
Optimizing Mobile Computing -Offloading
through Data Size-Based Algorithm (DSBA)

MSc Research Project

Cloud Computing

Murugalakshmi
Student ID: x21207232

School of Computing

National College of Ireland

Supervisor: Yasantha Samarawickrama

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Murugalakshmi

Student ID: x21207232

Programme: Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Yasantha Samarawickrama

Submission Due Date: 14/08/2023

Project Title: Optimizing Mobile Computing -Offloading through Data Size-
Based Algorithm (DSBA)

Word Count: 5256

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:
Murugalakshmi

Date: 13th August 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Optimizing Mobile Computing -Offloading through
Data Size-Based Algorithm (DSBA)

Murugalakshmi
x21207232

Abstract

The computing power and battery sizes of handheld devices often pose diffi-
culties in achieving optimal performance. The delegation of computationally in-
tensive duties to more powerful remote servers or cloud infrastructures has proved
to be a promising method for enhancing the performance of mobile devices.In this
paper, we propose a novel Data Size-Based Algorithm (DSBA) to efficiently address
the task offloading issue seen in mobile handsets.DSBA dynamically evaluates the
computational complexity and data size of tasks to identify the most appropriate
task for offloading, thereby minimizing the overhead and latency associated with
remote execution. By taking into account the size of the data, DSBA seeks to op-
timize the communication cost and processing time, assuring a balanced trade-off
between local execution and task offloading.The aim of the research is to offload
mobile task with the minimum energy consumption and time ,At the same time to
increase the number of bits processed. We shall see how this can be achieved locally
or by offloading it to cloud platform.DSBA seamlessly adapts to varying network
conditions and task characteristics making it robust to this real world of mobile
cloud computing.

1 Introduction

Mobile Cloud Computing a paradigm that has transformed mobile devices with the power
of cloud computing to perform many task on the go.This computation, storage, and pro-
cessing task to remote, fog or cloud servers has empowered the efficiency to a great
extent.However as the scope and complexity grow there is always a pressing need to en-
hance this technique. Noor (2018) refers to issues in offloading tasks in mobile devices.
The experiments performed and the study suggests that optimizing high computational
task and battery efficiency plays a key role in computing.

This paper presents a novel technique for offloadingtask on cloud computing resource
provisioning that takes data size into account. Data size awareness is a multidimensional
view of the data, including its storage, energy, and tasks, that provides information about
the data’s content, size, and activity, which we refer to as task queuing. As noted by
Sani (n.d.), however, there have been numerous digital innovations in such outsourcing
tasks, and there is still room for improvement. While using data-intensive applications
on their mobile devices, users experience service delays due to network or storage issues.
Keeping a large number of images/video files on a device causes an increase in power con-
sumption and a decrease in battery life, which ultimately delays the device’s performance.

1

We take into account high-end mobile devices with graphics cards, multicore processors,
and an increase in the number of IoT device consumers.However, IoT devices have demon-
strated the ability to manage such compute-intensive and data-intensive applications by
offloading the task from devices to the cloud.The storage and processing of data is always
a challenge for users; therefore, these tasks are offloaded to high-resource-rich cloud or
fog nodes or performed remotely in order to improve performance and reduce battery
consumption. The primary parameters considered during offloading are data size, task
queue, and energy usage.

Research Question:

1. How can the performance of task offloading on mobile devices be effectively optim-
ized with respect to factors such as dynamic resource allocation, network paramet-
ers, and energy consumption?

2. How data size awareness can efficiently offload mobile computational tasks on cloud
for low energy consumption?

This novel technique of Data size based algorithm(DSBA) is designed for data-intensive
task on mobile cloud computing applications. This suggested model will aim to efficiently
offload task determining the data size while minimizing the completion time to achieve
optimal performance and resources with a low energy

Structure of the Paper:

Following in the report is Section-2 Related work which will give an overview of the
past research done in MCC whereas Section 3 will provide details of the methodology on
this novel technique. Architecture and implementation is showcased under Section 4 ,
which is followed by evaluation and experiments under Section 5. Conclusion and Future
work is also mentioned in further sections

2 Related Work

Mobile Cloud Computing (MCC) has gained significant attraction as a promising tech-
nology to improve the performance and efficiency of mobile applications.

