ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Programme Name

Nwabuogoh Anne Alu
Student ID: x22115871

School of Computing
National College of Ireland

Supervisor: Brian Byrne

\\
National College of Ireland National

MSc Project Submission Sheet Collegeof
School of Computing
Nwabuogoh Anne Alu Ireland
SHUG BN o e
Name:
x22115871
STUENT D e
MSc Fintech 2023
Programme: Year: ..o,
MSc Research Project
MOAUIE. s
Brian Byrne
I 1 =T
Submission 14/08/2023
DU Date. o e
Configuration Manual
PO Ot o
Title:
Word 1322
Count: L Page Count: 13,

I hereby certify that the information contained in this (my submission) is information pertaining to
research | conducted for this project. All information other than my own contribution will be fully
referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic
work is illegal (plagiarism) and may result in disciplinary action.

Signature: ..

Date ..

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple o
copies)

Attach a Moodle submission receipt of the online project submission, to | o
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for | o
your own reference and in case a project is lost or mislaid. It is not sufficient
to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Nwabuogoh Anne Alu
Student ID: x22115871

1 Overview

This guide outlines the implementation details, including system specifications, required
software, tools, and environmental prerequisites, essential for conducting the research project
focused on evaluating machine learning algorithms in payment card fraud detection. The
primary objective of this documentation is to elucidate the technical execution of the project,
ensuring experiment reproducibility and facilitating a comprehensive understanding of the
undertaken work.

2 System Specification

Spec Name Spec Value

Operating System Microsoft Windows 11 Pro

RAM 16.0 GB
11" Gen Intel(R) Core(TM) i7-1195G7 @ 2.90GHz, 2918 Mhz,
Processor
Quad Core
Disk Space 500 GB SSD
System Type Dell XPS 13 9310

Table 1: system requirements

3 Software Tools

The project code implementation was carried out using Google Colab, which is a cloud-based
IDE and the programming language of choice was Python. Table 2 contains the details of the
development environment.

Spec Name Spec Value
Operating System Linux

RAM 16.0 GB

Processor Intel(R) Xeon(R) CPU @ 2.20GHz, Dual Core
Disk Space 107 GB
Runtime Programming Language Python 3.10.12

Browser Google Chrome, version 114.0.5735.134

Table 2: software requirements

4 Data Source

The dataset used for this research was gotten from Kaggle, it was a synthetic one, generated
using a simulator developed by Brandon Harris. Due to computational resource restraints,
only a sample of the data was used, the link to the complete dataset is here. The data was then
loaded into Colab using the Pandas package as shown in figure 1.

read data from file into pandas dataframe
credit_card_data = pd.read_csv('credit_card_data.csv')

Figure 1: Reading data into Pandas Data-freame

5 Software Libraries

To carry out this research, several Python libraries needed to be installed and imported into
Colab, some the packages include SKlearn, Numpy, imblearn, and Pandas. The breakdown of
all the libraries used can be seen in figure 2.

import os

libraries for creating dataframes and arrays
import numpy as np

import pandas as pd

library for splitting the data into test and train dataframes
from sklearn.model_selection import train_test_split

libraries for resampling class imbalance
from imblearn.combine import SMOTETomek
from imblearn.combine import SMOTEENN

libraries for feature encoding, feature engineering
and scaling features

from sklearn.datasets import make_classification

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import RandomizedSearchcvVv
from sklearn.preprocessing import PolynomialFeatures
import category_encoders as ce

libraries for model building and ewvaluation

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from xgboost import XGBClassifier

import lightgbm as 1lgb

from lightgbm import LGBMClassifier

import xgboost as xgb

from sklearn import linear_model

from keras.models import Sequential

from sklearn.metrics import classification_report, accuracy_score, recall_score, precision_score, f1_score, matthews_corrcoef, balanced_accuracy_score
from sklearn.metrics inport make_scorer, confusion matrix, ConfusionMatrixDisplay, roc_auc_score, roc_curve, auc, precision_recall curve
from sklearn.metrics import roc_auc_score as ras

libraries for data visualization
import matplotlib.pyplot as plt

import seaborn as sns

from mpl_toolkits.mplot3d import Axes3D
import folium

from folium.plugins import HeatMap
%matplotlib inline

import warnings
warnings.filterwarnings('ignore')
import plotly.express as px

from scipy.stats import randint, uniform

Figure 2: Installed Python Packages

2

https://www.kaggle.com/datasets/kartik2112/fraud-detection

6 Data Preprocessing

This section details the steps carried out prior to the model implementation, after reading the
data, the data was then cleaned and transformed.

