pods, services, and deployments, are included in these files, which are com-
monly expressed in YAML or JSON. In essence, manifest files specify the desired state
of each object in a Kubernetes cluster Martin and Martin (2021). As a result, they are
very important in managing how the cluster’s applications are executed Calderón-Gómez
et al. (2021).

Kubernetes manifest files are essential, but despite this, they frequently include secur-
ity flaws. These flaws can be attributed to a number of things, including poor role-based
access control (RBAC) Burns et al. (2022), soft network regulations, and setup mistakes.
These flaws might be used to gain access to Kubernetes clusters without authorization,
alter Kubernetes objects, or even launch serious cyberattacks if left unchecked.

Case studies from the real world have shown the possible dangers of Kubernetes se-
curity. For instance, the electric vehicle manufacturer Tesla experienced a serious data
breach in 2018 1. A Kubernetes console that was not password-protected was blamed for
the incident. The console was accessed by cybercriminals, which exposed private inform-
ation. The significance of correctly configured Kubernetes environments was amplified
by this occurrence.

In another instance, a significant vulnerability in the Kubernetes API server was
discovered in 2019 by Shopify, a well-known e-commerce site. Unauthorized requests
might be accepted due to this vulnerability, which could result in data breaches or service
interruptions 2. These occurrences serve as a stark reminder of the security threats that

1Tesla Hack:https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/
2Shopify:https://www.hackerone.com/application-security/cloud-security-alliance-webin/

ar-recap-avoid-breach-shopifys-andrew-dunbar

2

https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/
https://www.hackerone.com/application-security/cloud-security-alliance-webin/ar-recap-avoid-breach-shopifys-andrew-dunbar
https://www.hackerone.com/application-security/cloud-security-alliance-webin/ar-recap-avoid-breach-shopifys-andrew-dunbar


Kubernetes deployments may experience. They emphasize how critical it is to have strong
security solutions for Kubernetes security.

Kube-Hunter is a well-liked tool for identifying security flaws in Kubernetes clusters.
A Kubernetes cluster is subjected to multiple probes and inspections by Kube-Hunter,
an open-source vulnerability scanner. These tests and probes aid in locating potential
security flaws. Significant insights into the security posture of Kubernetes clusters are
frequently provided by Kube-Hunter. Although Kube-Hunter has shown to be useful in
locating cluster-level vulnerabilities, it has some drawbacks.

Kube-Hunter’s narrow emphasis on Kubernetes manifest files is a noteworthy draw-
back. Kubernetes manifest files may contain possible security flaws, however, Kube-
Hunter does a great job of discovering any security breaches at the cluster level 3. Due to
the need for both cluster-level security and object-level security in Kubernetes systems,
this constraint presents a significant difficulty. Consequently, there is a definite need
for a more all-encompassing solution that can efficiently find and fix security flaws in
Kubernetes manifest files.

Therefore, the goal of this study is to determine whether the Kube-hunter tool’s ability
to detect and fix security vulnerabilities is improved by the Role-Based Access Control
(RBAC) Policy Misconfiguration Check.

The remainder of this document is structured as follows: The second section examines
related research on Kubernetes security and the application of technologies like Kube-
Hunter. The research methodology is described in Section 3 along with the data col-
lecting, statistical methods, and research and assessment processes that were used. The
design parameters for the new algorithms proposed to improve the Kube-Hunter tool are
presented in Section 4 in detail. The execution of the suggested fix is discussed in Section
5. Section 6 offers an assessment by analyzing the findings and their consequences.

1.1 Research Topic

The main focus of this research is filling this gap. We suggest enhancing Kube-Hunter’s
skills to effectively assess and fix security flaws in Kubernetes manifest files.”How Kube-
Hunter can be enhanced to effectively evaluate and repair security vulnerabilities in
Kubernetes manifest files from RBAC algorithm?” is the main research topic that directs
the inquiry.

1.2 Motivation

In order to explicitly target potential vulnerabilities within Kubernetes and its manifest
files, this research work entails building and implementing additional probes and checks
into Kube-Hunter. Additionally, we want to create an algorithm that can automatically
fix found flaws, enabling a setup that is more reliable and secure. This will explore
the more thorough approach to guaranteeing the security of Kubernetes environments
by concentrating on the security of Kubernetes manifest files. Additionally, we want to
improve the effectiveness of security operations within Kubernetes and decrease the time
and effort needed to remediate security vulnerabilities by automating the repair process.

The findings of this research work will have broad ramifications for enterprises using
Kubernetes. We can assist enterprises in strengthening their security posture and lower-
ing the risk of cyber-attacks by offering a tool that locates and fixes security flaws in

3Aquasec: https://www.aquasec.com

3

https://www.aquasec.com


Kubernetes manifest files. Additionally, the results of this research may have a substan-
tial impact on the larger field of cyber security. It contributes to the improvement for
the knowledge of Kubernetes security and provides fresh perspectives on the creation of
efficient security tools for containerized environments.