2.1 Related work on Mobile Cloud Computing

Task offloading and resource allocation in Mobile Cloud Computing are critical challenges
that directly impact the user experience and resource utilization. Taha Alfakih (2020)
proposes an approach that employs deep reinforcement learning using the SARSA al-
gorithm to optimize task offloading and resource allocation in Mobile Edge computing
environments.
The author leverages the SARSA algorithm, which uses reinforcement learning method, to
optimize task offloading and resource allocation in MEC. SARSA (State- Action-Reward-
State-Action) is an on-policy temporal difference learning algorithm that collects from
the interactions of an agent with an environment. By modelling the problem as a Markov
Decision Process (MDP), the algorithm updates its policy based on the observed state

2

transitions, actions taken, and corresponding rewards received. In this context, Jia Yan
(2020) SARSA is utilized to learn an effective offloading policy and resource allocation
strategy that maximizes the overall utility of the MEC system. However, the study
doesn’t go into detail about the trade-offs between performance measures like delay, en-
ergy usage, and speed. Also, the study might not be able to evaluate how well the
suggested method scales and works in large-scale mobile edge cloud applications.

Dynamic task arrivals, changing processing capabilities, restricted communication ca-
pacity, and judgements on work offloading are encountered by MEC systems and Liu
and Mao (2016) has provided a detailed study on it. In the context of obtaining delay-
optimality, a number of scheduling strategies, such as heuristic-based, game theory-based,
and optimization-based algorithms, as well as machine learning methods, have been con-
sidered. Concerns around quality of service, edge-cloud cooperation, security, and privacy
have also come into the spotlight. This study emphasis on the need of conducting empir-
ical assessments and doing more research in order to solve newly developing difficulties
and improve the effectiveness of job scheduling in MEC systems.
Rajkumar Buyya (2018) approaches are organized under the categories of task, data,
and computation offloading, resource management, data compression, and enhancement
of quality of service. The evaluation takes a comprehensive look at several methods
that are considered to be state-of-the-art today and assesses both their advantages and
disadvantages. It highlights difficulties in areas like as safety, energy efficiency, and the
integration of new technology. The assessment highlights the need for continuing research
to develop MCC, boosting system performance and user experience in mobile devices with
limited resources.

Mohammad Yahya Akhlaqi (2023) explores the paradigm of task outsourcing in Mobile
Edge Computing, focusing on current issues, adopted approaches, performance evalu-
ation, and future directions. The article identifies obstacles in task offloading, including
optimal offloading candidate selection, dynamic network conditions, privacy and security
concerns, and peripheral server load balancing. The review examines numerous offloading
techniques, including centralized and distributed offloading schemes, machine learning-
based decision-making algorithms, and heuristics. In addition, Gilsoo Lee (2019) it as-
sesses the efficacy of these methods, taking into account factors such as latency reduction,
energy efficiency improvements, resource utilization, and overall system performance. In
the future, the review suggests exploring novel offloading strategies, integrating AI/ML
techniques, considering heterogeneous edge server architectures, and supporting emerging
technologies such as 5G in order to further optimize the task offloading effectiveness in
Mobile Edge Computing.

2.2 Related work on Offloading task on Mobile Device

MobiCOP, yet another outsourcing framework designed to address the limitations of exist-
ing platforms, is introduced in another research paper.MobiCOP, unlike most alternatives,
optimizes entire long-running computation-intensive tasks rather than concentrating on
minute refinements, providing up to 17x performance enhancements and up to 25x greater
battery efficiency than local task executions. The client component of the framework is
completely self-contained in a library and compatible with the vast majority of stock An-
droid devices, facilitating integration, while the server component is readily available via

