

National College of Ireland

Star Nutrition

BSHCSDE

Academic Year i.e. 2022/2023

Colin Shaw

X19145586

X19145586@student.ncirl.ie

Star Nutrition

Technical Report

Contents
Executive Summary ... 1

1.0 Introduction ... 1

1.1. Background .. 1

1.2. Aims .. 2

1.3. Technology .. 2

1.4. Structure ... 3

2.0 System .. 3

2.1. Requirements .. 3

1

2.1.1. Functional Requirements .. 4

2.1.1.1. Use Case Diagram ... 4

2.1.1.2. Requirements: ... 4

2.1.1.3. Description & Priority ... 5

2.1.1.4. Use Case ... 7

2.1.2. Data Requirements .. 12

2.1.3. User Requirements .. 12

2.1.4. Environmental Requirements ... 13

2.1.5. Usability Requirements .. 13

2.2. Design & Architecture .. 14

2.3. Implementation .. 106

2.4. Graphical User Interface (GUI) ... 129

2.5. Testing .. 146

2.6. Evaluation .. 165

3.0 Conclusions .. 165

4.0 Further Development or Research ... 166

5.0Appendices .. 167

4.1. Poster.. 167

4.2. Project Proposal .. 167

Executive Summary
The report's goal is to give a breakdown of the essential elements and features of Star Nutrition. The
reports delve into the application's structure, covering models like Product, Category, Order, and
UserProfiles that specify the data architecture and interactions. The operations for the homepage,
product listing, and checkout are described, including information on how views manage incoming
requests and produce suitable HTTP replies.

The Category and Product models, which classify and represent products with their qualities, are two
models that are highlighted in the paper. Order information and line items are managed via the Order
and OrderLineItem models, respectively. Additional user data is kept in user profiles. It is explained
how views like "products_view" control the organisation, sorting, and searching of product displays.
The checkout procedure is divided into parts, starting with form submissions and ending with payment
processing via the Stripe API.

The report provides a thorough overview of the fundamental components of the programme, including
models, views, and forms. It emphasises how these elements work together invisibly to make Star
Nutrition. The report is a reference for readers and developers interested in learning about the
internal workings of the Django-based e-commerce platform.

1.0 Introduction
1.1. Background
The goal for undertaking this project is to gain more understanding of full stack development. The
idea behind this project is to design an online e-commerce web application. The project should be

2

easy to use, secure, cleanly coded and not have as much clutter as other applications. I have the
intention to get a job as a full-stack developer so undertaking a project like this will be of most
benefit to me. I have an interest in sports and nutrition and set up an online business selling
supplements.

The main reason I have chosen to undertake this project is to build a full-stack application, as I
want to become a full-stack developer. Python is a language I like coding in and this will be the
greatest challenge for me and the most rewarding to design, develop and deploy.

To set out and meet my objectives I am going to be very strict with time and deadlines while
designing, developing and implementing all code and documentation.

As stated the SMART goals along with using Agile methodology and tracking through Trello will
help me accomplish a good quality project along with seeing what is needed to do this project.
When starting to design the project I will be real with what needs to be done and overstretch
myself and spend more time than I have in previous project planning and leave no minor detail left
out.

When developing the application user stories will be used to ensure that I am sticking to how the
application should work and that all functionality is getting added correctly and relevantly.

The documentation will be the hardest part, I will have to look at the layout of the previous year's
documentation to ensure I am laying out what is needed and implementing it correctly.

I will use the help of my mentor Vladimir as much as possible as this is new to me and his
knowledge will be invaluable.

1.2. Aims
The goal of this project is to build a full-stack application from design all the way through to
deployment. This will be done using an Agile methodology for project management. I will set out
SMART goals, that are specific, measurable, achievable, and relevant. The application will be a
nutrition platform that will sell health supplements. The application will be developed using Django
a Python framework. it will be developed in GitHub and Gitpod, the reason for this is the ease of
use while developing and committing branches to GitHub for tracking the development. It will use
Stripe’s API for taking secure payments. The application will be deployed using Heroku a cloud-
based application. AWS will be used for loading and rendering static files. The main objective is to
make a nutrition platform that is easy to use, navigates well, looks well and sets itself apart from
previous nutrition applications.

The objective as well as building an application is to write good quality documentation, as if I can
document how I have made and designed this application I will have truly done a good project
and learnt what I need to out of this project.

1.3. Technology
In my approach to development, I will use user stories for development and form the key
functionality of the project. The user stories will be added to the software requirements and then
implemented throughout the design and development phases, if they all work then the application
will work.

An agile methodology will be used throughout the whole project in design, development and
documentation. It will be tracked using Trello and with my own plan and the help of my supervisor,
it will be done with an agile approach.

GitHub has a new user stories section so I also plan to use this in implementing the user stories
and the agile approach as it will benefit my documentation of the project.

3

The software requirement section will identify the main requirements of the functionality of the
project and help make a blueprint of what's needed. More on this in section 5 the technical details
section below.

During the design phase, I plan to implement core functionality, user experience, quality products,
and good database designs and models to ensure the applications is of great quality.

1.4. Structure
Provide a brief overview of the structure of the document and what is addressed in each section.

2.0 System
2.1. Requirements

4

2.1.1. Functional Requirements
2.1.1.1. Use Case Diagram

2.1.1.2. Requirements:

1. User Requirement 1: User registration
2. User Requirement 2: User Login
3. User Requirement 3: Add product to cart.
4. User Requirement 4: Update or remove items from the cart.
5. User Requirement 5: Place order

5

6. User Requirement 6: Checkout
7. User Requirement 7: Update user profile
8. User Requirement 8: Logout

1. Stripe Requirement 1: Payment

1 Admin Requirement 1: Log in
2 Admin Requirement 2: Add Products
3 Admin Requirement 3: Edit Products
4 Admin Requirement 4: Delete Products
5 Admin Requirement 5: Calculate Shipping costs.

2.1.1.3. Description & Priority
User Requirement 1:

The user registration user case will describe how a user registers for Star Nutrition’s
system. Once on the application, a user can click register and be directed to the form
page where the user will fill out their details like username, password, email and address.
This is a high-priority requirement as a user has to be able to have a profile to be able to
checkout.

User Requirement 2:

The user can log in once they have registered for an account. Once on the applications a
user can click login and enter their email and password to log in. then they will be brought
to the logged-in home screen. This is a high-priority requirement as users must have an
account to update their profile and buy products.