In summary, Kubernetes has become a powerful tool for container orchestration, yet
security issues persist Burns et al. (2022). This project seeks to significantly contribute
to improving the security of Kubernetes environments and expanding the area of cyber
security by concentrating on improving Kube-Hunter’s skills to find and fix vulnerabilities
in Kubernetes manifest files.

1.3 Work Format

The rest of this essay is structured as follows: The full literature review on Kubernetes
security and the existing mitigation techniques are presented in the following section.
The approach employed in this work endeavour is described in the part that follows. The
outcomes of the inquiry are then discussed. The discussion of the consequences of the
findings and recommendations for further research serves as the paper’s conclusion.

Figure 1: Kubernetes Architecture

2 Related Work

Before embarking onto the technical depth of Kubernetes Security, it is essential to know
the fundamentals and work related to Kubernetes and it’s security. One of the key
aspects is fundamentally based on authentication and authorisation. By employing au-
thentication services like OAuth, OpenID Connect, or client certificates, authentication
establishes the legitimacy of a person or system trying to access the Kubernetes cluster.

4



On the other hand, authorization decides whether to give or deny access to particular
resources within the Kubernetes cluster based on the rights and roles of the authentic-
ated user. The Kubernetes Role-Based Access Control (RBAC) mechanism controls this
procedure.

2.1 Microservices Kubernetes

Microservices, commonly referred to as the microservices architecture, organize a pro-
gram as a group of tiny, independent services, each based on a distinct industry. Each
service is independent of the others and implements a specific business capability, enabling
autonomous development, deployment, updating, and scalingVayghan et al. (2018). Be-
cause services are independent of one another, distributed development is possible using
the technologies best suited to each service’s requirements. This independence also as-
sures fault isolation and gives the system scaling options Dragoni et al. (2017). The
decoupling of the services is further ensured by the normal management of each ser-
vice’s own independent database or data store. Microservices provide several benefits,
including increased scalability, flexibility, and resilience, but they also pose difficulties in
terms of complexity management, assuring data consistency, and handling inter-service
communication.

2.1.1 Role-Based Access Control (RBAC)

The authors [8] discussed A Role-Based Access Control (RBAC) project’s successful im-
plementation at Siemens ICN. The necessity of establishing role definitions inside corpor-
ate functional structures rather than less reliable organizational structures was one of the
main conclusions. Existing job descriptions were inappropriate for defining positions in
terms of specific access permissions because they lacked sufficient information. In order
to develop role definitions, the project turned to business process documentation. The
project placed a strong emphasis on the need for security rules to be intimately connected
to the business processes that IT systems support in order to ensure a more thorough
understanding and revision of access rights choices. Furthermore, because of aspects
like workload, change management, and documentation, it is critical in large businesses
to use tools for job identification and maintenance Roeckle et al. (2000). Hence, The
significance of strong authentication and authorisation systems within Kubernetes has
been highlighted by previous studies. The effective incorporation of this security data
into process models served as the basis for the creation of role catalogues using tools.
This strategy produced thorough models that successfully combined the process, role,
and access rights levels, improving the administrative chores in an RBAC system.

2.1.2 Kubernetes Security Policy

The establishment of Kubernetes-specific security policies is crucial for protecting Kuber-
netes clusters. These policies establish guidelines and limitations intended to protect the
Kubernetes cluster from possible security threats Panagiotis (2020). These may include
recommendations for network segmentation, access controls, container isolation, and au-
thentication and authorization procedures. The researcher emphasizes how Kubernetes’
initial design, particularly its placement policy, has limits when it comes to effectively
handling the dynamic and variable nature of emerging geo-distributed systems Rossi et al.

5



(2020). The authors respond to this by introducing ge-kube, a Kubernetes extension that
includes network-aware scheduling tools and self-adaptation methods.

This research does not specifically address security, but by ensuring that programs are
put and scaled correctly in accordance with network parameters and performance data,
these enhancements may inadvertently improve the security of applications running on
geographically distributed resources. The application and maintenance of Kubernetes’
built-in security capabilities, such as Generic Policies, Pod Security Policies, and Network
Policies, can be challenging. The need for a simpler, more streamlined approach to policy
administration is frequently mentioned in literature. According to several studies, this
issue might be resolved by the creation of further Kubernetes features or third-party
solutions.

2.1.3 Vulnerability scanning

A crucial security procedure known as vulnerability scanning involves the identification
and assessment of potential security flaws in a system or application. Software tools that
scan the system or application for known security weaknesses like out-of-date software,
configuration problems, or unpatched vulnerabilities are frequently used in this process.
The need for vulnerability screening to ensure secure deployment is frequently mentioned
in the existing literature on Kubernetes Shamim et al. (2020). Studies have shown that
a number of variables, including the calibre of the vulnerability databases used by the
scanning tools and the possibility of false positives and negatives, might restrict the
efficacy of these scans. The authors Bose et al. (2021) stress the need to quickly identify
and fix security flaws in Kubernetes manifests. It concluded that a significant 0.79%
of contributions are security-related after examining 5,193 commits from 38 open-source
repositories, indicating a problem with under-reporting in the sector. This discovery is
significant for improving the probes and checks in Kube-Hunter, a program created to
identify and fix security flaws in Kubernetes. In line with the paper’s recommendation for
rigorous research to prevent potential significant security breaches, Kube-Hunter can be
better equipped to find and address latent vulnerabilities by comprehending the nature
and prevalence of these under-reported faults.