1. Check datatypes of columns.

credit_card_data.dtvypes

trans_date__trans_time

cc__num
merchant
category

object

intea
object
object

amt fFfloatea
fFirst object
last object

gender
street

object
object

city object
state object
Zzip inte4
lat fFloatea
long fFloate4qa
city_pop inte4a
Job object
dob object
trans_num object
unix__time inte4a
merch__lat Floatea
merch__long Floatea
isFraud intea

dtype: object

2. Check for missing data and duplicates.

Check for duplicate records
duplicates = credit_card_data.duplicated()

Count the number of duplicate records
num_duplicates = duplicates.sum()

Print the number of duplicate records
print(f"Number of duplicate Yecords: {num_duplicates}")

check if there are missing values in the dataset
missing_values = credit_card_data.isnull().sum()

Print the count of missing values fdr each column

print("Missing Values:") VEE rEE XU oL D20 8E 0RO
N ERP LR QLo g®co0 o3
print(missing_values) 'E" 228s=tBECg 85538 E{E."Eug
ey E 3 & 2 ox §§]
[l m s
sns.heatmap(credit_card_data.isnull(), cmap='viridis') fz‘ B Eg

359082
379031
398980
418929
438878
458827
478776
498725

- 0.100

- 0.075

0.050

0.025

0.000

-0.025

—0.050

-0.075

-0.100

Figure 3: Checking for missing data.

3. Transform the datatypes of columns for feature engineering. The features ‘dob’,
‘trans_date trans time’ and ‘unix time’ were converted to datetime columns and the
‘gender’ column was converted to Boolean values of 0 and 1. Also, the columns ‘zip’
and ‘cc_num’ were converted to string objects as shown in figure 4.

Convert numerical columns to string
nominal_columns = [‘cc_num', ‘zip']
credit_card _data[nominal columns] = credit card data[nominal columns].astype{str)

Convert 'trans_date_trans_time' to datetime variable
credit_card_data['trans_date_trans_time'] = pd.to_datetime(credit_card_data['trans_date_trans_time'])

Convert 'trans_date_trans_time' to datetime
credit_card_data[‘dob' | = pd.to_datetime(credit_card data['dob'])

Convert 'unix_time' to datetime
credit_card_data[‘unix_time'] = pd.to_datetime(credit_card_data['unix_time'], unit='s')

Map gender values to numerical values
gender_mapping = {'M': @, 'F': 1}
credit_card_data['gender’] = credit_card_data['gender'].map(gender_mapping)

categorical_cols = credit_card data.select_dtypes(include='object’).columns
encoder = LabelEncoder()
credit_card_data[categorical_cols] = credit_card_data[categorical_cols].apply(encoder. fit_transform)

check the data types after transformation
credit_card data.dtypes

trans__date__trans_ time

cc__num
merchant
category
amt

First

last
sender
street
city

state

Zzip

lat

long

city pop
Job

dob
trans__num
unNnix__time
merch__lat
merch__long
isFraud
dtype :

Figure 4: Data transformation

7 Data Exploration

datetimeca[ns]]
object

object

object

Floatea

object

object

object

object

object

object

object

Floatea
Floatea

intea

object
datetimeca[ns]]
object
datetimesa[ns]
fFloatea
Floatea

intea

object

This section contains the steps carried out for exploratory data analysis (EDA). The
relationship among the variables was explored and their relationship with the target variable

(isFraud).