User Requirement 3:

The user must be able to add a product or a certain quantity of product to their shopping
cart. This is an essential product requirement as registered users will have to be able to
select the products they want to buy.

User Requirement 4:

The user must be able to remove products or a certain quantity of products from their
shopping bag. This is an essential product requirement as registered users will have to be
able to remove items if they do not want to purchase products.

User Requirement 5:

The user must be able to place an order. When a user has selected the products they
want to buy, they must then be able to place an order to buy the product. This is a high-
priority requirement as orders need to be placed and details entered correctly.

User Requirement 6:

A user must be able to check out when they place an order and confirm details. Once a
user has entered their details they must be able to check out and buy their selection. This
is a high-priority requirement.

User Requirement 7:

The user must be able to update their details. The user must be able to change
addresses, passwords and other information. This is a high-priority requirement as users

6

must be able to change passwords or update details easily to ensure the application
works well.

User Requirement 8:

The user must be able to log out when their session is over. The user needs to click log
out and they must be logged out and the session ends immediately. This is a high-priority
requirement as users need to be able to log out after each session.

Stripe Requirement 1:

A user's payment details must be kept safe and free of any security breaches. Stripes API
will help manage online payments securely. This is a high-priority requirement.

Admin Requirement 1:

An Admin user must be able to log in. Admin users will be super users and able to log in
to edit products. This is a high-priority requirement to ensure the application can be kept
up to date.

Admin Requirement 2:

An Admin user must be able to Add/Update products. When a new product launches a
user must be able to add this easily. This is a high-priority requirement.

Admin Requirement 3:

An Admin user must be able to edit products. When a product price or details need to be
updated the admin user will be able to edit these details easily. This is a high-priority
requirement.

Admin Requirement 4:

An Admin user must be able to delete products. When a product is discontinued the
admin user must be able to take it off the site. This is a high-priority requirement.

Admin Requirement 5:

And admin users must be able to calcite shipping costs depending on delivery distance or
free delivery over a certain price. This is a high-priority requirement.

7

2.1.1.4. Use Case

` User Requirement 1: User registration

Scope

The scope of this use case is for a potential customer who wants to register for an
account.

Description

8

The user registration user case will describe how a user registers for Star Nutrition’s
system. Once on the application, a user can click register and be directed to the form
page where the user will fill out their details like username, password, email and address.
This is a high-priority requirement as a user has to be able to have a profile to be able to
checkout.

Flow Description

Precondition

The user has no registered account on the Star Nutrition application.

Activation

This use case starts when the user clicks to register.

Main flow

1. The user navigates to the register page form.
2. The user enters their details.
3. The User must enter their name, email address, address, number and password.
4. The system checks details are okay.
5. The system validates the new account.
6. The user will be sent a verification email.
7. The user accepts the email verification.
8. The user registers for an account.

Alternate flow

A1: The password does not meet the requirements.
1. The user navigates to the register page form.
2. The user enters their details.
3. The User must enter their name, email address, address, number and password.
4. The system checks details are okay.
5. The system does not accept the password as no special characters are entered.
6. The user enters their details with the correct password.
7. The system checks details are okay.
8. The system validates the new account.
9. The user will be sent a verification email.
10. The user accepts the email verification.
11. The user registers for an account.

Exceptional flow

E1: Users' email already in use.
1. The user navigates to the register page form.
2. The user enters their details.
3. The User must enter their name, email address, address, number and password.
4. The system checks details are okay.
5. The system does not accept email as it is in use for another account.
6. The user finds an old account and logs in.

Termination

The system presents the logged-in home page and users can now start shopping or log
out.

Postcondition

The system goes into a wait state.

9

 User Requirement 2: User Login

Scope

The scope of this use case is for a customer who wants to log into the application.

Description

The user can log in once they have registered for an account. Once on the applications a
user can click login and enter their email and password to log in. then they will be brought
to the logged-in home screen. This is a high-priority requirement as users must have an
account to update their profile and buy products.

Flow Description

Precondition

The user has a registered account on the Star Nutrition application.

Activation

This use case starts when the user clicks login.

Main flow

1. The user navigates to the home page.
2. The user clicks login.
3. The User must enter their username and password.
4. The system checks details are okay.
5. The system validates and lets the user log in.
6. The user is redirected to the homepage.
7. The user can start shopping.

Alternate flow

A1: The user needs to reset the password.
1. The user navigates to the home page.
2. The user clicks login.
3. The User must enter their username and password.
4. The system checks details are okay.
5. The system does not allow passwords.
6. The user has forgotten the password.
7. The user clicks forgotten password.
8. The user is directed to the forgotten password page.
9. The user enters their email.
10. The system sends an email verification link to reset the password.
11. The user clicks the email link to reset the password.
12. The user resets the new password.
13. The user tries to log in.
14. The system checks details are okay.
15. The system validates and lets the user log in.
16. The user is redirected to the homepage.
17. The user can start shopping.

Exceptional flow

E1: The user cannot gain access due to network issues.
1. The user has no internet connection.
2. The user cannot gain access to the site.

Termination

10

The system presents the logged-in home page and users can now start shopping or log
out.

Postcondition

The system goes into a wait state.

 User Requirement 3: Add product to cart.

Scope

The scope of this use case is for a customer who wants to select a product.

Description

The user must be able to add a product or a certain quantity of product to their shopping
cart. This is an essential product requirement as registered users will have to be able to
select the products they want to buy. Use Case Diagram

Flow Description

Precondition

The user is logged in and on the home page.

Activation

This use case starts when a user selects a product.

Main flow

1. The user is browsing the category of products.
2. The user selects a product.
3. The user is brought to the product details page.
4. The user chooses a quantity of 2 of the products.
5. The user then adds the products to the cart.
6. The system adds the products to the cart.
7. The system asks does the user want to continue shopping or go to the cart.
8. The user selects keep shopping.

Alternate flow

A1: Item already in the user's shopping cart.
1. The user is browsing the category of products.
2. The user selects a product.
3. The user is brought to the product details page.
4. The user chooses a quantity of a single product.
5. The system checks and the item are already in the user's cart.
6. The system shows a message to the user that this item is already in their cart

and that would they like to add this product again.
7. The user selects yes add to a cart.
8. The system asks does the user want to continue shopping or go to the cart.
9. The user selects keep shopping.

Exceptional flow

E1: The user does not have a registered account.
1. The user is browsing the category of products.

11

2. The user selects a product.
3. The user is brought to the product details page.
4. The user chooses a quantity of a single product.
5. The system checks if a user is registered and sees they are not.
6. The system asks the user if they would like to set up an account.
7. The user chooses yes to set up an account or not.

