

Configuration Manual

MSc Research Project

Fintech

Jeevan Kumar A

X21225940

School of Computing

National College of Ireland

Supervisor: Brian Byrne

National College of Ireland MSc Project Submission Sheet School of Computing

		College of Ireland
Student		
Name:	Jeevan Kumar A	
Student ID:	X21225940	
Programme:	MSc Fintech Year:2022/2023	
Module:	Msc Research Project	
Supervisor:	Brain Byrne	
Submission Due Date:	14/08/2023	
Project Title:	A Comprehensive Study of SMOTE-Enhanced Machine Learning Models on Learning Models Credit Card Fraud Dataset	s on

National

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary.

Signature:Jeevan Kumar A....

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Signature: Date:	Office Use Only	
Date:	Signature:	
	Date:	
Penalty Applied (if applicable):	Penalty Applied (if applicable):	

Introduction

The objective of this document is to give a machine learning-based project overview. The explanation provides a brief description of the dataset, pre-processing procedures, modeling algorithms, and outcome analysis.

System Requirements

The next sections go into detail about the exact hardware and software requirements for the project.

12.1 Hardware Requirements

The required hardware specifications are displayed in Figure 1 below. 64-bit Windows 10 with 8GB of RAM, 256GB of storage, and a 24" display.

22.1 Software Requirements

- Google Colab Notebook
- Python (Version 3.9.6)

32.1 Code Execution

Go to your respective Gmail account and select the drive. The given figure.1 shows the process to open a Google Colab notebook. The web browser displays the system's folder structure and navigates to the folder containing the code file. Run each cell by launching the relevant code file from the folder.

5 Data Collection

The bellow given link is the source to the Kaggle data repository.

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

6 Data Preprocessing

A list of all the Python libraries required to complete the project is shown in Figure 2.

Figure: 2 Necessary Python Libraries

Figure 3 and figure 4 show to read a CSV file using the Pandas library and data types of 31 feature columns.

Figure:3 Read a csv file

Data columns (total 31 columns):	
# Column Non-Null Count Dtype	
0 Time 284807 non-null float64	
1 V1 284807 non-null float64	
2 V2 284807 non-null float64	
3 V3 284807 non-null float64	
4 V4 284807 non-null float64	
5 V5 284807 non-null float64	
6 V6 284807 non-null float64	
7 V7 284807 non-null float64	
8 V8 284807 non-null float64	
9 V9 284807 non-null float64	
10 V10 284807 non-null float64	
11 V11 284807 non-null float64	
12 V12 284807 non-null float64	
13 V13 284807 non-null float64	
14 V14 284807 non-null float64	
15 V15 284807 non-null float64	
16 V16 284807 non-null float64	
17 V17 284807 non-null float64	
18 V18 284807 non-null float64	
19 V19 284807 non-null float64	
20 V20 284807 non-null float64	
21 V21 284807 non-null float64	
22 V22 284807 non-null float64	
23 V23 284807 non-null float64	
24 V24 284807 non-null float64	
25 V25 284807 non-null float64	
26 V26 284807 non-null float64	
27 V27 284807 non-null float64	
28 V28 284807 non-null float64	
29 Amount 284807 non-null float64	
30 Class 284807 non-null int64	
dtypes: float64(30), int64(1)	
memory usage: 67.4 MB	

Figure: 4 Details about Datatypes

Figure.5 shows 10 records with 31 features.

df	[:10]																			
	Time				V4		V6		VS	V9	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0		-1.359807					0.462388	0.239599	0.098698				-0.110474	0.066928	0.128539	-0.189115			149.62	
1		1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724		
2							1.800499			-1.514654			0.909412		-0.327642	-0.139097				
3		-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.108300	0.005274	-0.190321		0.647376	-0.221929	0.062723	0.061458	123.50	
4				1.548718	0.403034	-0.407193		0.592941			-0.009431				-0.206010		0.219422		69.99	
5		-0.425966	0.960523		-0.168252	0.420987	-0.029728	0.476201	0.260314	-0.568671	-0.208254	-0.559825	-0.026398	-0.371427	-0.232794	0.105915	0.253844	0.081080		
6		1.229658								0.464960							0.034507			
7		-0.644269	1.417964	1.074380	-0.492199	0.948934	0.428118	1.120631	-3.807864		1.943465	-1.015455	0.057504	-0.649709	-0.415267		-1.206921	-1.085339	40.80	
8		-0.894286								-0.392048			-0.204233			-0.384157			93.20	
9		-0.338262	1.119593	1.044367		0.499361	-0.246761		0.069539		-0.246914			-0.385050	-0.069733	0.094199	0.246219	0.083076		
10	rows ×	31 columns																		