2.1.4 Systems Log

The Kubernetes cluster’s components and running containers generate log data, which is
collected and archived as part of the logging process. Kubernetes comes with a number of
built-in logging features, including the capacity to read and manage logs via the Kuber-
netes API, interface with external logging services, and send container output to log files.
Despite being crucial, logging is frequently mentioned as one of the more difficult facets
of Kubernetes security Burns et al. (2016). According to the study, uses a log model
technique to create a diagnostic tool for declaratively deployed cloud apps. The research
uses clustering methods to collect typical examples while utilizing the stability of cloud
platforms, where the majority of workloads are in their desired state, to construct the
model. Because it places less emphasis on the chronological sequence of log entries when
building and matching the reference model, the tool, dubbed LogDC, can diagnose prob-
lems during an application’s whole lifecycle Xu et al. (2017) Kubernetes’ decentralized
architecture can make thorough logging challenging. Additionally, examining logs for
potential security concerns necessitates a significant amount of knowledge and resources.

6



2.1.5 Kubernetes Namespace

The resources in a cluster can be divided using Kubernetes namespaces so that each
namespace can have its own set of resources with unique names Ibryam and Huß (2022).
This functionality helps preserve isolation and makes cluster management easier for teams
or projects that share a single cluster. Although namespace separation is a useful feature,
studies have shown that it is possible for user errors and configuration mistakes, which
could result in security problems. As a result, stricter regulations are required to enforce
namespace separation.

The distributed key-value store etcd is used by Kubernetes to store crucial cluster
data, including resource state and configuration options Ibryam and Huß (2022). To
guarantee the security and integrity of this data, it is essential to encrypt and restrict
access to the etcd cluster. Despite the fact that Kubernetes has procedures for protecting
etcd, such as authentication, authorisation, and transport security, studies have shown
that mistakes or neglect in these areas can result in the exposure of crucial data. Fur-
thermore, strong disaster recovery strategies and the significance of backing up etcd data
are regularly emphasized in the literature.

2.1.6 Security and performance

The study of Rahman et al. (2023) examines security flaws in Kubernetes manifest files.
The authors propose 11 different categories of security misconfigurations and quantify
them using their static analysis tool, SLI-KUBE, through a thorough empirical investig-
ation of thousands of Kubernetes manifests from 92 open-source sources. The discovery
of 1,051 security misconfigurations highlights the value of security-focused code reviews
and the usage of static analysis during the creation of Kubernetes manifests. It serves
as a crucial reference point for enhancing the probes and tests in Kube-Hunter, a pro-
gram designed to identify and fix security flaws in Kubernetes manifest files. The other
researchers Viktorsson et al. (2020) compares and contrast Kata and gVisor, two Kuber-
netes container runtimes, in terms of security and performance. The study’s findings
suggest that more stringent security controls are associated with higher costs, both in
terms of deployment time and potential application performance losses. Interestingly,
Kata outperformed gVisor in terms of application performance for both compute and
network-bound apps, while having more security layers and subsequently longer deploy-
ment durations. According to the study, the security environment for container runtimes
is quickly changing, and regular evaluations by academics are essential for comprehending
current trends, design trade-offs, and potential constraints.

2.1.7 Rollbacks mechanism

New versions of applications or services can be delivered to a cluster without experien-
cing any downtime or disruptions thanks to Kubernetes’ continuous update functionality.
Rolling updates, which gradually replace outdated versions with new ones while main-
taining a sufficient number of replicas and evenly distributing traffic, are frequently used
to do this. Despite its value in keeping applications and services current, literature has
pointed out potential security issues connected with ongoing updates Mendonça et al.
(2019). Making sure that updated containers don’t introduce new vulnerabilities into the
cluster is a huge problem. The Kubernetes community has also talked a lot about man-
aging rollbacks in case of incorrect updates and assuring zero downtime during updates.