Termination

The system lets the user continue shopping or brings them to the shopping cart.

Postcondition

The system goes into a wait state.

Admin Requirement 2: Add Products

Scope

The scope of this use case is an admin user who wants to add a product.

Description

An Admin user must be able to Add/Update products. When a new product launches a
user must be able to add this easily. This is a high-priority requirement.

Flow Description

Precondition

The admin user is logged in and at the home page.

Activation

This use case starts when an admin user selects add products.

Main flow

1. The admin user selects add product.
2. The admin user is brought to the add product page form.
3. The admin enters the product details and image.
4. The system checks product details.
5. The system confirms users want to add products.
6. The admin user selects add product.
7. The product is added.
8. The system asks would the user like to add another product.

Alternate flow

A1: Product already added.
1. The admin user selects add product.
2. The admin user is brought to the add product page form.
3. The admin enters the product details and image.
4. The system checks product details.
5. The system confirms this product is already and asks the user do they still

want to add this product.
6. The admin users select no and choose to add another product.

12

Exceptional flow

E1: Technical issues.
1. The user encounters technical issues and cannot access the application.

Termination

The system lets the user add the product.

Postcondition

The system goes into a wait state.

2.1.2. Data Requirements
• User Information:

This will include the user's personal information such as name, email, password,
number, address, payment details and order history. Users will have customisable
profiles for updating their details.

• Admin Information:
This will include the super user's information such as name, email, passwords and
permissions. Admins will be able to add, delete or edit products.

• Products:
This will include the product details such as product id, images, category, description
and price.

• Comments and reviews:
This will hold the details of the comments and reviews of the product. To help
improve the applications.

• Applications data:
The application will capture data such as usage, performance stats, and webpage
views. This will help improve the application.

• Security and data:
This is how the application will securely hold sensitive data. Encryption to ensure no
data breaches.

2.1.3. User Requirements
• Easy set-up for new users:

Users will be able to set up and register an account easily. Name, email, password,
number, and address will be needed at registration.

• Easy login for user:
Users will easily be able to log in to the application once registered with their
email/username and password.

• Password Reset:
A user will easily be able to reset or update their password details. If a user has
forgotten a password it will be no issue to reset their old password with a few easy
security steps.

• Super users:
Super users will be set up by authorised personnel. Only superusers/admins can add
or update products.

• Create/Read/Update/Delete(CRUD) easily:
An admin user will easily be able to add new products, update them and delete them
if necessary once they have the correct permissions.

• Easily shop products:
Users will be able to search for products via categories, names, descriptions and
prices. They will also be able to filter products. The products will be easy to navigate

13

and once a product is clicked they will be able to see all data for the product very
clearly.

• Competitive pricing:
The products will be competitively priced compared to the market. Trends will be
analysed.

• Easy checkout:
Users will easily be able to check out once they are registered. Once the details
entered are correct the user will be able to check out with the click of a button.

• Easy Payment:
The application will use stripes powerful payment system which will add security and
put the users at ease buying products.

• Easily leave product reviews:
Users will be able to easily review products on a scale of 1-5 stars and leave a
comment about their experience.

2.1.4. Environmental Requirements
• Application performance:

The application will need a device with a stable internet connection to function on the
internet.

• Multiple devices:
Any device mobile or tablet, or internet explorer chrome will be able to render the
application.

• SEO:
Full use of Search Engine Optimisation will be used to maximise customer reach
along with marketing.

• Compliance with industry standards:
The application will comply with all laws and requirements so it is fully legitimate.

• Database performance:
The application will have sufficient capacity for performance online. The servers will
be capable of handling high congestion.

• Future developers:
Any developer will be able to work on the application due to the clean code rules that
the application will follow and commented code and doc strings to explain what is
happening.

• Scalability:
The application will have a lot of room for scalability to keep up with any growth
needs.

2.1.5. Usability Requirements
• User friendly:

The application will have easy no cluttered web pages to ensure easy use and
intuitive scrolling and shopping.

• Up-to-date products:
Products will be of the highest quality and will be market leading.

• Competitive pricing:
The products will not only be of the highest quality but they will be very competitively
priced. With plenty of deals.

• Easy user input:
Users will easily be able to input data as the application will be very intuitive. Forms
will be clear and concise and will have adequate placeholder text to ensure the user
knows what to enter. There will be alert messages to ensure the user knows what is
happening at all times.

• Design must be consistent:

14

Design must be consistent throughout the whole application. Same colour schemes,
fonts and image sizes on all web pages.

• Feedback:
Users will be able to leave feedback on products via reviews. The user will be able to
rate their experience in an email that will be sent out after each purchase.

• Error handling:
The application will have error handling through to prevent errors been made during
set or checkout. Alert messages will be present wherever important user input is
needed.

2.2. Design & Architecture
Systems Architecture:

Star nutrition was built using Django a web framework that follows a Model-View-Tempelate
architectural pattern. MVT is a variation of the Model-View-Controller pattern that is frequently
used in the creation of online applications, especially in frameworks like Django. The three
primary parts of the MVT pattern divide the application's concerns:

Model:

The Model shows the data and business logic of the application. It specifies how data is saved,
retrieved, and altered, as well as its structure and behaviour. Models are often represented in
Django applications as Python classes that correspond to database tables.

View:

The application's presentation logic is handled by the view. It is in charge of translating data from
the Model into a readable format for users to view in their web browsers, typically HTML. Views in
Django are Python classes or functions that accept HTTP requests and send HTTP answers.

Template:

The user interface's layout and structure must be specified by the Template. With placeholders for
dynamic content, the HTML markup is contained in a distinct display layer. The display can be
kept distinct from the underlying code and data processing thanks to templates. Django's template
engine is used by templates to render dynamic material inside HTML.

Frontend(User Inerfaces):

The frontend is the graphical and interactive parts of the application that the end user will directly
engage with when using Star nutrition. The front end is made up of a homepage, a base page, a
products page, a product details page, a profile page, and a shopping cart page. The idea of
these pages is so customers can explore products, examine product information, and prices, add
products to their shopping cart, proceed to checkout, check previous orders, and personal details
and tasks generally connected to an E-Commerce platform. For the front end, the use HTML,
CSS and JavaScript were used to develop the application. Below are some details of the frontend
of Star Nutrition.

Base Page:

The base.html file serves as a template for the entire web application's base layout. All other
pages in the program are built upon the base.html file, which has common components including
the header and navigation.