3

a public AWS AMI for rapid deployment. The Rajkumar Buyya (2018)Guillermo Valen-
zuela (2018) architecture is concerned with transmission speed and network latency but
disregards the data capacity of the task to be completed. Here, it leaves some questions
for the 2018 research to answer.
There is another study that explores the framework design, implementation, and evalu-
ation in various scenarios, emphasizing its impact on user experience, energy efficiency,
and system performance.Amir Vahid Dastjerdi (n.d.) discusses the advantages of con-
text–awareness to enhance the task offloading’s efficiency and to determine the potential
challenge. However, there is a scope for enhancement for different cloud instances on this
proposed approach

MTFCT (Multi-Tier Fog-Cloud Task Offloading) approach, a task offloading technique
designed by Rajni Jindal (2020) to optimize resource utilization and reduce latency in
Fog Computing and Cloud Computing environments. This article examines the design
and implementation of MTFCT, its application in both fog and cloud scenarios, as well
as its impact on system efficiency, resource utilization, and latency reduction. The MT-
FCT strategy utilizes both fog and cloud resources for efficient data processing, providing
benefits such as low-latency and localized processing in Fog Computing and scalability in
Cloud Computing. The review assesses the performance of MTFCT in various real-world
scenarios and identifies potential challenges and research directions for augmenting its
efficacy in dynamic Fog and Cloud Computing environments. However this complete
study was theoretical and no real-time experiment was performed in any cloud instance
or fog node

Ibrahim Alghamdi (2019) examines time-optimized task outsourcing decision-making in
Mobile Edge Computing, concentrating on existing approaches, performance evaluation,
challenges, and future directions. It determines the decision-making algorithms that seek
to minimize task execution time and latency in outsourcing decisions, taking centralized
and distributed approaches, machine learning-based algorithms, and heuristic methods
into consideration. In this work, Meixia Tao (2019) shows how the Gibbs sampling
method produces a good offloading decision. This study is based on a Mobile edge
computing system with multiple clients that employs a technique that requires a task
input on a single wireless device for the final output from numerous additional wireless
devices for a ideal threshold offloading. The Gibbs sampling technique produces a de-
cision outputSuzhi B (2019) proposal is an ADMM, or a massively rotating orientation
technique, which addresses the complexity issue in huge networks. Decomposition is an
ADMM under which the initial optimization deteriorates problems into several concur-
rent comment threads. Additionally, the report discusses the Integration of RF-based
power transmission and edge computing without a connected setup.It can likely address
the IoT networks’ performance issues and restriction

The research paper from 2021,investigates existing research and methods for designing
effective task-offloading algorithms for cloud computing. This review examines dynamic
multi-objective evolution techniques, taking into consideration performance, resource util-
ization, energy efficiency, and load balancing, in order to pave the way for a novel and
effective algorithm that optimizes the allocation of tasks in cloud environments. Su Hu
(2021) demonstrated time-based performance-based experiments which are proved the-
oretically in the study.Similar study in performed by Junwen Lu (2022) where the entire

4

research is in the field of energy-energy-efficient task offloading and scheduling in mo-
bile cloud computing. The architecture majorly includes the 4 components such as the
mobile scheduling manager, the cloud scheduling manager, cloud resources, and jobs. ?
decision engine checks the task based on the mobile network and bandwidth to offload
them remotely or in the cloud server. Even after successful research, the study has space
to work on data size and energy consumption of the task.

3 Methodology

Many researchers have presented their work on mobile task offloading due to which there
is a wide range of potential scenarios. However, this section provides an in-depth analysis
of the methodology used to assure the success of this novel research. The following also
elaborates on the tools and technologies utilized to accomplish the desired results. We are
making use of a custom algorithm ie the DSBA to evaluate the task and make a crucial
execution decision. This decision-making engine focuses on determining whether the task
will be executed on the local device, i.e. the mobile phone, or in the cloud. Researchers
have already demonstrated the same on Fog nodes mentioned above in the related work.
The results acquired from either method are displayed on the mobile device’s display,
allowing for additional analysis, research, and conclusive conclusions. The methodology
is designed to maximize efficiency and effectiveness throughout the research process by
optimizing task execution and resource allocation. Various analytical tools and cutting-
edge technologies are used to support the algorithm’s functionality, allowing for seamless
integration and robust decision-making capabilities.