7



2.1.8 Infrastructure as a service

Helm charts and Kubernetes manifest files are crucial tools for creating and maintaining
applications that are deployed on Kubernetes. Helm charts make it easier to deploy and
manage applications, whereas manifest files specify the expected state for an object in a
cluster Sayfan (2017). Numerous studies stress how crucial it is to manage Helm charts
and manifest files appropriately in order to avoid security problems [16]. For instance,
unsecured dependencies in Helm charts or the exposing of sensitive data in manifest files
might have serious security repercussions. However, research suggests that these factors
are frequently disregarded in Kubernetes security procedures. The thorough study of
gray literature from Kumara et al. (2021) demonstrates how academics and practitioners
alike are becoming more interested in Infrastructure-as-Code (IaC). The paper examines
implementation challenges, design issues, and fundamental concepts while classifying the
best and worst IaC techniques utilizing languages like Ansible, Puppet, and Chef. The
knowledge gained from this study into the creation and upkeep of IaC can be used to
improve Kube-Hunter’s probes and checks. The approaches for identifying and fixing
security vulnerabilities in Kubernetes manifest files can be improved and enhanced by
following best practices and avoiding known problems. Utilizing the knowledge gained
from the larger IaC community, the investigation of common practices in IaC languages
can result in a more robust, effective, and secure implementation in the Kubernetes
environment.

2.1.9 Security Challenges ahead

Common security flaws in Kubernetes clusters are frequently hunted for using the open-
source application Kube-Hunter. But current research indicates that while Kube-Hunter
is good at spotting known vulnerabilities, it might not be as good at spotting more
complex or obscure threats. Additionally, its focus is typically on runtime security and
excludes the examination of Helm charts or Kubernetes manifest files. The authors at
Minna et al. (2021) state, when analyzed using the standard security paradigm, Kuber-
netes’ network abstractions may result in ”unexpected attacks” despite making it easier
to deploy and manage cloud applications. This change in network security modelling has
significant effects on how vulnerabilities are located, assessed, and fixed in Kubernetes
manifests. Thus, the Kube-Hunter tool can be viewed as a crucial tool for adapting es-
tablished security procedures to a cloud-native environment. Kube-Hunter’s probes and
checks can be adapted to stop the unintended attack vectors identified in this study by
identifying and addressing the unique networking components and potential weak points
in Kubernetes.

There are still some security gaps in a number of areas, including authentication, au-
thorization, policy management, vulnerability scanning, logging, namespace separation,
network security, continuous updates, and manifest file and despite the fact that the
security of Kubernetes has been significantly improved by current tools and methodo-
logies Carrión (2022). There is a need for enhancement so that tools like Kube-Hunter
can handle a larger variety of potential dangers, even if they are essential for locating
and addressing security flaws Binnie and McCune (2021). This highlights the need for
ongoing research on Kubernetes security, such as the research that the study proposes
Revuelta Martinez (2023).

8



2.2 Analysis and gaps

Related
Work

Concept Highlights Issues/Gaps

2.1.1 Role-
Based
Access
Control
(RBAC)

Security rules
based on busi-
ness processes

Focus on the necessity of es-
tablishing role definitions in
corporate structures. Util-
ization of business pro-
cess documentation for role
definitions.

The inadequacy of existing
job descriptions in defining
roles based on specific ac-
cess permissions.

2.1.2
Kuber-
netes
Security
Policy

Kubernetes-
specific security
policies

Introduction of ge-kube,
an extension that includes
network-aware scheduling
tools and self-adaptation
methods.

Limitations in Kubernetes’
initial design in handling
the dynamic nature of emer-
ging geo-distributed sys-
tems. Need for a simpler
policy administration.

2.1.3 Vul-
nerability
Scanning

Identification
and Assessment
of potential
security flaws

Use of software tools for
Scanning system or Applic-
ations for known security
weaknesses.

Constraints in the efficacy
of scans due to the quality of
vulnerability databases and
the possibility of false posit-
ives/negatives.

2.1.4 Sys-
tems Log

Kubernetes log-
ging features

Utilization of a log model
technique for creating a dia-
gnostic tool for cloud apps.

Difficulty in thorough log-
ging due to Kubernetes’
decentralized architecture.
Need for substantial know-
ledge and resources for ex-
amining logs.

2.1.5
Kuber-
netes
Namespace

Namespace divi-
sion in Kuber-
netes clusters

Facilitates resource isola-
tion and easier cluster man-
agement.

Possibility of user errors and
configuration mistakes lead-
ing to security issues. Need
for stricter regulations for
namespace separation.

2.1.6 Se-
curity and
Perform-
ance

Comparison of
Kata and gVisor
runtimes

Kata outperforms gVisor in
terms of application per-
formance while providing
more security layers.

Increased security controls
might lead to higher costs
in terms of deployment time
and potential performance
losses.

Table 2: Comparative Analysis of Related Works

3 Research Methodology

The methodology used in this study is a hybrid of quantitative and qualitative research
methods. This mixed method study strategy was chosen because it gives a balanced
manner to evaluate the effectiveness of the Kube-Hunter upgrades. It entails the creation
and integration of algorithms, as well as a thorough examination of the produced data
to assess their effectiveness in detecting and remediating vulnerabilities.

9



3.1 From Selection to Execution

The presented technique was chosen to improve the Kube-Hunter tool’s capacity to find
and resolve Kubernetes manifest file security vulnerabilities. The principal approach was
the creation and implementation of a novel algorithm called Role-Based Access Control
(RBAC) Policy Misconfiguration Check. Previous research had shown the need for RBAC
in Kubernetes cluster security maintenance.

