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Efficient Calibration of Implied Volatility 

Trinh Anh Tuan 

X22117865 

 

Abstract: This paper aims to investigate a tool for option traders using Dumas, Fleming and Whaley 

formula with different models. This tool can create a dashboard for implied volatility so that helps them 

to observe the change of implied volatility in the option market. Thus, the traders can have a better view 

about what is happening in the market and thus help them to give better decisions for their investments. 

Besides, the dashboard can also a guideline about the risks so that risk managers can use it as a tool for 

risks management. This paper also figures out that binominal function that commonly used to calculate 

American option nowadays takes too much time to run and not suitable for application development 

when we need to work with large datasets. In this paper, it takes more than 40 hours of calculation for 

American option and this needs to improve in further studies. 

1 Introduction:  

There are three main instruments in the financial market including derivatives, equity and debts. This 

paper will focus on derivatives products, especially options as it helps investors to hedge risks or used 

for speculation purposes. The Black-Scholes model, also known as the Black-Scholes-Merton model, is 

a mathematical formula used to calculate the theoretical price of European-style options. It was 

developed by economists Fischer Black and Myron Scholes in collaboration with mathematician Robert 

Merton in 1973. The model is widely regarded as a groundbreaking contribution to the field of financial 

economics and has become a fundamental tool in option pricing and risk management. The Black-

Scholes model provides a way to estimate the fair market value of an option based on various factors, 

including the underlying asset's price, the option's strike price, the time remaining until the option's 

expiration, the risk-free interest rate, and the asset's volatility. The model assumes that financial markets 

are efficient, and that the underlying asset's price follows a geometric Brownian motion, which means it 

has a continuous and random price movement over time. 

The Black-Scholes model has had a profound impact on modern finance by providing a theoretical 

framework for option pricing and risk management. It has paved the way for further advancements in 

derivatives pricing and the development of sophisticated financial models used in various aspects of 

investment and risk analysis. However, it's important to note that the Black-Scholes model has some 

limitations and assumptions that may not always perfectly reflect real-world market conditions. As a 

result, practitioners often use variations and extensions of the model to better suit specific situations. 

Moreover, the Black-Scholes model is an essential tool for volatility trading, allowing traders to make 

informed decisions based on implied volatility data. Implied volatility reflects market expectations of 

future price fluctuations, and traders use this information to identify potential opportunities in volatility 

trading. Furthermore, the model facilitates the design and evaluation of various option strategies, 



enabling traders to assess risk-reward profiles and potential outcomes for different strategies before 

executing trades. This feature enhances decision-making and aids in creating optimized option trading 

strategies. Beyond traditional financial options, the Black-Scholes model has found relevance in real 

options analysis, aiding businesses in making optimal investment decisions amid uncertainty. This 

analysis considers the value of strategic decisions and investments with flexibility to adapt to changing 

market conditions.  Despite its assumptions and limitations, the Black-Scholes model's versatility and 

widespread adoption make it an indispensable tool in contemporary finance and investment decision-

making. Variations and extensions of the model have been developed to address specific market 

conditions and complexities. 

The author will try to create a tool that can support option trader in observing implied volatility. In order 

to achieve the goals mentioned above, the rest of this paper will be presented in four parts. The first part 

is related to literature review. In this part, I will go through some past research that has the same topic 

as my paper and then summary some main points of it. This benefit me to gain deeper knowledge about 

implied volatility and its currently application in nowadays financial market. The next part is 

methodology, and, in this part, I will present about my dataset and the process that I applied in my paper. 

Then the third part is design specification where I will show the way I assess the models. Next, I will 

talk a little bit about the solution and application for the tool I develop in this paper. The fifth part is the 

evaluation part, where I will present the results of my research and analyze it. In the last part, based on 

the results analysis in above part, we can have some conclusions and some recommendations for future 

paper to workout.  

2 Literature review:  

The introduction of the Black-Scholes model in 1973 marked a significant milestone in the evaluation 

of option prices, revolutionizing the financial market during that era. Initially, the model lacked 

consideration for dividend impact on option prices, but it quickly evolved with the addition of dividend 

yield to better align with real market dynamics by (Black and Scholes, 1973). Over the years, researchers 

have explored various adaptations and applications of the Black-Scholes model to suit different financial 

scenarios. 