15

16

17

{% load static %}:

The CSS, JavaScript, and image static files are loaded by this template tag. It enables the usage
of the %static% template tag to refer to static assets later on in the file.

Block tags:

Several block tags in the template specify sections that can be changed in child templates. The
material contained in these blocks can be replaced or expanded by child templates that extend
the base.html template.

Meta Tags:

The template has meta tags for charset, viewport, and X-UA-Compatible. The behaviour and look
of the web page are defined by these tags.

JavaScript and CSS:

Links to JavaScript and CSS stylesheets are present in the template. In this instance, it imports
the base.css custom CSS file as well as the Bootstrap CSS and JavaScript library.

Font Awesome:

The template contains a link to the Font Awesome library, which offers a selection of icons for
different elements.

Header:

The shopping bag link, search bar, user account dropdown, and site logo are all located in the
header area. For layout and styling, Bootstrap classes are utilized.

18

Navigation:

The navigation area has two templates: includes/mobile-header.html and includes/main-nav.html,
as well as a toggle button for mobile navigation (navbar-toggler). The navigation menus for
desktop and mobile devices are probably defined individually in these templates.

Delivery Message:

The template has a banner that advertises free delivery for orders that exceed a specific amount.

Messages:

Toast messages, which are used to show user notifications or feedback messages (such as
success, error, or warning messages), are displayed in this area. The messages template context
variable allows access to the messages, which are normally set by the Django framework.

Main Nav:

The nav bar of Star Nutrition was designed using HTML. The code in the screenshot below can
be found in the main templates folder, within the includes folder. It shows a menu bar with several
drop-down menus, each with connections to various product categories.

All Products Dropdown:

Dropdown Content:

19

• "By Price" link: Sorts products by price in ascending order when clicked.
• "By Rating" link: Sorts products by rating in descending order when clicked.
• "By Category" link: Sorts products by category in ascending order when clicked.
• "All Products" link: Displays all products when clicked.

Vitamins & Supplements Dropdown:

Dropdown Content:

• "Vitamins" link: Displays products in the "Vitamins" category when clicked.
• "Minerals" link: Displays products in the "Minerals" category when clicked.
• "Supplements" link: Displays products in the "Supplements" category when clicked.
• "All Vitamins & Supplements" link: Displays all products in the "Vitamins," "Minerals,"

and "Supplements" categories when clicked.

Sports Nutrition Dropdown:

Dropdown Content:

• "Protein Powders" link: Displays products in the "Protein Powders" category when
clicked.

• "Bars, Drinks, Snacks" link: Displays products in the "Bars, Drinks, Snacks" category
when clicked.

• "Creatine" link: Displays products in the "Creatine" category when clicked.
• "Electrolytes" link: Displays products in the "Electrolytes" category when clicked.
• "Energy Gels" link: Displays products in the "Energy Gels" category when clicked.
• "Amino Acids" link: Displays products in the "Amino Acids" category when clicked.
• "Sports Accessories" link: Displays products in the "Sports Accessories" category

when clicked.
• "All Sports Nutrition Products" link: Displays all products in the sports nutrition

categories when clicked.

Weight Management Dropdown:

Dropdown Content:

• "Fat Burners" link: Displays products in the "Fat Burners" category when clicked.
• "Weight Management" link: Displays products in the "Weight Management" category

when clicked.
• "Diet Drinks and Foods" link: Displays products in the "Diet Drinks and Foods"

category when clicked.
• "All Weight Management products" link: Displays all products in the weight

management categories when clicked.

Some of the code contains Django template tags that URLs in Start Nutrion to link to certain
products for example "products" URL pattern is set eg. "% url 'products'%" this will bring the user
to all the products pages.

20

Anchor tags <a>, which indicate the target URLs for each category or sorting option, are used to
build the links in each dropdown. The navigation bar and dropdown menus are also styled using
Bootstrap classes.

Wireframe:

Screenshot:

Mobile Header:

The mobile header is designed using HTML. The code represents a navigation bar for mobile
devices that includes a search bar, user account dropdown, and shopping bag display, among
other things.

Search Bar Dropdown:

Button:

On mobile devices, a search icon with the word "Search" is visible.

21

Display Content:

• Search Form: A dropdown menu containing a search form appears when the search icon
is clicked.

• Form Method: The product URL is reached using the GET method, which sends the
search query as a URL and will bring the user to the product page.

• Text Input: The search query is entered into the "q"-named text input area.
• A search icon button is used as the form's submit button.

User Account Dropdown:

• On mobile devices, a user icon with the label "My Account" is visible.

Shopping Bag Display:

• On mobile devices, a shopping bag icon is displayed along with the total cost of the things
inside the bag.

• Conditional Styling: Depending on whether or not the shopping bag contains items, the
icon and total price are styled differently. The grand_total is a variable expressing the
total price of the items in your bag.

Homepage:

Star Nutrition’s home page serves as its landing page. To aid consumers in finding what they're
looking for fast, it consists of all the platform's products, shopping bags, delivery information, and
a search bar.

This file is located in the index.html file in the homepage app. This page acts as a child to the
base.html file as it extends it. It uses Django template logic to load certain blocks from the
base.html file. Below is a screen shot of the index.html file.

{% extends "base.html" %}:

22

This line instructs Django that the base.html template should be used as a basis for this template.
It indicates that while this template can override particular blocks as necessary, it will use the
layout and structure established in base.html.

{% load static %}:

Similar to the base.html template, this template element loads static files.

{% block page_header %}:

This child template replaces a block that is defined in the base.html template. The content from
this child template is used to replace the page_header block's content in the base template. In this
instance, it expands the header section to include a container with a row and column.

{% block content %}:

This child template replaces a block that is also defined in the base.html template. The content
from this child template is used to replace the material in the base template's content block. In this
instance, it uses Bootstrap classes to create a container with a row and column. There is a
heading and a "Shop Now" button in the column.

Wireframe:

Actual screenshot

23

Products Page:

The products.html file extends the base.html file. The products page renders as multiple blocks.
The page was designed using HTML, and bootstrap CSS using Django template logic that
renders the product details.

{% extends "base.html" %}:

This line instructs Django that the base.html template should be used as a basis for this template.
It indicates that while this template can override particular blocks as necessary, it will use the
layout and structure established in base.html.

{% load static %}:

Similar to the base.html template, this template element loads static files.

{% block page_header %}:

This child template replaces a block that is defined in the base.html template. The content from
this child template is used to replace the page_header block's content in the base template. In this
instance, it expands the header section to include a container with a row and column.