Figure: 5 Number of Features

To check is there any Null values exists in the given dataset!

df.isna	a().sum()
Time	0
V1	0
V2	0
V3	0
V4	0
V5	0
V 6	0
V7	0
V8	0
V9	0
V10	0
V11	0
V12	0
V13	0
V14	0
V15	0
V16	0
V17	0
V18	0
V19	0
V20	0
V21	0
V22	0
V23	0
V24	0
V25	0
V26	0
V27	0
V28	0
Amount	0
Class	0
dtype:	int64

Figure: 6 Check Null values

The dataset has two classes as Genuine and Fraud labels. Figure 7 shows the number of class counts.

Figure.8 shows the visualization of target class labels. It shows 99.8% are Genuine cases and 0.2% is Fraud cases.

i igui ei o i

5 Feature Selection

The discussion below shows the process to remove most of the correlated features.

5.1 Heat Map

The given figure 9 and Figure 10 show the use of Heatmap and the Correlation matrix to select features that are relevant to create a Machine learning model.

Figure: 9 Use of seaborn

Figure:10 Heat Map

Figure 11 shows the number of features deleted from the dataset out of 31 features.

drop_list1 = ['Time','V28','V27','V26','V25','V24','V23','V22','V20','V15','V13','V8']

Figure:11 Dropped Feature

6 Feature Scaling

Figure 12 shows the result of Standardizing the feature "Amount".

<pre>from sklearn.preprocessing import StandardScaler df['scaled_Amount'] = StandardScaler().fit_transform(df['Amount'].values.reshape(-1,1)) df = df.drop(['Amount'],axis=1)</pre>							
df['scaled_Amount']							
0 0.244964 1 -0.342475 2 1.160686 3 0.140534 4 -0.073403							
284802 -0.350151 284803 -0.254117 284804 -0.081839 284805 -0.313249 284806 0.514355 Name: scaled_Amount, Length: 284807, dtype: float64							

Figure.12 Scaling feature

7 Machine Learning models with the unbalanced dataset

7.1 GaussianNB

Figure 13 shows the GaussianNB model the Figure 14 shows the output of Recall, Precision, and Accuracy scores.

Figure: 13 GaussianNB model

	precision	recall	f1-score	support	
	0 1 00	0.00	0.00	FC074	
	0 1.00	0.90	0.99	20074	
:	1 0.08	0.84	0.14	88	
accurac	у		0.98	56962	
macro av	g 0.54	0.91	0.57	56962	
weighted av	g 1.00	0.98	0.99	56962	
Accuracy :0	.98460				
Precision :	0.07898				
Recall : 0.	84091				
F1 : 0.1443	9				
	-				
0 56871					
1 00					
1 88					
dtype: int6	4				

Figure: 14 Precision, Accuracy, Recall scores

7.2 Logistic regression

The results of the logistic regression model are displayed in Figures 15 and 16.

```
from sklearn.linear_model import LogisticRegression
logistic = LogisticRegression(C = 0.01, penalty = '12')
logistic.fit(X_train1, y_train1)
y_pred1 = logistic.predict(X_test1)
from sklearn import metrics
print(metrics.classification_report(y_test1, y_pred1))
print('Accuracy :{0:0.5f}'.format(metrics.accuracy_score(y_pred1 , y_test1)))
print('Precision : {0:0.5f}'.format(metrics.precision_score(y_test1 , y_pred1)))
print('Recall : {0:0.5f}'.format(metrics.recall_score(y_test1 , y_pred1)))
print('F1 : {0:0.5f}'.format(metrics.f1_score(y_test1 , y_pred1)))
# print('Confusion Matrix : \n', cnf_matrix)
print("\n")
pd.Series(y_pred1).value_counts()
pd.Series(y_test1).value_counts()
```

Figure.15 Logistic Regression

	precision	recall	f1-score	support		
0	1.00	1.00	1.00	56874		
1	0.80	0.56	0.66	88		
accuracy			1.00	56962		
macro avg	0.90	0.78	0.83	56962		
weighted avg	1.00	1.00	1.00	56962		
Accuracy :0.99910 Precision : 0.80328 Recall : 0.55682 F1 : 0.65772						
0 56874 1 88 dtype: int64						

Figure: 16 Precision, Accuracy, Recall scores

7.3 RandomForest Classifier

The results of the Random Forest model are displayed in Figures 17 and 18.