(Cox, Ross and Rubinstein, 1979) published binominal function that help to calculate value of American 

option. This formular is then widely used and applied till now. The formular is then developed and 

improved more in order to improve the calculating ability and also save more time [3]. In 1989, (Breen, 

1991) tried to improve the efficiency of binominal method by reducing the area in which to search for 

early exercises opportunities but actually this method was for a long time ago. One paper published in 

2019 by (Shang and Byrne, 2019) was developed a technique to reduce time for performing American 

option and the result was very good as it can reduce running time from 18 mins to 3 seconds. (Popuri et 

al., 2018) even developed a package in R to support users reduces time for running option data. This 

package was written by Sai and his team, using parallel computing to reduce the time.  

In 1980, (Beckers, 1980) conducted a study to examine the relationship between historical instantaneous 

volatility of the underlying stock and stock price, using a dataset from the S&P 500 index spanning from 

1972 to 1977. The findings revealed an inverse correlation between these variables. Subsequently, in 



2006, (Yang, 2006) investigated the unbiased influence of implied volatility in forecasting future option 

prices, shedding further light on the model's applicability. 

Several research papers have explored the practical applications of the Black-Scholes model in the 

financial market. (Srivastava and Shastri, 2018) tested the model's accuracy using a dataset of 30 stocks 

over 18 trading days, highlighting its significant relevance in real-world market scenarios. Another study 

focused on European call options in the Australian market, analyzing data from a 5-year period between 

2003 and 2007. The results not only confirmed the model's usefulness in real financial settings but also 

emphasized the significance of implied volatility in managing investment portfolios. 

In 1996, (Dumas, Fleming and Whaley, 1996) proposed research that shown some difference models to 

predict implied volatility using Time to maturity and Strike price and the results indicated that the model 

is not accurate as the ad hoc Black Scholes model. However, this research was done in 1996 and at that 

time there are not any machine learning techniques were applied in the research. In my paper, I want to 

go further with the model in this research and combine it with different modern models to see if it can 

improve the accuracy of predicting implied volatility using Time to maturity and Strike price. If these 

models work well, it can be used as a tool to support option traders in decision making and also create a 

dashboard to help traders in finding investment opportunities.  

In addition to utilizing the Black-Scholes model for option price evaluation, several research papers have 

explored the application of implied volatility in the financial domain. (Hentschel, 2003) focused on 

reducing estimation errors for implied volatility. It proposed a feasible GLS estimator that effectively 

mitigates errors and biases in the calculation of implied volatility. Similarly, (Nabubie and Wang, 2023) 

introduced a technique to estimate implied volatility through the development of a robust grid-based 

inverse algorithm, resulting in high accuracy. 

Furthermore, lagged implied volatility has emerged as a valuable trading signal for predicting stock 

returns in the exchange market. (Ammann, Verhofen and Süss, 2009) analyzed US equity options, 

incorporating factors such as firm size, market valuation, and lagged implied volatility. The research 

highlighted a significant relationship between stock returns and implied volatility, a finding reiterated in 

numerous other studies across different datasets. 

For instance, (Dai et al., 2020) investigation on Japan's exchange market data from 2000 to 2017 

emphasized the strong correlation between stock market implied volatility and stock volatility. (Feng, 

Zhang and Friesen, 2015) developed deeper into the analysis by examining the stock return and implied 

volatility smile slope of call and put options. Their paper revealed that the slope-stock return relation is 

most pronounced for stocks with high belief differences. Such studies underscore the growing interest 

in exploring implied volatility's role and its implications in various financial contexts. 

Implied volatility, along with its counterpart, the implied volatility surface (IVS), holds significance in 

various analysis applications. (Guo et al., 2022) introduced a trading system based on the implied 

volatility surface, using SPY option data. This system demonstrated strong performance, yielding higher 

returns compared to trading underlying assets. 



In another research paper, (Badshah, 2009) explored the dynamics of implied volatility surfaces, 

revealing three main factors that influence them. Firstly, the volatility level factor systematically moves 

the entire IVS in the same direction. Secondly, the term structure factor generates shifts in the slope of 

the term structure of different implied volatilities. Lastly, the jump-fear factor affects the steepness of 

the IV smirk/skew. These three effects were also corroborated in (Kim et al., 2010). 