24

25

{% block content %}:

Overlay and Container:

To produce a backdrop effect, a div with the class "overlay" is used as an overlay.

A "container-fluid" div is used to enclose the content, ensuring that it fills the viewport's entire
width.

Categories Section:

The first piece of the code shows product categories as badges. The badges act as links to
products that can be filtered by the chosen category.

Sorting Section:

The dropdown selects an element in the following section and is used to order the shown
products based on the following price, rating, name, and category.

Product Listing:

• The majority of the template is dedicated to displaying the products in a grid layout.
• The image, name, price, category, and rating of each product are displayed on a

Bootstrap card.
• The products' details are dynamically filled in when they are iterated using a Django for a

loop.
• The template contains conditional statements that determine whether a product has a

picture, and if not, displays "noimage.png" by default.

26

• Horizontal lines (hr tags) are used to create a visual separation between rows of products
on different screen sizes depending on the position of the product in the for loop.

The back-to-top button:

The button at the bottom of the template enables users to swiftly scroll back to the top of the
page.

{% block postloadjs %} and {% endblock %}:

Back to Top Button:

• A smooth "Back to Top" effect is produced when the user clicks on the element with the
class ".btt-link," which causes JavaScript code to run and scroll the window to the top.

• When a user has scrolled down to look at products, this functionality makes it simple for
them to return to the top of the page.

Sorting Functionality:

• The JavaScript code runs the sorting feature when the user chooses a different choice
from the #sort-selector dropdown without requiring a page reload.

• It records the drop-down's change event ($('#sort-selector').change(...)) and returns the
chosen value, such as "price_asc" for ascending price sorting.

• If the selected value is not "reset," it uses the URLSearchParams API to change the URL
parameters for sorting and direction by extracting the sorting method and direction from
the selected value.

• The sorting and direction parameters are removed from the URL if the specified value is
"reset."

• To update the page content based on the chosen sorting option without reloading the full
page, it finally replaces the existing URL with the updated URL.

Wireframe

27

Screenshot:

Products Details Page:

The product_detail.html file extends the base.html file. The products detail page renders the
details of the selected product. It is a user-friendly user interface for viewing product information
and allows users to add products to their shopping cart.

28

{% extends "base.html" %}:

• This line instructs Django that the base.html template should be used as a basis for this
template. It indicates that while this template can override particular blocks as necessary,
it will use the layout and structure established in base.html.

{% load static %}:

• Similar to the base.html template, this template element loads static files.

{% block page_header %}:

• This child template replaces a block that is defined in the base.html template. The content
from this child template is used to replace the page_header block's content in the base
template. In this instance, it expands the header section to include a container with a row
and column.

29

{% block content %}:

Overlay and Container:

• To produce a backdrop effect, a div with the class "overlay" is used as an overlay.
• A "container-fluid" div is used to enclose the content, ensuring that it fills the viewport's

entire width.

Product Details Layout:

• The product details are displayed using a Bootstrap row with two columns: one for the
product image and one for the product information.

• The product image is displayed in the first column (col-12 col-md-6 col-lg-4 offset-2). The
offset-2 class centres the column horizontally on smaller screens.

• The information about the product, including its name, price, category, rating, and
description, is shown in the second column (col-12 col-md-6 col-lg-4).

• Product Image:
• The image of the product is presented inside a Bootstrap card-like container with the

class "image-container."

30

• An if statement determines whether the item has a picture. If it does, the image is
displayed with an anchor link that, when clicked, launches the image in a new tab. If not,
the default picture (noimage.png) is shown.

Product Details:

• HTML components and Django template tags are used to display product information
such as name, price, category, and rating.

• If a category exists for the product, it is shown as a link that, when clicked, filters the
products according to the chosen category.

Form to Add to Bag:

• The product is added via a form to the shopping bag (cart).
• With the product's ID as a parameter, the form action is set to the URL pattern

"add_to_bag".
• The form has a security feature called a CSRF token (%csrf_token%) that guards against

cross-site request forgery attacks.
• Users can choose the quantity of the product they want to put in the bag using the form.
• A size selector dropdown is present if the product (product.has_sizes) has various sizes.
• Additionally, the form has buttons (increment-qty and decrement-qty) that allow you to

change the quantity using JavaScript.

Continue Shopping Button:

• A "Continue Shopping" button with a link to the products page (% url 'products'%) is
located beneath the quantity selector.

Hidden Field for Redirect URL:

• The redirect URL, which enables customers to go back to the current product information
page after adding the item to the bag, is kept in a hidden field.

31

{% block postloadjs %}

handleEnableDisable Function:

• This function accepts an itemId as an argument, which stands for the distinct product
identifier that should be used to handle the quantity input and buttons.

• It obtains the most recent quantity input value for the product.
• Based on the current value, it determines whether the - (decrement) and + (increment)

buttons should be disabled. The - button is disabled if the value is less than 2, while the +
button is disabled if the value is more than 98.

• Using jQuery's prop method, the buttons' disabled property is set appropriately.

Ensure Proper Enabling/Disabling on Page Load:

• The class provides the code with access to all quantity input elements. the allQtyInputs
variable and selects them with the jQuery selector.

• It retrieves the relevant itemId after iterating through each input element.
• To make sure the buttons are enabled or disabled correctly when the page loads, it calls

the handleEnableDisable function for each itemId.

Check Enable/Disable on Quantity Change:

• All amount input elements with the class have a change event listener added by the
code.qty_input.

• The event handler is activated when the quantity input value changes.
• To update the button states based on the updated amount value, it fetches the itemId

linked to the modified input and uses the handleEnableDisable method.

Increment Quantity:

32

• To all items with the class.increment-qty, which are the + buttons, the code adds a click
event listener.

• The event handler is activated when a plus button is clicked.
• Using jQuery's closest method, it locates the nearest amount of input element and returns

the related itemId.
• It invokes the handleEnableDisable function to update the button states based on the new

amount value after increasing the input element's value by 1 and calling
handleEnableDisable.

Decrement Quantity:

• To all items with the class.decrement-qty, which are the - buttons, the code adds a click
event listener.

• The event handler is activated when a - button is clicked.
• Using jQuery's closest method, it locates the nearest amount of input element and returns

the related itemId.
• It invokes the handleEnableDisable function to change the button states depending on

the new amount value and decreases the input element's value by 1 before doing so.

Wireframe

Screenshot:

33

Profile:

The profile.html file extends the base.html file. The profiles page renders the user's profile page
with delivery and order history. The page was designed using HTML, and bootstrap CSS using
Django template logic that renders the profile details.