3.1 System Model

A mobile client that utilizes MCC architecture consumes lot of cloud technologies in order
to run its applications in a smooth manner on cloud infrastructures via mobile Web-based
services.The importance of this model is to largely focus on the data size of the task and
decide on the offloading approach.The two primary goals of these designs are to maximize
the use of available resources on the device while simultaneously maximizing performance
efficiency. Some concerns are currently being explored at various levels of MCC designs
in order to enhance the execution efficiency of mobile applications while keeping costs to
a minimum.

3.1.1 Major components of this proposed system

This proposed algorithm largely consists of these three components

1. Data Manager :The Data Manager is responsible for managing proficiently the
duties generated by mobile devices. It manages the allocation of computational
resources for task execution and processes the collection of data-related task. The
Data Manager is aware that executing tasks on mobile devices can be resource-
intensive, necessitating significant energy consumption, computational power, and
time.To effectively manage these responsibilities, the Data Manager employs strategies
that optimize resource utilization Data Manager employs techniques such as task

5

Figure 1: Architecture of the DSBA Model

aggregation, load balancing, and task outsourcing to accomplish efficient task exe-
cution.

2. Data Controller : This model takes into factors like the purpose of the job, the
state of the network conditions, and the resource availability. Tasks are chosen
based on how well they can be offloaded and then split up into components that
can be transmitted. To make connections as efficient as possible, data will be pre-
processed and compressed. Offloading choices will be based on parameters like task
execution time, energy consumption, and available bandwidth, aiming to minimize
overall execution cost. The design model for data sharing demands a strong way
to make decisions as well as effective ways to communicate to each other so that
mobile devices and cloud resources can work together smoothly.

3. Task Queue : The task queue plays a crucial role as a connecting component in
a cloud-based system that is responsible for keeping track of incoming tasks from
mobile devices, ensuring that they’re completed. The system effectively manages
and pulls tasks from a designated queue, distributing them to server resources that
are currently accessible, taking into account several aspects like task priority and
resource availability. The queue operates within a specified capacity and employs
various strategies, such as dismissing incoming tasks when it reaches its maximum
capacity or shifting jobs to other servers, in order to mitigate congestion. Load
balancing systems are used to provide equitable allocation of tasks, hence enhancing
the utilization of resources and optimizing response times. The task queue plays a
vital role in enabling the regulated and effective execution of tasks, as it strategically
makes critical choices to ensure stability and optimize performance within the cloud
environment.

6

3.2 Computational Algorithm

The presented Data Size-Aware Offloading Decision Algorithm facilitates the dynamic
offloading decision process for resource-constrained applications.It will accept task such
as HD video streaming for an example , resource provider as inputs and produces a dis-
tinction between tasks to be executed locally and those eligible for execution in the cloud.
The algorithm begins by gathering data on the availability of local and cloud resources .
It will then determines the data size associated with each task. The algorithm evaluates
network connectivity and resource availability for jobs with data sizes greater than or
equal to 120 MB (this is for an example). If both conditions are met, it employs par-
titioned application-specific methods and identifies resource dependencies. It considers
the data size algorithm to a subsequent matrix for task partitioning, resulting in a set
of tasks designated for local execution and another set designated for outsourcing to the
cloud. If network or resource conditions are unfavorable, on the other hand, tasks are
executed locally. Overall, the algorithm focuses to optimise task allocation in heterogen-
eous computing environments based on data size, network state, and resource availability,
thereby improving the efficacy of deploying decisions.