1. Figure 5 shows a chart of the distribution of fraudulent transactions by shopping

categories.

custom_colors = ['#f7baad', '#FFB933']

trans_label = ['gas_transport', 'misc_pos','shopping_pos', 'grocery_pos',
'misc_net', 'shopping_net', 'grocery net','entertainment’,
"food_dining', 'health_fitness', 'travel','personal_care',
"kids_pets', 'home']

Plotting pie chart for fraudulent transactions
fig = px.pie(fraudulent_transactions,
values=quantity fraud,
names=trans_label,
hole=0.4,

title="Distribution of Transaction Type for Fraudulent Transactions"

#color_discrete_sequence=custom_colors)
fig.show()

1.829,
1.85%
-?.05%

Figure 5: Code and Result of fraudulent transactions vs shopping category
2. The pattern of fraudulent transactions by amount was also explored as seen in figure 6

below.

plot the distribution of fraudulent transactions by amount
ax=sns.histplot(x="'amt ' ,data—credit_card_datalcredit_card_data.amt<=1680],

1.65%

hue="isFraud',stat='percent’' ,multiple="'dodge"’,

common_norm=False,bins=25)
ax.set_ylabel('Percentage in Each Transaction Class')
ax.set_xlabel(' Transaction Amount in UsSD"')
plt.legend(title="Class', labels=["'Fraud’', 'Not Fraud'])

<matplotlib.legend.Legend at @x7cafec88e7do>

Class
3 Fraud

@ 40 s Not Fraud
<

=]

=

=]

=

=

® 30 4

=

£

_

=

i]

= 20

@

o

=

=

L

£ 10

&

o - I_I_'_I_I_IJ_L

400 600
Transaction Amount in USD

Figure 6: Distribution of fraudulent transactions by amount

200 800 1000

4

3. Figure 7 depicts how the card holders gender affect the fraudulent transactions.
Fraudulent transactions volume by gender
ax=sns.histplot(x="gender',data=credit_card_data, hue='isFraud',stat='percent',
multiple='dodge',common_norm=False)
ax.set_ylabel('Percentage')
ax.set_xlabel('Credit Card Holder Gender')
plt.legend(title="'ClLass', labels=['Fraud', 'Not Fraud'])

<matplotlib.legend.Legend at ©x7c4fcc934b50>

CLass
50 4 3 Fraud
@ Not Fraud
40 —
W
&
£ 307
[5]
=
&
20
10 A
0 -

M F
Credit Card Holder Gender

Figure 7: Gender vs isFraud
4. An exploration of fraudulent transactions by age can be seen in figure 8.

ax=sns.kdeplot(x="age',data=credit_card_data, hue='isFraud', common_norm=False)
ax.set_xlabel('Credit Card Holder Age')

ax.set_ylabel('Density"’)

plt.xticks(np.arange(©,110,5), rotation=9@)

plt.title('Age Distribution in Fraudulent vs Non-Fraudulent Transactions')
plt.legend(title='Class', labels=['Fraud', 'Not Fraud'])

<matplotlib.legend.Legend at @x7c4fcb6a69be>
Age Distribution in Fraudulent vs Non-Fraudulent Transactions

Class
0.025 A —— Fraud
—— Not Fraud
0.020 A
2 0.015 -
w
c
&
0.010 -
0.005 A
0.000 e e O E

SN2 NRNRRIYRVESERLIBRIAZS
Credit Card Holder Age
Figure 8: Exploration of fraudulent transactions by age.

5

8 Feature Engineering

Feature engineering was carried out on the dataset, to create new variables that may enhance
the performance of the models. The variables generated include ‘age, ‘hour’, ‘week day’,

‘month’, ‘cust merc lat dist’and ‘cust merc long dist’.

create an 'age' variable using the 'trans_date_trans_time' and 'dob' variable

credit_card_data["'age'] = (credit_card_data['trans_date_trans_time'] - credit_card_data['dob’]).dt.days // 365
credit_card_data["hour'] = pd.to_datetime(credit_card_data| 'trans_date_trans_time']).dt.hour

credit_card_data["week_day'] = pd.to_datetime(credit_card_data['trans_date_trans_time']).dt.dayofweek
credit_card_data['month'] = pd.to_datetime(credit_card_data['trans_date_trans_time']).dt.month
credit_card data['cust _merch lat dist'] = abs(round(credit_card_data['merch_lat']-credit_card_data['lat'],3))
credit_card_data['cust_merch_long dist'] = abs(round(credit_card_data['merch_long']-credit_card_data['long'],3))

Figure 9: Feature Engineering

9 Feature Selection

Based on the EDA and feature engineering carried out, the final features selected for the
model building was determined and can be seen in figure 10.

credit_card_data_to_use = credit_card_data[['category', 'amt', ‘'gender', 'state',
‘city pop', ‘'isFraud', 'age', ‘hour’,
'week_day', 'month', 'cust_merch_lat_dist’,
'cust_merch_long _dist']]

Figure 10: feature selection.