{% extends "base.html" %}:

• This line instructs Django that the base.html template should be used as a basis for this
template. It indicates that while this template can override particular blocks as necessary,
it will use the layout and structure established in base.html.

{% load static %}:

• Similar to the base.html template, this template element loads static files.

{% block page_header %}:

• This child template replaces a block that is defined in the base.html template. The content
from this child template is used to replace the page_header block's content in the base
template. In this instance, it expands the header section to include a container with a row
and column.

34

{% block content %}

Overlay and Container:

• To produce a backdrop effect, a div with the class "overlay" is used as an overlay.
• A "container" div is used to wrap the content on the page is this Bootstrap container.

Profile Heading:

• The profile heading is shown in a row with a single column.
• For visual separation, a horizontal line (hr>) is put above and below the heading.
• The <h2> element is used to display the heading itself, together with the class logo-font

and the mb-4 margin.

Delivery Information:

35

• The Bootstrap class col-12 col-lg-6 is used to display the user delivery information in a
column.

• "Default Delivery Information" is displayed in a paragraph with the class text muted.
• To amend the delivery information, a form is offered.
• Using the syntax % url 'profile'%, the form's action directs users to the URL with the name

"profile."
• The data is safely sent via the POST method by the form.
• To prevent CSRF attacks, a CSRF token (% csrf_token%) is introduced.
• For improved styling, the form fields are presented using the form|crispy template filter.

Update Information Button:

• An "Update Information" button with the classes btn, btn-black, rounded-0, and text-
uppercase is floated to the right of the column.

Order History :

• Another column utilizing the Bootstrap class col-12 col-lg-6 displays the user order
history.

• "Order History" is displayed in a paragraph with the class text-muted.

Order History Table:

• With the help of the Bootstrap classes table, table-sm, and table-borderless, the order
history is displayed in a table.

• The "Order Number," "Date," "Items," and "Order Total" columns are included in the table
header.

Loop through Orders:

• Loop through Orders The context variable orders, which contains a list of order objects, is
iterated through using a for-loop.

• A table row (tr) is produced for each order to display the order details.

Order Number Link:

• A link (a>) with the order number as a parameter is shown next to the order number and
directs users to the 'order_history' URL.

• The full order number is displayed as a tooltip using the title attribute.
• The truncatechars template filter reduces the order number to six characters.

Order Number Link:

• In separate table fields, the order total, a list of the items, and the order date are all
shown.

Conditional Size Display:

• To determine whether a product has sizes, a conditional statement is used (%if
item.product.has_sizes%).

• If a product comes in different sizes, the size is listed first, then the product name and
quantity.

Grand total:

• The final column displays the overall sum for each order.

36

{% block postloadjs %}

• For Stripe integration, postloadjs is used as the initial block. It contains utilizing the
json_script template filter to generate the Stripe public key and client secret as JSON
data.

• It is a reference to the stripe_elements.js JavaScript file in the static directory's
checkout/js folder.

• Postloadjs_country, the second block, is for the Country Field. It contains a connection to
the countryfield.js JavaScript file in the static directory's profiles/js folder.

Screenshot:

Shopping Cart:

The bag.html file extends the base.html file. The shopping bag page renders a shopping cart for
users of the application to update their carts. The page was designed using HTML, and bootstrap
CSS using Django template logic that renders the shopping bag details.

37

{% extends "base.html" %}:

• This line instructs Django that the base.html template should be used as a basis for this
template. It indicates that while this template can override particular blocks as necessary,
it will use the layout and structure established in base.html.

{% load static %}:

• Similar to the base.html template, this template element loads static files.

{% block page_header %}:

• This child template replaces a block that is defined in the base.html template. The content
from this child template is used to replace the page_header block's content in the base
template. In this instance, it expands the header section to include a container with a row
and column.

38

39

{% block content %}

Overlay and Container:

• To produce a backdrop effect, a div with the class "overlay" is used as an overlay.
• A "container" div is used to wrap the content on the page is this Bootstrap container.

Shopping Bag Heading:

• The header "Shopping Bag" is presented with a horizontal line (hr) above and below it.

40

• The h2> element is used to display the heading "Shopping Bag" together with the class's
logo-font and mb-4.

Shopping Bag Table:

• The items in the shopping bag are put on a table for viewing.
• The classes table, table-sm, and table-borderless are all present in the table.

Product Image, Name, Price, and Quantity:

• The product name, image, price, and quantity are all listed separately in each row's table
cell.

• The img-fluid and rounded classes are used to display the product image as a
responsive, rounded image.

• Along with the product price and quantity, the display also includes the product name and
size (if item has a size).

Quantity Adjustment Form:

• Changes to the quantity of each item in the shopping bag are made using a form of the
class update-form.

• The action on the form sends a request to the URL 'adjust_bag' with the item ID as an
argument.

• For security, a CSRF token (%csrf_token%) is used.

Quantity Adjustment Buttons:

• Using input group components from Bootstrap, buttons for decreasing and increasing the
quantity are included.

• These buttons have been using JavaScript functions to change the quantity.

Subtotal and Total:

• Each item's subtotal is computed and shown in the table's last column.
• Below the table, you can see the grand amount, delivery fee, and bag total.

Continue Shopping and Secure Checkout Buttons:

• Users can choose from buttons to move on to the secure payment page or to keep
shopping.

Empty Bag Message:

• A message stating that the bag is empty is displayed if the bag is empty (i.e., bag_items
is empty).

• To take people back to the products page, a button is included.

41

{% block postloadjs %}

Update Quantity:

• When an element with the class update-link is clicked, the code creates an event listener
for that event.

• The JavaScript function is triggered when the "Update" link is clicked.
• Using the prev() method, the function locates the previous element belonging to the class

update-form (the quantity adjustment form).
• Once the form has been submitted, the quantity of the item in the shopping bag will be

updated without refreshing the page.

Remove Item and Reload:

• When an element with the class remove-item is clicked, the code creates an event
listener for that click.

• The JavaScript function is activated when the "Remove" button is clicked.
• The CSRF token (csrf_token) is first taken out of the template by the function and placed

in the csrfToken variable.
• The split() and attr() functions are then used to retrieve the item ID from the clicked

element's ID attribute.

42

• The size data is retrieved and saved in the size variable if the "Remove" button also
includes a data-product_size property.

• The function then combines the item ID with the base URL /shopping bag/remove/ to
create the URL for taking the item out of the bag.