Data was collected by scanning various Kubernetes clusters known for security miscon-
figurations with the upgraded Kube-Hunter. These clusters, which simulated real-world
settings, were created to evaluate the tool’s effectiveness in finding vulnerabilities and
successfully remediating them. The given Figure 2 provides the workflow of the over-
all implementation. This study’s cluster selection reflected popular Kubernetes use cases
and various security configurations, allowing for an objective evaluation of Kube-Hunter’s
performance.

Figure 2: Workflow Architecture

Following data collection, a combination of descriptive and inferential statistical meth-
ods was used to evaluate the data. Measures of central tendency and variability were
included in the high-level perspective of the data offered by descriptive statistics. On
the other hand, whether the improvements to Kube-Hunter led to a statistically signific-
ant improvement in its performance required inferential statistics, specifically hypothesis
testing. The development and integration of the new algorithm into Kube-Hunter, the
creation of Kubernetes clusters with known security flaws, the scanning of these clusters
with the enhanced Kube-Hunter and recording of the results, and finally the analysis of
the gathered data using the selected statistical techniques made up the four main stages
of the entire research process. This end-to-end technique made sure that every aspect of
the tool’s functioning, from data collecting to final outcomes, was evaluated thoroughly.

10



4 Design Specification

The main method used in this study was the integration of an algorithm into Kube-
Hunter, which was developed to analyze Role-Based Access Control (RBAC) policies in
Kubernetes manifest files Sandhu (1998). The implementation was supposed to improve
Kube-Hunter’s capacity to detect and fix potential security flaws in RBAC policies. Des-
pite careful design, the algorithm ran into unexpected challenges, exposing the real-world
difficulties inherent in Kubernetes security.

4.1 Algorithm description

The RBAC Policy Misconfiguration Check algorithm, developed to investigate Kuber-
netes RBAC objects in an unusual two-tier scrutiny procedure, is at the heart of this
research paper. The first tier examines the access rights provided to roles and cluster
roles, looking for unduly liberal access rights. The second tier examines role bindings and
cluster role bindings with the goal of identifying situations where subjects such as users,
groups, or service accounts have been given incorrect access. The dual-layered analysis
was created to improve the accuracy of detecting potential security flaws and ensure a
complete examination. The below Figure 3 depicts the flow of the RBAC algorithm.

Figure 3: Algorithm structure Flow

However, ”forbidden” errors occurred unexpectedly during the algorithm’s execution
within the Kubernetes environment. This result occurred despite the thorough design
of the RBAC policies, demonstrating the unanticipated complexities and issues inherent
with Kubernetes security. These findings emphasize the significance of a thorough grasp
of RBAC principles, the Kubernetes authorization system, and its implementation intric-
acies. The technique is meant to generate a detailed report after successfully identifying
RBAC misconfigurations. This study describes the RBAC misconfigurations and offers

11



remedial options to address the vulnerabilities. The unexpected ”forbidden” faults that
occurred throughout the execution highlight the need for further improvement to main-
tain tighter control over Kubernetes RBAC policies. The refinement phase would focus
on improving the algorithm’s robustness in a variety of Kubernetes scenarios, reducing
the danger of unwanted access or privilege escalation.

4.2 System Requirements

The system requirements for implementing this study largely included an operating
Kubernetes environment capable of simulating real-world Kubernetes usage scenarios.
To allow for thorough testing of the RBAC Policy Misconfiguration Check method, this
environment must have a variety of role-based access setups. Adequate computational
resources were required to run the Kube-Hunter tool smoothly with the new method.

The ability to access Kubernetes manifest files was critical because they were used as
input for the RBAC Policy Misconfiguration Check method. The system must also sup-
port the programming languages and libraries used in the development of Kube-Hunter
and the algorithm to ensure seamless integration and operation. The ”forbidden” prob-
lems discovered while running the algorithm in the Kubernetes environment indicate the
need for a more sophisticated grasp of the system requirements. The experience neces-
sitates further investigation into the complexities of Kubernetes RBAC implementation,
operational permissions, and potential bottlenecks, indicating a promising field for future
research and improvement.

5 Implementation

This section describes the process used to connect our Role-Based Access Control (RBAC)
Policy Misconfiguration Check algorithm with Kube-Hunter. It includes a step-by-step
description of the implementation process, the selection and use of required tools and
languages, and the outcomes obtained throughout the implementation stage. While we
avoid digging into minute code details, our goal is to provide a full understanding of the
procedural stages, technological considerations, and nuances that defined our approach.