from sklearn.ensemble import RandomForestClassifier	
rfor = RandomForestClassifier(max_depth=5, random_state=0)	
rfor.fit(X_train1, y_train1) y_pred_rf = rfor.predict(X_test1)	
<pre>from sklearn import metrics print(metrics.classification_report(y_test1, y_pred_rf))</pre>	
<pre>print('Accuracy :{0:0.5f}'.format(metrics.accuracy_score(y_pred_rf , y_test1))) print('AUC : {0:0.5f}'.format(metrics.roc_auc_score(y_test1 , y_pred_rf))) print('Precision : {0:0.5f}'.format(metrics.precision_score(y_test1 , y_pred_rf)) print('Recall : {0:0.5f}'.format(metrics.recall_score(y_test1 , y_pred_rf))) print('F1 : {0:0.5f}'.format(metrics.f1_score(y_test1 , y_pred_rf))) # print('Confusion Matrix : \n', cnf_matrix) print("\n")</pre>))
pd.Series(y_pred_rf).value_counts()	
pd.Series(y test1).value counts()	

(9 1 1 0	1.00).84	1.00 0.74	1.00 0.79	56874 88	
accuracy macro avy weighted avy	/ g 0 g 1).92 1.00	0.87 1.00	1.00 0.89 1.00	56962 56962 56962	
Accuracy :0 AUC : 0.869 Precision : Recall : 0.7 F1 : 0.7878	.99939 21 0.84416 73864 3					
0 56874 1 88 dtype: int64	4					

Figure: 18 Precision, Accuracy and Recall scores

7.4 <u>SVM</u>

The SVM model and its accuracy scores are shown in Figures 19 and 20.

from sklearn.svm import LinearSVC

sklearn_svm = LinearSVC(class_weight='balanced', random_state=31, loss="hinge", fit_intercept=False)

sklearn_svm.fit(X_train1, y_train1)

import sklearn.metrics as metrics

y_pred_sklearn_svm = sklearn_svm.predict(X_test1)

print(metrics.classification_report(y_test1, y_pred_sklearn_svm))

print('Accuracy :{0:0.5f}'.format(metrics.accuracy_score(y_pred_sklearn_svm , y_test1)))
print('Precision : {0:0.5f}'.format(metrics.precision_score(y_test1 , y_pred_sklearn_svm)))
print('Recall : {0:0.5f}'.format(metrics.recall_score(y_test1 , y_pred_sklearn_svm)))
print('F1 : {0:0.5f}'.format(metrics.f1_score(y_test1 , y_pred_sklearn_svm)))
print("\n")

	precision	recall	f1-score	support	
0 1	1.00 0.01	0.90 0.88	0.95 0.03	56874 88	
accuracy macro avg weighted avg	0.51 1.00	0.89 0.90	0.90 0.49 0.95	56962 56962 56962	
Accuracy :0.90 Precision : 0. Recall : 0.875 F1 : 0.02722	9337 01382 600				

Figure: 20 Precision, Accuracy and Recall

7.5 XG Boost Classifier

The results of the XGBoost classifier model are displayed in Figures 21 and 22.

Figure: 21 XGBoost classifier

```
XG Boost Classifier:
The accuracy score is: 0.999
The precision score is: 0.893
The recall score is: 0.761
F1 : 0.82209
            precision recall f1-score
                                          support
                 1.00
                         1.00
                                   1.00
                                            56874
          0
                                              88
                 0.89
                          0.76
                                   0.82
                                   1.00
                                          56962
   accuracy
  macro avg
               0.95 0.88
                                   0.91
                                            56962
weighted avg
                1.00
                         1.00
                                  1.00
                                            56962
    56874
0
1
       88
dtype: int64
```


7.6 AdaBoost Classifier

AdaBoost classifier model and scores are shown in Figures 23 and 24.

```
from sklearn.ensemble import AdaBoostClassifier
abc = AdaBoostClassifier(n_estimators=50, learning_rate=1, random_state=0)
AdaBoost = abc.fit(X_train1, y_train1)
y_pred_adaboost = AdaBoost.predict(X_test1)
print('AdaBoostClassifier:')
print('--------')
from sklearn import metrics
print(metrics.classification_report(y_test1, y_pred_adaboost))
print('Accuracy :{0:0.5f}'.format(metrics.accuracy_score(y_pred_adaboost , y_test1)))
print('Precision : {0:0.5f}'.format(metrics.precision_score(y_test1 , y_pred_adaboost)))
print('Recall : {0:0.5f}'.format(metrics.fl_score(y_test1 , y_pred_adaboost)))
print('F1 : {0:0.5f}'.format(metrics.fl_score(y_test1 , y_pred_adaboost)))
# print('Confusion Matrix : \n', cnf_matrix)
print("\n")
pd.Series(y_pred_adaboost).value_counts()
pd.Series(y_test1).value_counts()
```