10 Split Data into Train and Test Dataframes
The section contains the steps carried out to split the data into test and training sets to be used

for training and testing the models.

Split the dataset into input features (X) and target variable (y)
y = credit_card_data_to_use['isFraud']

X = credit_card_data_to_use.drop(['isFraud'], axis=1)

X.info()

Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
Figure 11: Split Data.

11 Class Imbalance

..... — e B T T T e S A T - 2 Lt

smote_enn = SMOTEENN(random_state=42)
X_resampled, y_resampled = smote_enn.fit_resample(X_train, y_train)

Class distribution before SMOTE-ENN:

0 412514

1 2422

Name: isFraud, dtype: int64

Class distribution after SMOTE-ENN:

1 409117

° 401058

Name: isFraud, dtype: int64

Figure 12: handling class imbalance

To handle the class imbalance on the target class, the hybrid technique SMOTE-ENN was
used as shown in figure 12. The distributions of fraudulent transaction before the resampling

and after the resampling can also be seen in figure 12. Balancing was applied solely to the

6

training data, as it forms the basis for model construction. Balancing the test data is
unnecessary, as the test data's role is to emulate the model's performance in a real-world
scenario, where imbalanced credit card fraud datasets are prevalent.

12 Helper Methods

To avoid repetition of code, some helper methods were created to help with generating model
evaluation results.

this method was created to plot the Precision-Recall
Receiver Operating Characteristics Graph for the models evaluation
def plot_pr_roc_curve(recall, precision, name):
calculate the no skill line as the proportion of the positive class
no_skill = len(y_test[y_test==1]) / len(y)
plot the no skill precision-recall curve
pyplot.plot([®, 1], [no_skill, no_skill], linestyle='--', label="No Skill')
plot the model precision-recall curve
pyplot.title("PR ROC curve plot")
pyplot.plot(recall, precision, marker='.', label=name)
axis labels
pyplot.xlabel('Recall")
pyplot.ylabel('Precision')
show the legend
pyplot.legend()
show the plot
pyplot.show()

this method displays the evaluation results of the models

the accuracy, classification report, recall, MCC and

other metrics are displayed

def model_evaluation(test, pred):
print("model accuracy: \n", accuracy_score(test, pred))
print(“"classification report: \n", classification_report(test,pred))
[Lo o ol G e ")
print("Recall:", recall_score(test, pred))
print(“"Precision:", precision_score(test, pred))
print("F1 Score:", fl_score(test, pred))
print("MCC:", matthews_corrcoef(test, pred))
print("Geometric Mean:", balanced_accuracy_score(test, pred))

this method computes the confusion matrix of the models

def display_ confusion_matrix(test, pred):
cm = confusion_matrix(test, pred)
cmd = ConfusionMatrixDisplay(cm, display_labels=['Non-Fraudulent', 'Fraudulent']
cmd.plot()

this method displays a chart of the most important feature
#used in training the model
def display_ important_features(model, name):
Get important feature from the trained model
feature_names = X_test.columns.tolist()
if hasattr(model, 'feature_importances_'):
For tree-based models, use feature_importances_
features = model.feature_importances_
else:
For linear models like logistic regression, use coefficient magnitudes
features = np.abs(model.coef_[8])

Get the indices of features sorted by their importance in descending order
sorted_feature_indices = np.argsort(features)[::-1]

plot the features in a bar chart
plt.figure(figsize=(10, 6))
plt.bar(range(len(features)), features[sorted_feature_indices], align='center')

Figure 13: Helper Methods

13 Model Implementation and Evaluation

The models were implemented using the Keras and Sklearn Python libraries, and the results
were computed using sklearn.metrics library. The following sections highlight each of the
models’ implementation.