Algorithm 1 Data Size Based Awareness Algorithm

Require: Application, Resource Provider
Ensure: Tasks executed locally and tasks to be executed in the cloud
1: resource provider ← Get local availability, cloud availability
2: application ← Get the application
3: data size ← calculate data size of the task
4: if data size ≥ 10 MB then
5: check network state
6: if network available then
7: check resource provider
8: if resource provider available then
9: find the partitioned methods for the application
10: find the dependencies between resources
11: find the Offloading platform
12: task Local-Result ← Local
13: task Offload ← Offload
14: else
15: execute locally
16: end if
17: else
18: execute locally
19: end if
20: else
21: execute locally
22: end if=0

7

Figure 2: Task division

4 Design Specification

For the research T = t1, t2, t3, ldots, tn, where T = t1, t2, t3, ldots, tn, is considered to be
partitioned into n offloadable tasks for the purposes of this research. Each task ti will have
a distinct load and require separate computational resources. Which task must execute
in the mobile environment and which task must be offloaded to the remote environment
for computation is the primary concern in task offloading. Figure 2 demonstrates that
the project T is subdivided into n tasks. Consider that the task t1 requires output data
from tasks t2 to tn − 1 in order to execute, and that t1’s output is provided as input to
task tn.

To address the issue mentioned earlier, the Data size model has been created, which
focuses on the amount of energy required for each task. Based on the task’s properties,
the decision-making engine determines whether the task will be offloaded or executed
locally.

delta(t) represents the burden of each task in this implementation. Consider varphi(t) =
0, 1 to be a decision variable; if varphi(t) is set to 0, it indicates that the task can be
offloaded, whereas if it is set to 1, the task is executed in the local environment.

4.1 Local Environment - Energy Consumed

The local energy consumption equation is as below:

εlocal(t) =
∑
i

Plocal × τlocal(t) (1)

8

The local completion time equation is as below :

τlocal(t) =
∑
i

δi(t)× φi(t)× C−1
local (2)

If the task as per the above 2 equation goes to zero then the battery energy consump-
tion will be go to zero in the local environment. The results for this can be seen in the
FireStore database in the Evaluation section with experiments performed.

4.2 Cloud environment - Energy consumed

The equation provided represents the time required for task completion when offloading
tasks to the cloud environment.It takes into account various factors, including the task
index i, the input data size Id, the transmission bandwidth Tb, the workload δi+1(t),
and the decision variable φi+1(t) determines if the task needs to be executed locally or
offloaded. Moreover, the computation speed Ccloud of the cloud environment is considered
under this calculation. This comprehensive formula provides insights into the time of task
offloaded in cloud computing .

The time taken to complete offloading in cloud environment is given by:

τcloud(t) =
i+ 1

Id × Tb

+ δi+1(t)× (1− φi+1(t))× C−1
cloud (3)

4.3 Overall Energy consumption

The overall energy consumption for the above can be given as below

εcloud(t) = (i+ 1)× Pidle × τcloud(t) (4)

4.4 FireBase Parameters

The figure 3 represents an overview of the parameters and equation calculation based on
the above algorithm. The Firebase plugin, a potent toolset that enables an extensive range
of additional functions, is considered as it can easily linked with our Android application.
Google’s Firebase service is tightly linked with its Google Cloud server. In the context of
this study, Firebase is a crucial tool for meeting the needs of data storage and performance
monitoring. As a crucial component of the Google Cloud service portfolio, Firebase not
only guarantees safe and scalable data storage but also improves the entire functioning
of the application

5 Implementation

The decision-making engine is one of the main offloading modules in the proposed design.
The purpose of the decision-making engine is to determine whether a task should be of-
floaded to the cloud environment or completed locally. It describes task outsourcing that

9

Figure 3: Cloud and Local Parameters

10

prioritises completion time and energy consumption above all else. Job execution in a
mobile environment must satisfy the user’s needs. Consequently, it must meet the user-
specified deadline hence whenever the user hits the DME the offloading code is triggered
to make the decision based on the data size of the video streaming.

5.1 Tools and Technologies Used

The implementation heavily relies on the incorporation of multiple asynchronous func-
tions, which are instrumental in ensuring the seamless execution of the application’s tasks
while concurrently managing secondary tasks. This combination of specific development
tools and environment specifics results in an application that is designed to operate ef-
fectively in terms of both its technical infrastructure and its user-facing features.