Figure:23 AdaBoost classifier

AdaBoostClassifier:									
ا	precision	recall	f1-score	support					
0	1.00	1.00	1.00	56874					
1	0.70	0.70	0.70	88					
accuracy			1.00	56962					
macro avg	0.85	0.85	0.85	56962					
weighted avg	1.00	1.00	1.00	56962					
Accuracy :0.99 Precision : 0. Recall : 0.704 F1 : 0.70056	907 59663 55								
0 56874 1 88 dtype: int64									

Figure: 24 Precision, Accuracy and Recall

8 Class imbalance issue with SMOTE method

Figure 25 shows the application of SMOTE method.

Figure:25 SMOTE method to train and test

8.1 Logistic Regression

The Regression model with a balanced dataset is shown in Figures 26 and 27, along with the model's results.

Ż	Resampled da	ataset	shape	Counter({0:	227441,	1: 227441})	
		prec	.131011	i ccuii	TI SCOLC	Jupport	
	(9	1.00	0.97	0.99	56874	
		1	0.05	0.88	0.09	88	
	accuracy	y			0.97	56962	
	macro av	g	0.52	0.92	0.54	56962	
	weighted av	g	1.00	0.97	0.99	56962	
	Accuracy :0 AUC : 0.9244 Precision : Recall : 0.8 F1 : 0.09442 0 56874 1 88 dtype: int6	.97407 61 0.0499 87500 2 4	90				

Figure:27 Precision, Accuracy and Recall

8.2 GaussianNB Classifier

GaussianNB classifier and its scores are displayed in Figures 28 and 29.

```
gaussian_2 = GaussianNB()
gaussian_2.fit(X_train_smote, y_train_smote)
# Predict from Test set
gaussian_smote_pred = gaussian_2.predict(X_test1)
# Model Evolution
print(metrics.classification_report(y_test1, gaussian_smote_pred))
print('Accuracy :{0:0.5f}'.format(metrics.accuracy_score(gaussian_smote_pred), y_test1)))
print('AUC : {0:0.5f}'.format(metrics.roc_auc_score(y_test1, gaussian_smote_pred)))
print('Precision : {0:0.5f}'.format(metrics.precision_score(y_test1, gaussian_smote_pred)))
print('Recall : {0:0.5f}'.format(metrics.recall_score(y_test1, gaussian_smote_pred)))
print('F1 : {0:0.5f}'.format(metrics.fl_score(y_test1, gaussian_smote_pred)))
# print('Confusion Matrix : \n', cnf_matrix)
print("\n")
# Predicted values counts for fraud and genuine of test dataset
pd.Series(gaussian_smote_pred).value_counts()
# Actual values counts for fraud and genuine of test dataset
```

pd.Series(y_test1).value_counts()

	precision	recall	f1-score	support	
0	1.00	0.98	0.99	56874	
1	0.07	0.85	0.12	88	
accuracy			0.98	56962	
macro avg	0.53	0.92	0.56	56962	
weighted avg	1.00	0.98	0.99	56962	
Accuracy :0.94 AUC : 0.91699 Precision : 0 Recall : 0.855 F1 : 0.12469	8151 .06726 227				
0 56874 1 88 dtype: int64					

Figure: 28 GaussianNB classifier

Figure:29 Precision, Accuracy and Recall

8.3 Random Forest Classifier

Figure 30 and Figure 31 show the Random Forest classifier and its scores.

```
rfor_2 = RandomForestClassifier(max_depth=5, random_state=0)
rfor_2.fit(X_train_smote, y_train_smote)
y_pred_rf_smote = rfor_2.predict(X_test1)
from sklearn import metrics
print(metrics.classification_report(y_test1, y_pred_rf_smote))
print('Accuracy :{0:0.5f}'.format(metrics.accuracy_score(y_pred_rf_smote , y_test1)))
print('AUC : {0:0.5f}'.format(metrics.roc_auc_score(y_test1 , y_pred_rf_smote)))
print('Precision : {0:0.5f}'.format(metrics.recall_score(y_test1 , y_pred_rf_smote)))
print('Recall : {0:0.5f}'.format(metrics.fl_score(y_test1 , y_pred_rf_smote)))
print('F1 : {0:0.5f}'.format(metrics.fl_score(y_test1 , y_pred_rf_smote)))
# print('Confusion Matrix : \n', cnf_matrix)
print("\n")
pd.Series(y_pred_rf_smote).value_counts()
pd.Series(y_test1).value_counts()
```