• It generates a data object that includes the product_size and, if available, the CSRF
token.

• The $.post() method is then used by the function to send a POST request with the data to
the newly created URL.

• The function uses location.reload() to reload the page when the POST request is
successful to update the shopping bag display without performing a full page refresh.

Screenshot:

Checkout:

The checkout.html file extends the base.html file. The checkout page renders a checkout page
that gathers user data, shows the order summary, and enables customers to finish their
transactions using Stripe as the payment processor. It handles order processing, payment
verification, and order fulfilment. The page was designed using HTML, and bootstrap CSS using
Django template logic that renders the shopping bag details.

{% extends "base.html" %}:

43

• This line instructs Django that the base.html template should be used as a basis for this
template. It indicates that while this template can override particular blocks as necessary,
it will use the layout and structure established in base.html.

{% load static %}:

• Similar to the base.html template, this template element loads static files.

{% block page_header %}:

• This child template replaces a block that is defined in the base.html template. The content
from this child template is used to replace the page_header block's content in the base
template. In this instance, it expands the header section to include a container with a row
and column.

44

45

{% block content %}

Overlay and Container:

46

• To produce a backdrop effect, a div with the class "overlay" is used as an overlay.
• A "container" div is used to wrap the content on the page is this Bootstrap container.

Order Summary Section:

• Presents a table with a list of the goods in the shopping bag.
• It displays the product image (if accessible), name, size (if appropriate), quantity, and

subtotal for each item.
• The values for "Order Total," "Delivery," and "Grand Total" are also displayed at the

bottom.

Form Section:

• Contains a form for gathering user data for payment and shipping information.
• The user's full name and email are fields in fieldset 1's "Details" section.
• The user's phone number, street address, city, county, postal code, and country are all

included in Fieldset 2's "Delivery" fields. Additionally, if the user is authenticated, a
checkbox to save delivery information to their profile is present. If not, it offers
opportunities to register or log in.

• The Stripe card element will be displayed here to manage the payment. Fieldset 3:
"Payment" In a hidden input area for the payment intent, the client's secret value is also
there.

Submit Button:

• Provides the user with a link to return their shopping bag if they need to alter it.
• The form is submitted for order completion and payment processing by clicking the

"Complete Order" button.
• Additionally, there is a notification letting the consumer know that the "Grand Total" will be

charged to their card.

Integration with Stripe:

Stripe Card Element:

• The Stripe card element will be displayed in the div with the id="card-element" tag. Users
can safely enter their credit card information with this component.

Overlay for Payment Processing:

• When the payment is being processed, the div with the ID "loading-overlay" is used to
display an overlay with a spinning icon. Users can see this as a good visual cue that the
payment is active.

{% block postloadjs %}

47

Public Key and Client Secret:

• The json_script template filter is used to generate the stripe_public_key and client_secret
variables as JSON scripts. To interface with Stripe on the client side, these variables are
required.

Stripe JavaScript File:

• The script> tag contains a link to the stripe_elements.js JavaScript file, which is in charge
of managing the configuration of the Stripe card element and form submission.

Screenshot:

Checkout Success:

The checkout_sucess.html file extends the base.html file. The checkout success page renders the
order information and provides a link for users to go back to their profile. The page was designed
using HTML, and bootstrap CSS using Django template logic that renders the shopping bag
details.

48

{% extends "base.html" %}:

• This line instructs Django that the base.html template should be used as a basis for this
template. It indicates that while this template can override particular blocks as necessary,
it will use the layout and structure established in base.html.

{% load static %}:

• Similar to the base.html template, this template element loads static files.

{% block page_header %}:

• This child template replaces a block that is defined in the base.html template. The content
from this child template is used to replace the page_header block's content in the base
template. In this instance, it expands the header section to include a container with a row
and column.

49

50

51

{% block content %}

Overlay and Container:

• To produce a backdrop effect, a div with the class "overlay" is used as an overlay.
• A "container" div is used to wrap the content on the page is this Bootstrap container.

Order Information Table:

52

• The table offers a structured format for showing order details such as the order number,
order date, order details (including product names, sizes, and prices), delivery address,
billing information, order total, shipping cost, and overall total.

• Django template tags and filters are used to obtain data from the order model and
populate the content.

Back to Profile Button:

• The "Back to Profile" button is used when clicked it directs users to their profile page.
• To maintain consistency with the overall design, the button is styled using Bootstrap

classes.

{% block postloadjs %}

Public Key and Client Secret:

• The json_script template filter is used to generate the stripe_public_key and client_secret
variables as JSON scripts. To interface with Stripe on the client side, these variables are
required.

Stripe JavaScript File:

• The script> tag contains a link to the stripe_elements.js JavaScript file, which is in charge
of managing the configuration of the Stripe card element and form submission.

Screenshot:

53

Toasts:

Success

The toast_success.html code is a Django-template-based HTML template. It is a custom
template that shows a success message.

54

Toast Container:

• The toast message container is represented by the outermost div with the class "toast".

Arrow:

• There is an arrow element with the classes "arrow-up" and "arrow-success" that points
upward.

Toast Header:

• The toast's header features the phrase "Success!" shown as a strong element (strong>),
as well as an "x" (×) close button for dismissing the toast. White writing on a dark
background makes up the header.

Toast Body:

• The "toast-body" div, which is styled with a white background, contains the bulk of the
toast's content.

Message:

• The "message" variable is a placeholder for dynamic material that will be shown as the
toast's main message.

Grand Total:

• The conditional block is based on the grand_total and on_profile_page variables included
inside the toast. If these criteria are satisfied, the content about the shopping bag and the
total will be displayed.

Shopping Bag Content:

• If the criteria are satisfied, the products in the shopping bag will be displayed. Each item
is shown as a row that includes the product's name, size (if available), and number along
with an image of the item.

Grand Total:

• It shows the total cost (in euros) of the products in the shopping bag and, if the
free_delivery_delta value is more than 0, it prompts the customer to spend additional
money to qualify for free next-day delivery.

Go To Secure Checkout Button:

55

• The option to access the secure checkout page is labelled "Go To Secure Checkout." "Go
To Secure Checkout" is written there, and a locked padlock with a Font Awesome
icon serves as the icon.

Screenshot:

Error

The toast_error.html code is a Django-template-based HTML template. It is a custom
template that shows an error message.

Toast Container:

• The toast message container is represented by the outermost div with the class "toast".

Arrow:

• Like the previous template, this one also features a distinctive upward-pointing arrow
element. This time, it has the classes "arrow-up" and "arrow-danger," which indicate that
it is styled for an error message.

