

Configuration Manual

MSc Research Project

FinTech

TING YI LIU
Student ID: X21177899

School of Computing

National College of Ireland
Supervisor: Theo Mendonca

 National College of Ireland
 MSc Project Submission Sheet

 School of Computing

I hereby certify that the information contained in this (my submission) is
information pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the
relevant bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students
are required to use the Referencing Standard specified in the report template.
To use other author's written or electronic work is illegal (plagiarism) and may
result in disciplinary action.

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Assignments that are submitted to the Programme Coordinator Office must be
placed into the assignment box located outside the office.

Student Name: TING YI LIU
Student ID: X21177899
Programme: MSC FINTECH Year: 2022/23
Module: MSC Research Project

Supervisor: Theo Mendonca

Submission
Due Date:

August 14, 2023

Project Title: Innovative User Incentive Models in Blockchain-Based
Deckles Bike Sharing System

Word Count: 1757 Page Count 15

Signature: TING YI LIU

Date: 14/08/2023

Attach a completed copy of this sheet to each project (including
multiple copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid.
It is not sufficient to keep a copy on computer.

□

Office Use Only
Signature:
Date:
Penalty Applied (if
applicable):

2

Configuration Manual

Ting Yi Liu
x21177899

1. Introduction

This user configuration manual outlines in detail how to set up and configure the Bike Sharing Smart
Contract an Ethereum-based decentralized application (Dapp). Through a reward and penalty structure, the
smart contract promises to change the bike sharing sector by motivating responsible user behavior and
boosting active involvement.

2. System Requirements

2.1. Hardware

• MacBook Pro (Retina, 13-inch, Early 2015)
• Mac OS Big Sur version 11.7
• Memory - 8 GB 1867 MHz DDR3
• Storage 128 GB SSD

2.2. Software

• Install Ganache: Download and install Ganache from the official website.
• Remix IDE: Open your web browser and go to the Remix IDE website

(https://remix.ethereum.org/). Remix is a browser-based IDE, so no additional installation is
needed.

3. Configuration Steps

3.1. Step 1 - Launch Ganache

After installation, launch the Ganache program. It will create a local blockchain network with predefined
accounts and 100 test Ether each for transactions.

3

Figure 6: Ganache set up

https://remix.ethereum.org/

3.2. Step 2 - Deploy the Smart Contract

Compile and deploy the Bike Sharing Smart Contract to the Ganache network using the Remix IDE
development environment. Go to the “Deploy & Run Transactions” tab on the left-hand side. Under the
“Environment” section, select “Dev - Ganache Provider” as the environment and enter the connection URL
for Ganache (http://127.0.0.1:7545).

In Remix IDE, go to the "Solidity Compiler" tab and select the version of Solidity used in your smart
contract. Then, navigate to the "Deploy & Run Transactions" tab again. Click "Deploy" to deploy the
contract to the Ganache network.

4

Connect Remx to Ganache

Deploy the smart contract

3.3. Step 3 - Interact with the Smart Contract

Users can start interacting with the smart contract using MetaMask to complete transactions and run
functions once it has been deployed. Through the smart contract's functionalities, users may do operations
such as user registration, starting and ending rentals, making payments, and redeeming rewards.

3.3.1.Add a Renter

To add a new renter, fill in the required parameters (walletAddress, firstName, lastName, canRent, active,
balance, due, startTime, endTime) and click on the function button.

You will get the renter's information stored in the renters mapping. This includes the firstName, lastName,
canRent, active, balance, due, startTime, endTime, penalty, and the Rewards struct associated with that
walletAddress. The renter's name is "Ting Yi Liu," and they have the ability to rent a bike (canRent: true).
However, currently, they are not actively renting a bike (active: false) and have no pending balance (due: 0).
There are no previous rental records, so the startTime, endTime, and penalty are all set to 0. Additionally, the
renter has not completed any rides or earned any rewards yet (rewards: rideCount: 0, rideDistance: 0,
leaderboardRewards: 0, leaderboardPositions: [false, false, false]).