5.1 Implementation Process

The project’s central component, the RBAC Policy Misconfiguration Check algorithm,
was carefully developed with the intention of thoroughly inspecting Kubernetes RBAC
objects and identifying any security flaws. This algorithm was created to improve Kube-
Hunter’s already-existing capabilities by adding the capacity to identify and fix probable
RBAC policy misconfigurations. The deployment of Kube-Hunter, now using the revised
algorithm, inside a working Kubernetes system served as a marker for the implementation
phase. After that, scans were carried out using the tool on a variety of Kubernetes
clusters. These clusters were chosen with care to represent a variety of popular Kubernetes
use cases and security setups, enhancing the tool’s general usefulness and resilience.

Even with a careful planning process and adherence to the RBAC guidelines, the pro-
gram ran into unforeseen ”forbidden” faults. The underlying complexities and difficulties
that are deeply integrated throughout the Kubernetes security landscape were highlighted
by this event. These unforeseen obstacles illustrate the real-world difficulties that fre-

12



quently follow theoretical ideas, emphasizing how crucial it is to have a comprehensive
grasp of the system for successful execution.

5.2 Tools and Languages Used

The main language utilized in this project was Python, which has won praise for its
adaptability and the breadth of its libraries. Its libraries for machine learning and data
analysis were especially helpful in developing and testing the method. It was heav-
ily reliant on the Kube-Hunter program, a well-known open-source utility produced by
Aqua Security. The program was containerized using Docker, a platform for developing,
shipping, and running applications, guaranteeing operational consistency across various
deployment scenarios.

The Kubernetes environment, which was the project’s main emphasis, was crucial
since it served as the testing and deployment basis for the upgraded Kube-Hunter tool.
This setting provided a useful setting to assess the algorithm’s efficacy and efficiency in
practical situations.

5.3 Outputs

The Kube-Hunter tool was enhanced during our implementation process and now in-
cludes the new RBAC Policy Misconfiguration Check algorithm. This was the most
significant result. After being successfully implemented, this instrument was supposed
to produce thorough reports. These reports would include important details about the
precise locations of RBAC policy misconfigurations as well as recommended corrective
measures.

However, there were some hiccups in our installation procedure. The unexpected
”forbidden” faults produced a distinct kind of output, providing a priceless window into
the intricacies and difficulties of safeguarding Kubernetes settings. These difficulties
highlighted the need for additional research and improved tactics by giving us a more
nuanced view of the challenges that might be encountered during such attempts. These
results highlight the need for further research funding to enable the creation of even more
reliable and resilient security tools for Kubernetes. This would guarantee that these tools
are capable of navigating the intricate complexity of the Kubernetes security landscape
successfully, hence offering thorough and reliable security solutions.

6 Evaluation

The evaluation of the research is covered in this section, with a special emphasis on the
improved Kube-Hunter tool and the RBAC Policy Misconfiguration Check algorithm.
Due to the nature of the research, there are no precise graphs or charts; however, this does
not prevent us from doing a thorough analysis of the findings. We will thoroughly examine
the research findings, focusing on issues of code implementation and system performance,
and discuss their consequences from both an academic and practical standpoint.

6.1 Data Presentation

The qualitative character of the research necessitates a different format for data present-
ation than what is typically used, such as graphs, charts, or plots. The base conclusions

13



on two important sets of data: the observed system reactions, specifically the unanticip-
ated ”forbidden” faults that occurred during the tool’s execution, and the performance
comparison between the improved Kube-Hunter tool and other security tools. The first
piece of information was taken directly from the ”forbidden” error answers that were
captured in the system logs when the program was being used. This information gave us
an in-depth understanding of the problems that may occur even with RBAC configura-
tions that appear to be correct, as well as the practical difficulties of securing Kubernetes
deployments.

The second data point, the comparison performance, revealed the relative efficacy and
accuracy of the algorithm in finding RBAC misconfigurations through parallel execution
of existing tools in identical scenarios.

6.2 Data Analysis

Having thoroughly examined the system reactions and contrasting performance of the
improved Kube-Hunter tool as part of the data analysis. It was discovered after examin-
ing the system’s replies that ” prohibited” failures mostly happened during the scanning
procedure. This suggested that the permission checks in the algorithm may have gone
too far, or that method may not have taken into consideration the Kubernetes RBAC’s
underlying complexity. This provided a crucial insight into the need for more sophistic-
ated management of permissions at the algorithmic level for Kubernetes security features.
Medel et al. (2016) The comparative performance analysis showed that the tool was able
to identify potential configuration errors that other tools were unable to. The unforeseen
faults, though, limited the effectiveness of the tool. This comparative analysis high-
lighted the tool’s advantages in dealing with RBAC misconfigurations and demonstrated
its potential if the issues found are effectively resolved.

6.3 Implications

The findings have important ramifications for viewpoints from the academic and profes-
sional communities. Academically, the ”forbidden” mistakes that were observed highlight
the difficulty of Kubernetes security and the value of taking into account practical ex-
ecution issues while developing security tools. This discovery creates opportunities for
additional study to comprehend these intricacies and provide more reliable security solu-
tions. These findings emphasize the need of good permission management in Kubernetes
systems from the perspective of a practitioner. The conclusions drawn from the use of
the tool highlight the necessity of routinely improving and testing such security solutions
and offer a realistic grasp of potential problems.