Figure: 30 GaussianNB classifier

, Ż		precision	recall	f1-score	support	
		1.00	0.99	1.00	56874	
	1	0.20	0.85	0.32	88	
	accuracy			0.99	56962	
	macro avg	0.60	0.92	0.66	56962	
W	eighted avg	1.00	0.99	1.00	56962	
A P R F	ccuracy :0.9 UC : 0.92342 recision : 0 ecall : 0.85 1 : 0.31780	99435 2 9.19531 5227				
0 1 d	56874 88 type: int64					

Figure: 31 Precision, Accuracy and Recall scores

8.4 Support vector Machine classifier

Figure: 32 and Figure 33 show the SVM classifier model and its scores.

Figure:32 SVM classifier

C⇒		preci	sion	recall	f1-scor	e support	
	:	0 1	1.00 0.01	0.85 0.93	0.9 0.0	2 56874 2 88	
	accurac macro av weighted av	y g g	0.50 1.00	0.89 0.85	0.8 0.4 0.9	5 56962 7 56962 2 56962	
	Accuracy :0 AUC : 0.889 Precision : Recall : 0. F1 : 0.0184	.84665 17 0.00931 93182 3					

Figure:33 Precision, Accuracy and Recall

8.5XG Boost Classifier

The results of the XGBoost classifier are shown in Figures 34 and 35.

Figure:34 XGBoost classifier

XG Boost Classifier:										
	The accuracy score is: 0.992 The precision score is: 0.146 The recall score is: 0.852 AUC : 0.92229 F1 : 0.25000									
		precision	recall	f1-score	support					
	0	1.00	0.99	1.00	56874					
	1	0.15	0.85	0.25	88					
	accuracy			0.99	56962					
	macro avg	0.57	0.92	0.62	56962					
	weighted avg	1.00	0.99	0.99	56962					
	0 56874 1 88 dtype: int64									

Figure:35 Precision, Accuracy and Recall scores

8.6 AdaBoostClassifier

AdaBoost classifier is shown in Figures 36 and 37 together with its results.

Figure:36 AdaBoost classifier

AdaBoostClassifier:								
	precision	recall	f1-score	support				
0	1.00	0.98	0.99	56874				
1	0.05	0.88	0.10	88				
accuracy			0.98	56962				
macro avg	0.53	0.93	0.54	5696 <u>2</u>				
weighted avg	1.00	0.98	0.99	56962				
Accuracy :0.9 AUC : 0.92545 Precision : 0 Recall : 0.87 F1 : 0.10026	7574 .05318 500							
0 56874 1 88 dtype: int64								

9 Model Results

9.1 Scores for Imbalanced Dataset

Model	Precision		Re	call	Accuracy
	Class 0	Class 1	Class 0	Class 1	
LogisticRegression	1	0.80	1	0.56	
					0.99
GaussianNB	1	0.08	0.98	0.84	0.98
RandomForest	1	0.84	1	0.74	0.99
SVM	1	0.01	0.90	0.88	0.91
XGBoost	1	0.89	1	0.76	0.99
AdaBoost	1	0.70	1	0.70	0.99

9.2 Scores for Balanced Dataset

Model	Precision		Re	call	Accuracy
	Class 0	Class 1	Class 0	Class 1	
LogisticRegression	1	0.05	0.97	0.88	
					0.97
GaussianNB	1	0.07	0.98	0.85	0.98
RandomForest	1	0.20	0.99	0.85	0.99
SVM	1	0.01	0.85	0.93	0.85
XGBoost	1	0.15	0.99	0.85	0.99
AdaBoost	1	0.05	0.98	0.88	0.98

9.3 Comparison of scores for balanced and imbalanced datasets

Comparing results for both cases, the result shows RandomForest and Boosting algorithms always give a good accuracy score. **Class 0** is the label for Genuine cases and **class 1** is the label for Fraud cases. Comparing result RandomForest: for the Imbalanced dataset the recall value of Fraud cases is 0.74 while for the balanced dataset, the recall value became 0.85 and the accuracy score remains the same as 0.99. It shows the Recall value has increased as compared to 0.74 after applying SMOTE method. Through this, we can compare the result for the rest of the methods.