5

Add a Renter

Retrieve the details

3.3.2.Start Renting a Bike

To start renting a bike, provide the renter's wallet address as a parameter in the "startRental" function and
click the function button.

After start a rental. we can check the information. The renter currently cannot rent a bike (canRent: false).
They have an ongoing rental session (active: true) that started at startTime: 1691057043 (Unix timestamp).
The renter has no pending balance (due: 0), no penalty (penalty: 0), and has not completed any rides or
earned rewards yet (rewards: rideCount: 0, rideDistance: 0, leaderboardRewards: 0, leaderboardPositions:
[false, false, false]).

6

Start Renting a Bike

“Renters” information after start renting a bike

3.3.3.Deposit

The deposit function allows users (renters) to add funds to their account balance in the smart contract by
sending Ether with a transaction. The deposited amount is added to the user's existing balance, which can be
used to cover pending dues or future bike rentals. As shown below, we added 5 ETH to deposit.

The balanceOfRenter function allows the smart contract to retrieve and display the balance of a specific
renter's wallet address within the bike sharing system. And the balanceOfCompany function retrieves the
balance of the company's wallet address in the smart contract. As figure below, we can see balance of renter
is 5 ETH and balance of company is 100 ETH.

7

Deposit

Balance

In Ganache, we can see the account balance dropped 5 ETH.

8

Ganache account balance

Ganache transaction detail

3.3.4.Stop Renting a Bike

To stop renting a bike, provide the renter's wallet address, the distance traveled, and whether there was a
violation as parameters in the "stopRental" function. Then, click the function button.

The renter's name is Ting Yi Liu. Currently, the renter cannot rent a bike (canRent is false) and is not actively
using a bike (active is false). The renter's account balance is 5 Ether. The renter has a pending due amount of
0.01 Ether. The startTime indicates that the renter started a bike rental at a specific timestamp, while
endTime shows the end time of the rental. The penalty value is currently 0, indicating no penalty has been
applied. The rewards tuple shows that the renter has completed 1 ride (rideCount: 1) and covered a total ride
distance of 1 kilometer (rideDistance: 1). The renter has earned 0 leaderboard rewards and holds the first
position on the leaderboard (leaderboardPositions: [true, false, false]). Additionally, the renter has no violated
the rules (violation: false).

9

Stop renting a bike

“renters” information after stop renting a bike

canRentBike function is false.

Make payment

10

canRentBike function

make payment function

after making payment

The balance of renter and company

11

“renters” information after making a payment

Balance of renter and company

can rent true

12

Ganache account balance

canRentBike function

4. Smart Contract Sodility Code:

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;

contract BikeChain {

 address owner;
 address payable companyWallet; // Company (B) wallet address

 constructor() {
 owner = msg.sender;
 companyWallet = payable(0x903A761457f73B9832F70609f7BB02166035A3A0); // Replace this with
the actual company wallet address
 }

 // Add yourself as a Renter

 struct Renter {
 address payable walletAddress;
 string firstName;
 string lastName;
 bool canRent;
 bool active;
 uint balance;
 uint due;
 uint startTime;
 uint endTime;
 uint penalty;
 Rewards rewards;
 }

 struct Rewards {
 uint rideCount; // Number of rides
 uint rideDistance; // Total ride distance in kilometers
 uint leaderboardRewards; // Rewards for leaderboard winners
 bool[3] leaderboardPositions; // Keeps track of leaderboard positions for top 3 riders
 bool violation;
 }

 mapping (address => Renter) public renters;
 mapping (address => mapping(uint => uint)) public monthlyRideCount; // Monthly ride count for each
user
 uint256 public leaderboardReward = 5 ether; // Reward for leaderboard winners
 uint256 public rewardPerRideCount = 0.1 ether; // Reward per 10 rides
 uint256 public rewardPerDistance = 0.1 ether; // Reward per 10 kilometers
 uint256 public penaltyPerViolation = 0.5 ether; // Penalty for rule violation