• Android Studio

The fundamental Android application serves as the basis for the experiment, with
its implementation on the Android emulator it allows seamless connection to the
application’s underlying source code. Even though the application’s APK can be
easily installed on a tangible mobile device for testing purposes, the emulator is used
here for this experiment. Android Studio Code, specifically version 2022.2.1 Patch
2 Flamingo, has been used as the main environment for development. Integral to
this configuration is the incorporation of a 64-bit server Virtual Machine suppor-
ted by the OpenJDK Virtual Machine. We have used the Pixel3a emulator for
application deployment, which simulates the characteristics of the intended device.
This virtual device is set up to utilize Android API 34 Google APIs. Importantly,
the application’s architecture is supported by version 8 of the JAVA programming
language. The application is launched on Google Pixel API extension level 7 x86 64.

• Firebase Storage
The fact that Firebase serves as a cloud-based storage medium for crucial data
produced during the algorithm’s execution is important. Two tables, the ”Offload
Records” table and the ”Firebase Database” table, are systematically kept in order
to support thorough record-keeping. The former is meant to carefully record each
choice the algorithm produces. The table has parameters like bandwidth , latency,
time consumed, battery level and so on.This table serves as a visual depiction
of execution time on both local and cloud platforms, providing insight into the
effectiveness of the algorithms. Figure 3 above depicts the same.

• GitHub
The code is pushed to GitHub to control the version and easy deployment of CI
/CD pipeline to make most use of the AWS Web services for cloud platorm.

• AWS Cloud Service For the AWS Services we use Lambda function to integrate
with the cloud instance , API gateway post resource action is helps trigger the
lambda function.Figure 4 gives an sight of the Lambda function used to trigger the
API Gateway

On the other hand, the ”Database” table functions with greater precision. Its archi-
tecture centres on retaining a single record for each task, with changes being initiated by

11

Figure 4: Decision Engine - Offloading process flow

12

Figure 5: AWS Lambda function

either a change in performance or by the algorithm’s identification on the data size for
subsequent executions to offload task. This table’s basis is made up of vital information
including bandwidth, latency, time , performance metrics, and details about the execu-
tion environment.Figure 3 can be referred for the same. Significantly, Firebase’s powerful
capabilities go beyond storage and provide information on how much of the CPU is being
used overall when an application is being run. Additionally, it offers graphical visualiza-
tions of changes in reaction times for the program, adding to a thorough analysis of its
performance dynamics.

Virtual Machine (VPC)

CPU Quad-core processor

Memory 16GB

Cores 12

Table 1: Virtual machine Configuration

Deeply integrated into Google’s cloud architecture, Firebase emerges as a crucial partner,
enhancing the application’s effectiveness with advanced data management and analytics
capabilities. Its seamless integration strengthens the data-centric aspects of the study,
assuring the best use of resources and producing insightful data that aids in making well-
informed decisions.

13

5.2 Algorithm 1 - Task execution

The above pseudo-code is all about the decision-making engine on how the task execution
will happen either on the cloud or local environment based on the data size of the task.
The set of tasks with the execution time (t) is the input.

The algorithm will first check if the condition related to task characteristics (δ and ϕ) is
met, If yes then avoid offloading the task which is mentioned under Step 1. If No then
it will decide to execute locally based on Step 2. If not suitable then the algorithm will
calculate the performance of executing the task in the cloud and decide if offloading is
needed or not under Step 3. If none of the above conditions are met then the task will
not be offloaded as per Step 4 letting the optimal execution environment for each task
based on the factors of resource availability and efficiency.

14

5.3 Algorithm 2 - Energy Consumption

Figure 6 of of Pseudo code computes the overall energy consumption based on the decision
engine. If the decision is to ”offload,” the energy consumption of the task in the cloud
is calculated. If the decision is not to ”offload,” the energy consumption of the task in a
mobile environment is calculated and the task is executed. Finally, it calculates the total
energy consumption (T) of the activity by combining the energy consumption from both
environments.