6.4 Discussion

The discussion section will go deeper into the significance of the findings, set them in the
perspective of prior research, and point out any potential enhancements or changes that
could be made to future studies. The discussion will critically assess the architecture
of the instrument and give a more in-depth analysis of the findings in contrast to the
implications section.

In order to improve the Kube-Hunter tool’s ability to identify and fix any RBAC
policy misconfigurations in Kubernetes settings, the study focused on the development

14



of the RBAC Policy Misconfiguration Check algorithm within the tool. The emergence
of unexpected ”forbidden” faults throughout the tool’s execution revealed an essential
aspect—the complicated complexity of Kubernetes environments—despite the careful
design and ostensibly accurate configurations.

This finding fits with the widely held belief that Kubernetes is a complicated system
that needs a thorough understanding for efficient security management, according to
previous studies. The research, however, highlights the complexity and unpredictability of
real-world execution even more, highlighting the need for more sophisticated and resilient
security mechanisms.

This gets to the design of the tool which must be critically analyzed. The RBAC Policy
Misconfiguration Check algorithm was created to thoroughly investigate role bindings and
cluster role bindings, however, the existence of ”forbidden” mistakes suggests that there
may have been a mistake in how the program foresaw and dealt with such exceptions.
Due to this, the architecture was not sufficiently robust to handle all real-world cases,
despite the algorithm’s potential for spotting incorrect permissions.

In light of this, we suggest two main changes for future research. First, the algorithm
should be improved to incorporate more complex error handling and exception-catching
techniques, guaranteeing that the tool is capable of managing unforeseen circumstances
with grace. Second, more attention needs to be paid to comprehending and accommodat-
ing the many permissions and responsibilities prevalent in Kubernetes setups so that the
algorithm can successfully navigate through these complexities. Additionally, it is clear
that the ”forbidden” mistakes need to be fixed for the tool to fully realize its potential
for discovering and fixing RBAC misconfigurations when compared to the performance
of the tool versus other security tools. As a result, future development should include
constant improvement, thorough testing, and consistent tool update.

7 Conclusion and Future Work

The research was started with the specific goal of improving the Kube-Hunter tool’s
abilities to quickly spot and fix potential RBAC policy misconfigurations in Kubernetes
settings. The Kube-Hunter tool was updated to include the painstakingly created RBAC
Policy Misconfiguration Check algorithm in an effort to improve security. Nevertheless,
despite a seemingly good implementation, unforeseen ”forbidden” failures during the
tool’s use hampered the research. While first perceived as a problem, these failures
quickly changed into a useful discovery that offered a clear view into the nuances of
actual Kubernetes security. This finding fits with the major goals of the study, providing
important details about the intricate configurations of Kubernetes RBAC policies and
highlighting the need for advanced tools to manage them. Given the aforementioned
problems, the research also showed that the improved Kube-Hunter tool showed promise
in offering a more thorough analysis of RBAC items than certain other tools. Even with
its limitations, this comparative performance highlights the benefits of the strategy and
the tool’s potential to address Kubernetes security concerns after the problems found are
fixed.

The study has created a number of possibilities for further investigation. The unanti-
cipated ”forbidden” failures that arose throughout the algorithm’s execution point to
possible areas for improvement. In order to make the tool more capable of navigating
through challenging real-world settings, we plan to improve the algorithm to include more

15



reliable error handling and exception-catching capabilities. Additionally, the algorithm
might be expanded to accommodate a wider variety of Kubernetes security capabilities,
such as Admission Controllers, Pod Security Policies, and Namespace Restrictions, among
others. A more thorough investigation of these topics might provide the algorithm with a
more sophisticated comprehension of Kubernetes environments, enabling it to anticipate
and manage a larger range of security problems. A subsequent study effort might examine
the tool’s user experience in addition to these technical improvements. While the research
concentrated on the technical capabilities of the instrument, examining its usability from
the user’s point of view could provide insightful information. Future studies might ex-
amine how users engage with the tool, the problems it run into, and the features they
value the most. This might result in the creation of a user-friendly interface, improving
the tool’s usability and accessibility.

There is significant potential for commercialization in a larger setting. The need for
strong and easy-to-use security tools is anticipated to increase as Kubernetes continues to
gain widespread adoption. The Kube-Hunter tool, which uses the RBAC Policy Miscon-
figuration Check algorithm, has the potential to be a market-ready solution to the critical
security issues in Kubernetes systems with further development and improvements.

References

Binnie, C. and McCune, R. (2021). Kubernetes vulnerabilities.

Bose, D. B., Rahman, A. and Shamim, S. I. (2021). ‘under-reported’ security defects in
kubernetes manifests, 2021 IEEE/ACM 2nd International Workshop on Engineering
and Cybersecurity of Critical Systems (EnCyCriS), pp. 9–12.