Furthermore, (Wen and Zhou, 2021) focused on utilizing dynamic implied volatility surface to enhance 

the price banding efficiency for the Fat finger problem. The system exhibited strong performance and 

outperformed other similar prediction systems. The exploration of implied volatility surface dynamics 

and its application in various contexts showcases the growing interest and potential for practical use in 

financial analysis. 

3 Research methodology:  

• Step 1: Crawl data: the main dataset used for this study is the options dataset with options data 

downloaded from the website OptionData [9]. The downloaded data is the free sample data for 

the six-month period between January to June 2013 for over three thousand stocks traded on the 

New York Stock Exchange. Besides, two additional datasets are crawled for the use of calculation 

on project are the 1-year US Treasury bond rate and the dividend value paid per stock for the 

year of 2013. The 1-year Treasury bond rates are taken for each trading dates in 2013; and are 

extracted from Fed information API using the pandas_datareader packgage [10]. This would be 

taken as risk-free rate for option and implied volatility calculation formula. The dividend yield 

is obtained from dividend data paid by US stocks recorded on the Yahoo Finance API using the 

Python yfinance package. [11]. 

• Step 2: Data pre-processing: the dataset downloaded from Option Data is six-month data 

including all stocks listed on New York Stock Exchange so it will be too heavy to run on my 

local machine. Thus, in this study, I just use the 18 stocks data include: MSFT, AAPL, V, UNH, 

JPM, JNJ, WMT, PG, HD, CVX, KO, MRK, CRM, MCD, CSCO, NKE, DIS, INTC. They are 

18 biggest stocks listed on Dow Jones as recorded as of 15 July 2023. I will use the dataset of 

these 18 stocks extracted from Option Data to calculate, predict and draw the implied volatility 

surface. The risk-free rate is also extracted as the quoted date in the dataset and it will be changed 

through date. For the dividend yield, I use the dividend yield extracted as the quoted date in the 

dataset. 

• Step 3: Scope and application selection: The dataset contains 2 types of file. The first type is 

the file that contains the information of stock option data that include 20 columns of variables. 

For this part, I just need the data about UnderlyingSymbol, UnderlyingPrice, Type, Expiration, 

DataDate, Strike, Bid, Ask. The second type contains the information about the date and price 

includes open price, high price, low price, close price and adjust price. For the calculation in this 

research, I will use close price. In order to make it easier to process, I merge these two types of 

file into one file that includes information about both stock and option price. 

• Step 4: Calculating the implied volatility: Based on the data extracted and prepared in above 

parts, I can calculate the implied volatility. In order to calculate the rate, we can base on past 

papers as references [12]. After calculating the implied volatility, I will use Dumas, Fleming and 

https://optiondata.org/


Download Upload Load 
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pandas_datareader  

Write 

Whaley formular to predict implied volatility using different models include linear regression, 

random forest, decision tree and gradient booting. 

• Step 5: Draw implied volatility surface: Based on the implied volatility calculated and 

predicted in step 4. I use package Plotly to draw 3D graphs. 

4 Design specification:  

4.1 Data processing pipeline 

In order to deal with the big volume of the dataset and ensure reproductivity of the code, I decided to 

use Google cloud computing platform to store and processing data. Specifically, data is stored on Google 

Drive and calculations are performed through Python kernel on Google Colab.  

High level view of data integration and processing are summarized below: 

Data 
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     Data  
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 Data  
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Figure 1: Data Processing Pipeline 

4.2 Model evaluation 

In order to assess the results of predicting implied volatility, I will use both root mean square error and 

r-squared.  

Root Mean Square Error (RMSE) is a commonly used statistical metric to assess the accuracy of 

predictions or forecasts in various fields, including statistics, machine learning, and econometrics. The 

RMSE method calculates the square of the differences between predicted and actual values, then takes 

the square root of the mean of these squared differences. This process ensures that both positive and 

negative errors contribute equally to the overall evaluation. In essence, RMSE represents the average 

magnitude of prediction errors, where a lower RMSE value indicates a closer fit between predictions and 

actual observations.The RMSE method is particularly useful when comparing the performance of 

different models or techniques for the same dataset. By calculating the RMSE for each model, one can 

objectively compare their accuracy and identify the model that provides the best overall fit to the data. 

In summary, RMSE is a valuable tool in quantitative analysis, allowing researchers, data scientists, and 

https://optiondata.org/
https://au.finance.yahoo.com/u/motley-fool/watchlists/dividend-growth-market-leaders?.tsrc=fin-srch
https://fred.stlouisfed.org/series/DTB1YR


analysts to gauge the accuracy and reliability of their predictions or forecasts and make informed 

decisions based on the performance of various models. 