13.1 Logistic Regression

Figure 14 and 15 show the code snippet for hyperparameter tuning and model building for the logistic

regression model.
Define the hyperparameter grid
param_grid = {
'c': [@.ee1l, @.01, ©.1, 1, 1@],

"penalty': ["11', '12'],

"solver': ['liblinear', ‘'newton-cg', 'lbfgs', 'sag', 'saga'l],
‘class_weight': [None, ‘'balanced'],

"max_iter': [1@, 28]

}

Create a LogisticRegression model
logreg = LogisticRegression()

random_search = RandomizedSearchCV(logreg, param_distributions=param_grid, n_iter=10,
scoring=make_scorer(auc, greater_is_better=True,
needs_proba=True, roc_curve=precision_recall_curve),
cv=3, random_state=42, n_jobs=-1)

Perform hyperparameter tuning using GridSearchcCvV
#grid_search = GridSearchCV(logreg, param_grid, cv=3, scoring=make_scorer(auc, greater_
random_search.fit(X_resampled, y_resampled)

Get the best parameters
best_params = random_search.best_params_

Figure 14: hyperparameter tuning for Logistic Regression

Initialize the Logistic Regression classifier
logreg_classifier = LogisticRegression(
C=best_params['C"'],
penalty=best_params/|['penalty'],
solver=best_params|['solver'],
class_weight=best_params| 'class_weight'],
max_iter=1000

J

Train the classifier on the training data
logreg_classifier.fit(X_resampled, y_resampled)

Make predictions on the test data
yv_pred = logreg_classifier.predict(X_test)

Figure 15: Optimized Logistic Regression model

13.2 Random Forest
The random forest model was built with default parameters, as shown in figure 16.

Initialize the Random Forest classifier
rf_classifier = RandomForestClassifier(n_estimators=106, random_state=42)

Train the classifier on the training data
rf_classifier.fit(X_resampled, y_resampled)

Make predictions on the test data
y_pred = rf_classifier.predict(X_test)

Figure 16: Random forest model

13.3 LightGBM

Prior to training the model, randomized 3-fold cross validation was performed to optimize the
hyperparameters (figure 14) after which the selected hyperparameters were applied to the
model.

Define the parameter distribution for hyperparameter tuning

param_grid = {
"n_estimators': [1©, 50, 100, 200, 300, 5008, 1l00e],
‘max_samples': [©.3, ©.5, 1.0],
"max_features': [©.3, ©.5, 1.9]

¥

create lightGBM classifier
lgb_model = LGBMClassifier()

Perform RandomizedSearchCV for hyperparameter tuning

random_search =
estimator=1gb_model,

RandomizedSearchCvVv(

param_distributions=param_grid,

n_iter=16,
scoring=make_scorer(auc,

cv=3,

verbose=1,

random_state=42,

n_jobs=-1
)

random_search.fit(X_resampled,

Print the best hyperparameters
print("Best parameters found:",

Number of parameter settings that are sampled
greater_is_better=True,

roc_curve=precision_recall_curve),
Number of cross-validation folds

needs_proba=True,
Use a sui

Number of CPU cores to use (-1 uses all available core

y_resampled)

random_search.best_params_)

Figure 17: hyperparameter tuning for LGBM

gb_model_tuned =

Train the model on the training data
gb_model_tuned.fit(X_resampled,

Make predictions on the test data
y_pred = gb_model_tuned.predict(X_test)

LGBMClassifier(n_estimators=500,
max_+features=1.06,
num_leaves=4272,

max_depth=6, max_samples=1.0,
learning_rate=06.2,
colsample_by_tree=1)

y_resampled)

Figure 18: Optimized LGBM model

13.4 XGBoost

The model’s hyperparameters were manually selected and used to train the model, the figure

below shows the code used to build the model.