 // Create a new Rewards struct
 function createRewards() private pure returns (Rewards memory) {
 return Rewards(0, 0, 0, [false, false, false], false);
 }

 function addRenter(
 address payable walletAddress,
 string memory firstName,
 string memory lastName,
 bool canRent,
 bool active,
 uint balance,

13

 uint due,
 uint startTime,
 uint endTime
) public {
 renters[walletAddress] = Renter(
 walletAddress,
 firstName,
 lastName,
 canRent,
 active,
 balance,
 due,
 startTime,
 endTime,
 0,
 createRewards() // Use the createRewards function to initialize the Rewards struct
);
 }

 // Start rent a bike
 function startRental(address walletAddress) public {
 require(renters[walletAddress].due == 0, "You have a pending balance.");
 require(renters[walletAddress].canRent == true, "You cannot rent at this time.");
 renters[walletAddress].active = true;
 renters[walletAddress].startTime = block.timestamp;
 renters[walletAddress].canRent = false;
 }

 // Stop rent a bike
 function stopRental(address walletAddress, uint256 distance, bool violation) public {
 require(renters[walletAddress].active == true, "Please start rent a bike first.");
 renters[walletAddress].active = false;
 renters[walletAddress].endTime = block.timestamp;
 setDue(walletAddress);
 updateRewards(walletAddress, distance, violation); // Call updateRewards function when return bike
 updateMonthlyRideCount(walletAddress); // Update monthly ride count
 updateLeaderboard(walletAddress); // Update leaderboard positions
 updatePenaltyViolation(walletAddress, violation); // Update penalty violation
 }

 // Get total duration of bike use
 function renterTimespan(uint startTime, uint endTime) internal pure returns(uint) {
 return endTime - startTime;
 }

 function getTotalDuration(address walletAddress) public view returns(uint) {
 require(renters[walletAddress].active == false, "Bike is currently rented.");
 uint timespan = renterTimespan(renters[walletAddress].startTime, renters[walletAddress].endTime);
 uint timespanInMinutes = timespan / 60;
 return timespanInMinutes;
 }

 // Get Contract balance
 function balanceOf() view public returns(uint) {
 return address(this).balance;
 }

 // Get Renter's balance
 function balanceOfRenter(address walletAddress) public view returns(uint) {
 return renters[walletAddress].balance;

14

 }

 // Get the balance of the company's wallet
 function balanceOfCompany(address companyAddress) public view returns (uint) {
 return companyAddress.balance;
 }

 // Set Due amount
 function setDue(address walletAddress) internal {
 uint timespanMinutes = getTotalDuration(walletAddress);
 uint fiveMinuteIncrements = timespanMinutes / 5;
 renters[walletAddress].due = fiveMinuteIncrements * 0.01 ether;
 }

 function canRentBike(address walletAddress) public view returns(bool) {
 return renters[walletAddress].canRent;
 }

 // Deposit
 function deposit(address walletAddress) payable public {
 renters[walletAddress].balance += msg.value;
 }

 // Make Payment
 function makePayment(address walletAddress) payable public {
 require(renters[walletAddress].due > 0, "You do not have anything due at this time.");
 require(renters[walletAddress].balance > msg.value, "You do not have enough funds to cover payment.
Please make a deposit.");

 // Transfer the due amount to the company wallet
 companyWallet.transfer(renters[walletAddress].due);

 renters[walletAddress].balance -= renters[walletAddress].due;
 renters[walletAddress].canRent = true;
 renters[walletAddress].due = 0;
 renters[walletAddress].startTime = 0;
 renters[walletAddress].endTime = 0;
 }