The below flowchart under Figure: 4 represents the working of the decision engine.
On HD video streaming say of data size 4MB consumes is played, the bandwidth is of
2-5 Mbps and the playback time be 60-120 seconds , battery percentage as 70 percent
,under 4G network. The Decision engine will determine the data size required to reduce
the energy and the latency deciding to offload it remotely on the handheld device or send
it to Cloud platform with the resource utilization. The Data size is taken into account by
the engine and it the size condition matches then the decision to offload is made on either
cloud and remotely. Offloading under cloud platform reduces the latency and energy
consumption for better resource utilization of the android device.

15

Figure 6: Algorithm 2

6 Evaluation

Under this session, the proposed architecture is evaluated and analyzed in order to check
the performance of the device with respect to the parameters such as energy consumed
and completion time taken to perform a high computational task. For this experiment,
we have emulated the results using android studio’s emulator which is Google Pixel and
Pixel Pro. Different emulators are used to ensure the results perform on various types.

6.1 Energy Consumption

Over the testing performed on the virtual machine , it is observed that the decision engine
determines the size to offload the task either locally or on cloud. Meanwhile it is seen the
energy for data size ranging from 7MB of video data to 15GB.Considering an example of
Netflix which streams HD video , the program uses around 1GB data for every 60minutes
video.With respect to this the battery consumed goes upto 24 percent on the streaming
for about 30 minutes on 4G data for a HD video of 1080p . On the otherside the same
streaming when offloaded to cloud is observed to consumed more on 4G and a difference
of about 10 joules less on Wifi.

6.2 Time Consumption

On testing with the proposed algorithm , the power consumption of the CPU on the local
mobile environment and the cloud is shown in the below graph.It is shows that the by
offloading the task based on the data size will result in lower energy consumption on the

16

Figure 7: Energy consumption

local device. This ultimately shows reduced CPU and memory utilization. The hardware
and network parameters are subject to consideration for efficiency.

6.3 Overall Performance Observation

Graph 8 represents the overall battery and time consumed on different networks to offload
the HD video streamed by the user.IT is observed that the offloading over cloud platform
lets the mobile performance better with its low energy consumed. This showcase the
better resource utilization of the device which ultimately directs to better user experience
and more task performance. Figure 9 depicts the CPU performance and the memory of
the mobile device on emulating the offloading task.The testing is performed both on Wifi
and 4G network with 1080p Video Streaming from 60 seconds to 1800 seconds.

6.4 Discussion

In our research project, experiments using the DSBA method are largely focused on
examining the possible advantages of taking data size into account while offloading work-
loads for demanding computing activities to mobile devices. Researchers lack much at-
tention to this specific issue until now. While earlier research, like that of Sani (n.d.),
has mostly concentrated on elements like bandwidth and latency, the topic of data size
is still largely unknown. We tried to close this gap by proving that data size may be a
crucial variable in the world of mobile computing via the course of our project.

The testing results show significant reductions in energy usage and execution times,
particularly in circumstances which is required by high demanding activities like HD

17

Figure 8: Offload time

Figure 9: Overall Energy Consumption

18

Figure 10: CPU- Performance

video streaming or high end gaming. Although we are showcasing the emulator from
the virtual studio in this report, the experiments can be used in Android smartphones
for testing. The efficacy of the experiment has been improved taking into account the
data-size which was not considered in the research Sani (n.d.), However we have largely
taken into account the network parameters referred to in the above research.

We also explored trials on fog computing, which suggest offloading to edge devices as
a viable remedy. These fog-based offloading methods do, however, have certain limita-
tions, Their effectiveness can be called into doubt by elements like network connection
and Heterogeneous environment. Fog devices are also inherently vulnerable to security
flaws because of their edge-of-the-network location, especially when it comes to sensitive
data. Our innovative method, which is based on approaches for offloading computing
chores depending on data size, results in a quicker and more effective solution. The pro-
gram shows the flexibility to react dynamically to changing network circumstances across
numerous connection choices, such as 4G, WiFi, and LTE. This flexibility guarantees the
best decision-making depending on the capabilities of the gadget in certain situations.