R-squared, also known as the coefficient of determination, is a statistical measure used to assess the 

goodness-of-fit of a regression model to the observed data. It provides insight into how well the 

independent variables in a regression model explain the variability of the dependent variable. R-squared 

is a fundamental tool in regression analysis and is widely used in fields such as statistics, economics, 

and various scientific disciplines. R-squared is a valuable metric for several reasons. First, it provides a 

straightforward way to determine how well a regression model fits the data. A higher R-squared value 

suggests that a larger proportion of the variability in the dependent variable is captured by the model, 

indicating a better fit. Second, R-squared enables the comparison of different models to identify the one 

that best explains the data. However, it's important to note that a higher R-squared does not necessarily 

imply a better model, as it can be influenced by factors like overfitting. While R-squared is a useful 

measure, it has its limitations. It may not accurately reflect the model's validity if the chosen independent 

variables are not truly relevant or if the data has inherent variability that cannot be explained by the 

model. Therefore, it's essential to interpret R-squared in conjunction with other diagnostic tools and 

domain knowledge. In conclusion, R-squared is a valuable statistical tool for assessing the quality of a 

regression model's fit to observed data. It provides insight into how well the model captures the 

variability in the dependent variable and aids in model selection and comparison. 

5 Solution development:  

Through all the steps that I mentioned above, I want to develop a tool that can help option trader and 

other professionals investors to observe and monitor implied volatility so that can help them in figure 

out investment opportunities or manage the risks when they are entering financial markets. This tool can 

benefit both short term investors as they can investigate one day implied volatility or this tool can also 

benefit portfolio manager who want to invest their assets for long time period by looking at 6 months 

implied volatility. Based on the information provided by the tools, investors can decide whether to long 

or short the stocks. 

6 Evaluation:  

6.1 Compute and visualize implied volatility surface of Europe option 

In my research, I run and visualize 18 stocks but for the evaluation part in this report, I will just point 

out the surface for AAPL because the purpose of this paper is to create a dashboard for traders, not to 

analyze deeply in stock options. 

In order to support better for observing implied volatility surface, I visualized the implied volatility of 

stocks in different time set include 1 day, 1 week, 1 month and 6 months because when looking at the 

surface with both short term and long-term period, we can have a more practical view about the risks. 

Below is the surface for 1 day data of AAPL: 



 
Figure 2: EU option - AAPL - Implied Volatility: Black-Scholes Merton Model – 1day 

As can be seen in the call and put implied volatility surface above, we can see the shape of AAPL smooth 

and also implies the relationship between time to maturity, strike price with the implied volatility. We 

can also observe the smile shape in the surface. Continue to next visualization, we observe the surface 

for 1 week data of AAPL: 

 
Figure 3: EU option - AAPL - Implied Volatility: Black-Scholes Merton Model - 1week 

We can see that the shape of the smile in above surface is not as smooth as in the one day implied 

volatility surface but the smile still very clear. In general, we can still see the relationship between time 

to maturity, strike price and implied volatility. 

In the next analysis, we observe the surface for one month data and 6 months data of AAPL: 



 
Figure 4: EU option - AAPL - Implied Volatility: Black-Scholes Merton Model - 1month 

 
Figure 5: EU option - AAPL - Implied Volatility: Black-Scholes Merton Model - 6month 

Looking at one month and six months surfaces above, we can conclude that as the data becomes bigger, 

the noises for implied volatility will appear more but it also indicates the long term trend of implied 

volatility. Besides, the shape of the call surface seems to clearer compare to put surface. In theorical, the 

call surface and put surface of one stock would be similar but in real financial market, call and put may 

be different. 