Burns, B., Beda, J., Hightower, K. and Evenson, L. (2022). Kubernetes: up and running.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E. and Wilkes, J. (2016). Borg, omega,
and kubernetes: Lessons learned from three container-management systems over a
decade, Queue 14(1): 70–93.

Calderón-Gómez, H., Mendoza-Pitt́ı, L., Vargas-Lombardo, M., Gómez-Pulido, J. M.,
Rodŕıguez-Puyol, D., Sención, G. and Polo-Luque, M.-L. (2021). Evaluating service-
oriented and microservice architecture patterns to deploy ehealth applications in cloud
computing environment, Applied Sciences 11(10): 4350.

Carrión, C. (2022). Kubernetes scheduling: Taxonomy, ongoing issues and challenges,
ACM Computing Surveys 55(7): 1–37.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R. and
Safina, L. (2017). Microservices: yesterday, today, and tomorrow, Present and ulterior
software engineering pp. 195–216.

Ibryam, B. and Huß, R. (2022). Kubernetes Patterns, ” O’Reilly Media, Inc.”.

Kumara, I., Garriga, M., Romeu, A. U., Di Nucci, D., Palomba, F., Tamburri, D. A. and
van den Heuvel, W.-J. (2021). The do’s and don’ts of infrastructure code: A systematic
gray literature review, Information and Software Technology 137: 106593.

16



Martin, P. and Martin, P. (2021). Kubernetes resources, Kubernetes: Preparing for the
CKA and CKAD Certifications pp. 19–22.

Medel, V., Rana, O., Bañares, J. Á. and Arronategui, U. (2016). Modelling performance
& resource management in kubernetes, Proceedings of the 9th International Conference
on Utility and Cloud Computing, pp. 257–262.

Mendonça, N. C., Jamshidi, P., Garlan, D. and Pahl, C. (2019). Developing self-adaptive
microservice systems: Challenges and directions, IEEE Software 38(2): 70–79.

Minna, F., Blaise, A., Rebecchi, F., Chandrasekaran, B. and Massacci, F. (2021). Under-
standing the security implications of kubernetes networking, IEEE Security Privacy
19(5): 46–56.

Panagiotis, M. (2020). Attack methods and defenses on Kubernetes, PhD thesis, Univer-
sity of Piraeus (Greece).

Rahman, A., Shamim, S. I., Bose, D. B. and Pandita, R. (2023). Security misconfigura-
tions in open source kubernetes manifests: An empirical study, ACM Transactions on
Software Engineering and Methodology 32(4): 1–36.

Revuelta Martinez, Á. (2023). Study of security issues in kubernetes (k8s) architectures;
tradeoffs and opportunities.

Roeckle, H., Schimpf, G. and Weidinger, R. (2000). Process-oriented approach for role-
finding to implement role-based security administration in a large industrial organiza-
tion, Proceedings of the fifth ACM workshop on Role-based access control, pp. 103–110.

Rossi, F., Cardellini, V., Presti, F. L. and Nardelli, M. (2020). Geo-distributed efficient
deployment of containers with kubernetes, Computer Communications 159: 161–174.

Sandhu, R. S. (1998). Role-based access control, Advances in computers, Vol. 46, Elsevier,
pp. 237–286.

Sayfan, G. (2017). Mastering kubernetes, Packt Publishing Ltd.

Shamim, M. S. I., Bhuiyan, F. A. and Rahman, A. (2020). Xi commandments of kuber-
netes security: A systematization of knowledge related to kubernetes security practices,
2020 IEEE Secure Development (SecDev) pp. 58–64.

Vayghan, L. A., Saied, M. A., Toeroe, M. and Khendek, F. (2018). Deploying microservice
based applications with kubernetes: Experiments and lessons learned, 2018 IEEE 11th
international conference on cloud computing (CLOUD), IEEE, pp. 970–973.

Viktorsson, W., Klein, C. and Tordsson, J. (2020). Security-performance trade-offs
of kubernetes container runtimes, 2020 28th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
IEEE, pp. 1–4.

Xu, J., Chen, P., Yang, L., Meng, F. and Wang, P. (2017). Logdc: Problem diagnosis
for declartively-deployed cloud applications with log, 2017 IEEE 14th International
Conference on e-Business Engineering (ICEBE), IEEE, pp. 282–287.

17


	Introduction
	Research Topic
	Motivation
	Work Format

	Related Work
	Microservices Kubernetes
	Role-Based Access Control (RBAC)
	Kubernetes Security Policy
	Vulnerability scanning
	Systems Log
	Kubernetes Namespace
	Security and performance 
	Rollbacks mechanism
	Infrastructure as a service
	Security Challenges ahead

	Analysis and gaps

	Research Methodology
	From Selection to Execution

	Design Specification
	Algorithm description
	System Requirements

	Implementation
	Implementation Process
	Tools and Languages Used
	Outputs

	Evaluation
	Data Presentation
	Data Analysis
	Implications
	Discussion

	Conclusion and Future Work