Our experiments demonstrate that the smaller data tasks can be executed locally while
offloading bigger data tasks to the cloud. This careful balancing decision can effectively
be done by better resource utilization, latency reduction, and low energy consumption.
Users can thus have faster reaction times and shorter wait times while doing data-intensive
operations. This experiment showcases how a data size-aware method can significantly
improve process efficiency and support the importance of data processing within the
context of offloading task.

19

7 Conclusion and Future Work

In conclusion, our research effort uses the novel DSBA method to investigate how data
size affects task offloading for computationally intensive tasks on mobile devices. While
this feature has often been disregarded in other research, this testing clearly demon-
strated its critical significance. Our application proves its usefulness in boosting overall
efficiency and time-consciousness by taking into account data size along with elements
like bandwidth and latency. We have shown via extensive studies that data size awareness
may significantly reduce execution time and energy usage, especially for energy-intensive
workloads like HD video streaming and high-end gaming. Our algorithm’s capacity to
constantly adjust to changing network circumstances and device capabilities further rein-
forces its usefulness. As a future work we can consider developing adaptive load balancing
mechanisms that can distribute the offloading tasks based on both data size and compu-
tational resources on different network conditions.This can enhance the user-experience
to adapt in the dynamic environments.

References

Amir Vahid Dastjerdi, R. N. C. (n.d.). A context-aware offloading framework for hetero-
geneous mobile cloud.

Andrew (2018). Mobile task offloading based on bandwidth and battery availability.

Gilsoo Lee, W. S. (2019). An online optimization framework for distributed fog network
formation with minimal latency.

Guillermo Valenzuela, P. S. (2018). Mobicop: A scalable and reliable mobile code of-
floading solution.

Ibrahim Alghamdi, C. A. (2019). Time-optimized task offloading decision making in
mobile edge computing.

Jia Yan, Y. J. Z. (2020). An online optimization framework for distributed fog network
formation with minimal latency.

Junwen Lu, Yongsheng Hao, K. W. Y. C. Q. W. (2022). Dynamic offloading for energy-
aware scheduling in a mobile cloud.

Liu, J. and Mao, Y. (2016). Delay-optimal computation task scheduling for mobile-edge
computing systems.

Meixia Tao, Jia Yan, Y. J. Z. (2019). Optimal task offloading and resource allocation in
mobile-edge computing with inter-user task dependency.

Mohammad Yahya Akhlaqi, Z. B. M. H. (2023). Task offloading paradigm in mobile edge
computing-current issues,adopted approaches, and future directions.

Noor, T. H. (2018). Mobile cloud computing: Challenges and future research directions.

Rajkumar Buyya, B. Z. (2018). Augmentation techniques for mobile cloud computing:
A taxonomy, survey, and future directions.

20

Rajni Jindal, Neetesh Kumar, H. N. (2020). Mtfct: A task offloading approach for fog
computing and cloud computing.

Sani, M. A. B. (n.d.). Dme: Technique for computation offloading in mobile cloud
computing.

Su Hu, Y. X. (2021). Design of cloud computing task offloading algorithm based on
dynamic multi-objective evolution.

Suzhi B, Y. J. Z. (2019). Computation rate maximization for wireless powered mobile-
edge computing with binary computation offloading.

Taha Alfakih, M. M. H. (2020). Task offloading and resource allocation for mobile edge
computing by deep reinforcement learning based on sarsa, Concurrency and Computa-
tion: Practice and Experience 8: 11.

21

	Introduction
	Related Work
	Related work on Mobile Cloud Computing
	Related work on Offloading task on Mobile Device

	Methodology
	System Model
	Major components of this proposed system

	Computational Algorithm

	Design Specification
	Local Environment - Energy Consumed
	Cloud environment - Energy consumed
	Overall Energy consumption
	FireBase Parameters

	Implementation
	Tools and Technologies Used
	Algorithm 1 - Task execution
	Algorithm 2 - Energy Consumption

	Evaluation
	Energy Consumption
	Time Consumption
	Overall Performance Observation
	Discussion

	Conclusion and Future Work