 // Update rewards
 function updateRewards(address walletAddress, uint256 distance, bool violation) internal {
 renters[walletAddress].rewards.rideCount++;
 renters[walletAddress].rewards.rideDistance += distance;
 uint256 rideCountRewards = (renters[walletAddress].rewards.rideCount / 10) * rewardPerRideCount;
 uint256 distanceRewards = (renters[walletAddress].rewards.rideDistance / 10) * rewardPerDistance;
 uint256 penalty = violation ? penaltyPerViolation : 0;
 renters[walletAddress].balance += rideCountRewards + distanceRewards - penalty;
 }

 // Update monthly ride count
 function updateMonthlyRideCount(address walletAddress) internal {
 uint256 currentMonth = (block.timestamp / 1 days) / 30; // Assuming 30 days per month
 monthlyRideCount[walletAddress][currentMonth]++;
 }

 // Update leaderboard positions
 function updateLeaderboard(address walletAddress) internal {
 bool[3] memory positions = renters[walletAddress].rewards.leaderboardPositions;
 uint256 currentMonth = (block.timestamp / 1 days) / 30; // Assuming 30 days per month

15

 // Check if the user has entered top 3 positions
 for (uint256 i = 0; i < 3; i++) {
 if (!positions[i]) {
 if (i == 0 || (i > 0 && monthlyRideCount[walletAddress][currentMonth] >
monthlyRideCount[renters[walletAddress].walletAddress][currentMonth])) {
 for (uint256 j = 2; j > i; j--) {
 renters[renters[walletAddress].walletAddress].rewards.leaderboardPositions[j] =
renters[renters[walletAddress].walletAddress].rewards.leaderboardPositions[j - 1];
 }
 renters[renters[walletAddress].walletAddress].rewards.leaderboardPositions[i] = true;
 break;
 }
 }
 }

 // Check if the user has won a leaderboard reward
 if (positions[0] && renters[walletAddress].rewards.leaderboardRewards < leaderboardReward) {
 renters[walletAddress].rewards.leaderboardRewards = leaderboardReward;
 renters[walletAddress].balance += leaderboardReward;
 }
 }

 // Update penalty violation
 function updatePenaltyViolation(address walletAddress, bool violation) internal {
 if (violation) {
 renters[walletAddress].penalty += penaltyPerViolation;
 renters[walletAddress].balance -= penaltyPerViolation;
 }
 }

 // Get rewards balance
 function rewardsOf(address walletAddress) public view returns(uint) {
 Renter memory renter = renters[walletAddress];
 uint256 rideCountRewards = (renter.rewards.rideCount / 10) * rewardPerRideCount;
 uint256 distanceRewards = (renter.rewards.rideDistance / 10) * rewardPerDistance;
 return rideCountRewards + distanceRewards + renter.rewards.leaderboardRewards -
penaltyPerViolation;
 }

 // Redeem rewards
 function redeemRewards(address walletAddress) public {
 uint rewards = rewardsOf(walletAddress);
 require(rewards > 0, "No rewards available");
 renters[walletAddress].balance = 0;
 payable(walletAddress).transfer(rewards);
 renters[walletAddress].canRent = true;
 }

 // Update reward per ride count
 // function updateRewardPerRideCount(uint256 _reward) public {
 // require(msg.sender == owner, "Only owner can update reward per ride count.");
 // rewardPerRideCount = _reward;
 // }

 // Update reward per distance
 // function updateRewardPerDistance(uint256 _reward) public {
 // require(msg.sender == owner, "Only owner can update reward per distance.");
 // rewardPerDistance = _reward;
 // }

16

 // Update leaderboard reward
 // function updateLeaderboardReward(uint256 _reward) public {
 // require(msg.sender == owner, "Only owner can update leaderboard reward.");
 // leaderboardReward = _reward;
 // }

 // Update penalty
 // function updatePenaltyPerViolation(uint256 penalty) public {
 // require(msg.sender == owner, "Only owner can update penalty.");
 // penaltyPerViolation = _penalty;
 // }

 // Get current leaderboard positions
 function getLeaderboardPositions() public view returns(bool[3] memory) {
 return renters[msg.sender].rewards.leaderboardPositions;
 }
}

17