6.2 Compute and visualize implied volatility for America option  

For American option, the shape of one day implied volatility surface is quired smooth. However, the call 

and put surface is very different. It can be seen in below implied volatility surface for one day of AAPL: 



 
Figure 6: AM option - AAPL - Implied Volatility: Black-Scholes Merton Model – 1day 

However, as I change the timeline longer into one month data, the implied volatility surface becomes 

very different and it is hard to predict the trend if we just use one month surface. The implied volatility 

surface of one month data is as below: 

 
Figure 7: AM option - AAPL - Implied Volatility: Black-Scholes Merton Model – 1month 

The reason for the ‘ugly’ shape of one month surface compare to one day surface because when I increase 

the timeline but the timeline is not long enough, there are more noises and these noises will make the 

shape of the surface become very ’ugly’, means that unpredictable and hard to detect the trend. However, 

when I keep increasing the timeline into three months, the shape becomes clearer. The implied volatility 

surface of three months data is as below: 



 
Figure 8: AM option - AAPL - Implied Volatility: Black-Scholes Merton Model – 3month 

As can be seen in the surface, we start to detect the trend of implied volatility and the shape become 

clearer, however, the smile shape still unclear so let just increase the timeline to six months and see the 

results below: 

 
Figure 9: AM option - AAPL - Implied Volatility: Black-Scholes Merton Model – 6month 

Now, with the six months implied volatility we see a clear shape and trend with the smile shape very 

clear in call option implied volatility surface. This prove that as the time increase, the noises become 

larger but when the data is larger enough, we can detect the shape of the surface clearer. For short term 

implied volatility, it has small noises, thus the shape is smooth.  



6.3 Predict European option implied volatility using machine learning method 

As mentioned in the methodology part, in this paper, I will use four models to apply into implied 

volatility computed and use these algorithms to predict and create implied volatility surface. The general 

summary as below: 

Table 1: Goodness of Fit for IV Prediction - EU Option 

Models 

EU Option  

RMSE R2  

Random Forest 0.131763 0.595669 <= best model 

Decision Tree 0.14239 0.527823  

Gradient Boosting 0.151075 0.468464  

Linear Regression 0.183144 0.218851  

 

Using root mean square error method to assess the accuracy of each model and we can see that Random 

Forest has the lowest root mean square error of about 13.13% and linear regression has highest root mean 

square error of 18.31%. Let go in detail into each model and we can have a deeper understanding about 

the above result. 

Below is the implied volatility surface that was created using Dumas – Linear regression model: 

 
Figure 10: EU Option - AAPL - Implied Volatility Surface: Dumas - Linear Regression 

We can see that the shape of implied volatility surface in linear regression is very smooth. The smile 

shape can be seen very clearly, and it also implied the significant relationship between strike price, time 

to maturity and implied volatility. 



After using linear regression model, I use Decision Tree model to predict and draw the surface and the 

result is shown as below: 

 
Figure 11: EU Option - AAPL - Implied Volatility Surface: Dumas - Decision Tree 

Looking at the surface above, we can see that its shape is not as smooth as the shape of linear regression 

but in general, we can still see the smile shape and detect the relationship between variables in the 

function. In fact, compare with the shape of actual implied volatility surface that I calculated and shown 

in the first part, we see that this shape more familiar to the actual surface, which could be more valuable 

to traders when it can be used in predicting implied volatility better than Linear Regression model. 

The third model that was used in my paper is Random Forest and the surface of Random Forest is as 

below:  



 
Figure 12: EU Option - AAPL - Implied Volatility Surface: Dumas - Random Forest 

We can see that the implied volatility surface generated from Random Forest have a similar shape to 

Decision Tree and in fact, Random Forest is the model that has highest accuracy level compared to three 

other models. The reason for this is because the tree models algorithm built in Random Forest and 

Decision Tree seem to more suitable for predicting option data. 

Gradient Boosting normally will have the accurate level nearly the same as Random Forest but in the 

situation of option prediction, the result shown the opposite way. The predicted value predicted from 

this model has the lowest accurate level compared to other. The implied volatility surface generated 

using Gradient Boosting is as below: 



 
Figure 13: EU Option - AAPL - Implied Volatility Surface: Dumas - Gradient Boosting 

In general, the shape of implied volatility surface generated from Gradient Boosting still familiar with 

other machine learning model, but it is not as smooth as the shape of Random Forest or Decision Tree.  

6.4 Predict American option implied volatility using machine learning method 

Compared to European option, American option is more complicate as it can be executed before the time 

to maturity and nowadays, most of options listed now are American option and by calculating implied 

volatility and visualize implied volatility surface for American option, this paper is a practical analysis 

to evaluate option. Thus, create a dashboard for professional investors in decision making for their 

investment and managing their portfolio. First, I use Regression model with the Dumas formular. The 

implied volatility surface is as below: 

 
Figure 14: AM Option - AAPL - Implied Volatility Surface: Dumas - Linear Regression 



Compare with the of European option with Dumas – Regression model above, the shape of American 

implied volatility is not total familiar but in general, we can still see the smile and the relationship 

between strike price, time to maturity and implied volatility. Call and put surface of AAPL looks like 

the same and this proves the theorical framework of option as the shape of call, put option for one stock 

should be similar. 