Create the XGBClassifier with your desired hyperparameters

xgb_model =
subsample=6.75,

Train the model on the training data
xgb_model.fit(X_resampled,

Make predictions on the test data
y_pred = xgb_model.predict(X_test)

XGBClassifier(n_estimators=500,
min_child_weight=1,

y_resampled)

max_depth=6, learning_rate=0.3,
colsample_bytree=0.5,

Figure 19: Extreme Gradient Boosting Model

13.5 Deep Learning Models (Multilayer Perceptron and LSTM)

Convert the data and labels to numpy arravys

X _mlp =
y_mlp =

np.array(X_resampled)
np.array(y_resampled)

Build the fully connected neural network

model = Sequential()

model

model .add(Dense (64, activation='relu’', input_shape=(X_mlp.shape[1],)))
model . add(Dense (22, activation='relu’))

model.add(Dense(l, activation='sigmoid"®))

Compile the model

model.compile(loss="binary_crossentropy’', optimizer='adam', metrics=| "'accuracy'])

Train the model
batch_size = 32
epochs = 1©
model.FfFit(X_mlp, y_mlp,
Make predictions on the test data
y_pred = model.predict(X_test)

batch_size=batch_size,

epochs=epochs, verbose=1)

Figure 20: MLP model training

9

subsample=©6.5,

gamma=0.2)

Convert the data and labels to numpy arrays
X _mlp Nnp.array(X_resampled)
yv_mlp Nnp.array(y_resampled)

Build the fully connected neural network model

model = Sequentialdl)

model . add (Dense (64, activation="'relu’', input_shape=(X_mlp.shape[1],))>)
model . add(Dense(22, activation='relu'))

model.add(Dense(l, activation='sigmoid"®))

Compile the model
model.compile(loss="binary_ crossentropy’', optimizer="'adam', metrics=['accuracy"'])

Train the model
batch_size = 22
epochs = 1©

model.fit(X_mlp, y_mlp, batch_size=batch_size, epochs=epochs, verbose=1)

Make predictions on the test data
v_pred = model.predict(X_test)

Figure 21: LSTM model training
The keras package was used to build this model and the hyperparameters were chosen
manually, figures 20 and 21 show the code required to build the models.

13.6 Model Evaluation

The model’s evaluation implementation were similar, the same metrics were used to assess
the performance of each of the models, the metrics computed include Precision Recall, F1-
Score, Geometric Mean, MCC and PR-AUC receiver operating characteristics. Figure 22
shows the code used to evaluate the performance of the XGBoost model, with the help of the
helper methods described in figure 13.

y_pred_binary = [1 if pred > 0.5 else @ for pred in y_pred]

Evaluate the model's performance
model_evaluation(y_test, y_pred_binary)

Get the probabilities for the positive class
positive_probs = xgb_model.predict_proba(X_test)[:, 1]

calculate the precision-recall auc score

precision, recall, _ = precision_recall_curve(y_test, positive_probs)
auc_score_pr = auc(recall, precision)

print the pr-auc score

print('PR AUC: %.3f' % auc_score_pr)

plot the pr-roc curve
plot_pr_roc_curve(recall, precision, 'XGBoost model')

display the confusion matrix
display_confusion_matrix(y_test, y_pred_binary)

determine the most important feature ysed by the model
display_important_features(xgb_model, 'XGBoost model')

Figure 22: model evaluation for XGBoost model
the code above computes the classification report, the model accuracy, pr-auc curve and
confusion matrix, as seen in figures 23 and 24.

10

model accuracy:
0.9936857732276785
classification report:

precision recall fl-score support

5] 1.00 9.99 1.00 193128

1 0.48 0.84 @.61 606

accuracy ©.99 103734
macro avg 0.74 0.92 ©.80 103734
weighted avg 1.00 ©.99 ©.99 103734

Recall: 0.8448844884488449
Precision: ©.4771668219944082

F1l Score: ©.60988683740©32163

MCC: ©.6322867304041073

Geometric Mean: ©.9197223233493934
PR AUC: ©.8064

Figure 23: classification report for XGBoost model

PR ROC curve plot XGBoost model Feature Importance Chart

Precision

04

02

0.0

=== No skill

~+— XGBoost model

Non-Fraudulent

True label

Fraudulent

Non-Fraudulent
Predicted label

Figure 24: XGBoost model evaluation

11

Fraudulent

i

100000

80000

60000

40000

20000

r
2
K

aity_pop

Features

sae

v

wek_da

verch_lat dist

cust_merch_long dist