Come with American option that applied Dumas – Decision Tree, the shape of implied volatility is not 

as smooth as in Regression model, but it has higher accuracy level. The surface of Decision Tree as 

below:  

 
Figure 15: AM Option - AAPL - Implied Volatility Surface: Dumas - Decision Tree 

The implied volatility seems to have more noises, but it also indicates the real market situation because 

in the real financial market, there are so many noises that comes from the Asymmetric information, 

different analysis methods and different trading strategies of investors. In addition to the noises, the 

surface of call and put option is not too familiar and this is happened the same for predicting European 

option. 

The third model will be used to predict in this paper is Random Forest and this model indicates even a 

higher accurate level compared to Decision Tree model. The surface of Random Forest as below: 



 
Figure 16: AM Option - AAPL - Implied Volatility Surface: Dumas - Random Forest 

As can be seen in the chart above, the shape of Random Forest and Decision Tree is the same, but the 

Random Forest surface is smoother and displays the trend better. This can benefit investors in 

determining and monitoring the risks for their portfolio.  

Come to Gradient Boosting, the results were the same as in predicting for European option. Gradient 

Boosting model has the least accuracy level compared to Random Forest and Decision Tree. The surface 

for Gradient Boosting as below: 

 
Figure 17: AM Option - AAPL - Implied Volatility Surface: Dumas - Gradient Boosting 



Gradient Boosting still shows the smile shape and the call, put surface in this model quite similar to each 

other. This is true in theorical concept as the surface for call and put of one stock should be the same. 

This is a difference point of Gradient Boosting compared to Random Forest and Decision Tree as the 

call and put of these two models is not familiar.  

To generalize the prediction of American option with different machine learning model, we have the 

above numbers: 

Table 2: Goodness of Fit for IV Prediction - EU and AM Option 

Models 

EU Option American Option  

RMSE R2 RMSE R2  

Random Forest 0.131763 0.595669 0.068114 0.871866 <= best model 

Decision Tree 0.14239 0.527823 0.087163 0.790176  

Gradient Boosting 0.151075 0.468464 0.106985 0.683891  

Linear Regression 0.183144 0.218851 0.142467 0.439447  

 

Using root mean square error method, we can see that Random Forest has the lowest RMSE of 6.8% and 

Linear Regression model has the highest RMSE of 14.24%. Decision Tree rank in second position with 

8.7% of RMSE and Gradient Boosting ranks the third in the list with 10.7% of RMSE.  

7 Conclusion:  

This paper can conclude that Dumas, Fleming and Whaley formula is valuable in predicting implied 

volatility. The results for both European option and American option as Random Forest has highest level 

of accuracy and Linear Regression has lowest. These results are explainable because the relationship 

between strike price, time to maturity and implied volatility is not linear. Thus, other machine learning 

methods will have better results compared to Linear Regression model. Secondly, the longer time period 

can lead to more noises for the surface and might make investors struggle in using the platform but it 

also implements a long term trend and it can be useful for risk managers. The implied volatility surface 

of one day has less noises compared to longer time implied volatility. The shape of one day surface is 

smoother. Investors can combine both these surfaces from one day to six months in order to better 

understand the trend and the path of implied volatility, so that they can make better decisions for their 

investments.  

In addition, the paper uses large amounts of data to create a dashboard that can be a useful tool for 

investors. Short term investors might find that one day implied volatility surface more useful for them. 

Longer term implied volatility surface such as 6 months implied volatility surface can be more useful 

for portfolio managers who care more about long term risks and when to minimize the risks for their 

investments. However, the time taken to run the program is too long and might not be suitable for real 

time tool. This investigation shows that the binominal function that is commonly used nowadays takes 

so much time to run. This can be my further study as I can research deeper about the formular and find 

some solutions to reduce the calculation times for American option. This will be an interesting topic as 



it can benefit not only for my application but also for other researchers who have problem when 

calculating implied volatility for American option. 
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