Toast Header:

• The toast's header has an "Error!" title that is displayed as a strong element (strong>) and
an "x" (×) close button that can be used to dismiss the toast. White writing on a
dark background makes up the header.

Toast Body:

• The "toast-body" div, which is styled with a white background, contains the bulk of the
toast's content.

Message:

56

• The message variable is a placeholder for a dynamic text that will be shown as the toast's
primary error message.

Information:

The toast_info.html code is a Django-template-based HTML template. It is a custom template that
shows an information message.

Toast Container:

• The toast message container is represented by the outermost div with the class "toast".

Arrow:

• Like the earlier templates, this one also has a distinctive upward-pointing arrow element.
This time it has the classes "arrow-up" and "arrow-info," it is styled for an alert or
informational message.

Toast Header:

• The toast's header includes the word "Alert!" shown as a strong element (strong>), as
well as an "x" (×) close button for dismissing the toast. White writing on a dark
background makes up the header.

Toast Body:

• The "toast-body" div, which is styled with a white background, contains the bulk of the
toast's content.

• Message: The message variable is a placeholder for dynamic material that will be shown
as the toast's primary information or alert message.

Warning:

The toast_warning.html code is a Django-template-based HTML template. It is a custom
template that shows a warning message.

57

Toast Container:

• The toast message container is represented by the outermost div with the class "toast".

Arrow:

• Similar to the earlier templates, this one has a distinctive upward-pointing arrow element.
This time, it has the classes "arrow-up" and "arrow-warning," which denote that it is styled
for a warning message.

Toast Header:

• The toast's header includes the word "Warning!" shown as a strong element (strong>), as
well as an "x" (×) close button for dismissing the toast. White writing on a dark
background makes up the header.

Toast Body:

• The "toast-body" div, which is styled with a white background, contains the bulk of the
toast's content.

Message:

• The message variable is a placeholder for dynamic material that will be shown as the
toast's primary warning message.

Fixtures:

Fixtures are used in JSON, XML, or YAML file formats. They serve as an image of all the data in
your application, including model instances and the data they are linked to. Fixtures can be used
to populate data for a variety of purposes, including setting up sample material, pre-loading
reference data, and creating default user accounts. The folder is found in the application of the
product in the fixtures folder.

In this application, they are used to load the product categories and product details using a JSON
file.

Categories:

The categories.json are represented as a list of product categories in JSON format together with
the corresponding data. A primary key (pk), a model type (model), and a set of fields with the
category name (name) and a friendly name (friendly_name) are all present for each category.

To load the categories the command line command is used. “python3 manage.py load data
categories”.

58

Here is an example of the first category loaded below.

[{"pk": 1, "model": "products.category", "fields": {"name": "vitamins", "friendly_name": "Vitamins"}}]

Products:

The products.json is a JSON representation that contains data about the application's products. A
primary key (pk), a model type (model), and some fields with information on the product—
including its SKU, name, description, price, category, rating, and image—are included in each
entry for a given product. this helps preload the database with the product information.

To load the products the command line command is used. “python3 manage.py loaddata
products”

Here is an example of the first product loaded below.

 "pk": 1,

 "model": "products.product",

 "fields": {

 "SKU": "p000000001",

 "name": "Beeline Multivitamins Tablets",

 "description": "Beeline Multivitamin Tablets contain our most advanced vitamin and
mineral formula to provide comprehensive nutritional support. Suitable for vegetarians, the
supplement supports health, vitality, wellbeing and energy levels.",

 "price": 6.80,

 "category": 1,

 "rating": 4.4,

 "image": "multi.jpg"

 }

 },

Allauth:

The well-known Django package "allauth" offers a selection of templates and views for
authentication and account management functions, such as user registration, login, password
reset, and other capabilities. Allauth version 0.41.0 is used as it worked best for the application
and was easiest to customise the templates.

Once Django was installed I was able to copy the templates from the allauth package to the
alluath template directory in the application. Once in the directory, the command used was.

cp -r ../.pip-modules/lib/python3.8/site-packages/allauth/templates/* ./templates/allauth/

Once the template the directory looked like this and then allauth templates could be rendered and
looked like the screenshots below.

59

60

Static
CSS:

A static css file called base.css is used to style the application.

Global Styles:

• In the first section, the body's height and the background image settings are among the
global styles that are applied to the html and body components.

Font Awesome Icon Styling:

• Font Awesome icons are shown using the defined styles for the .icon class. The
alignment and icon dimensions are set using flexbox attributes.

Logo Styling:

• To apply text modifications, such as making the text uppercase, use the.logo-font class. It
probably appears in headlines or logos.

Button Styling:

• Several button styles, including.shop-now-button,.btn-black, and.btn-outline-black, are
defined. These styles have various backgrounds and text colors for the states (hover,
active, and focus), respectively.

Category Badges Styling:

• The styles for category badges are defined here. The background color turns to black and
the text color to white when the badges are hovered over.

 Back to Top Button:

• Back-to-top button styling for the.btt-button class. It is a tiny button that consistently
appears in the bottom-right corner of the display.

Input Placeholder Styling

• Custom styling for the placeholder of input elements with the name "q" is used. A
particular color will be used for the placeholder text.

61

Bootstrap Toasts Styling:

• Using classes like.message-container,.custom-toast,.toast-capper,.arrow-up, and
various.arrow-color classes, Bootstrap toasts are styled to display different coloured
arrows for different toast types (primary, secondary, success, danger, warning, info, light,
dark).

Bag Notification Styling:

• Styles for the wrapper of the bag notification, which shows the contents of the shopping
bag.

Media Queries:

• Media queries are used to apply various styles depending on the size of the screen (e.g.,
changing the container's width on extremely big screens, or modifying the padding on
smaller devices).

Allauth Form Styling:

• Form styling for the "allauth" package, which handles user registration and authentication.
Input fields, buttons, links, and labels are all customised.

Fixed Top Navbar:

• For medium-sized and bigger screens, styles for a fixed-top navigation bar are available.

Header Styling:

• Depending on the size of the screen, different padding and font sizes are adjusted for the
top part of the website.

Profile:

This profiles.css styles the order history and profile update form area of an application.

62

Order History Styling:

• A container that displays the order history is given the.order-history class. When the
content surpasses the container's maximum height of 416 pixels, vertical scrolling is
enabled.

Profile Update Form Styling:

• The input elements in the profile update form are targeted by the #profile-update-
form.form-control selector. It changes the input elements' text color to black.

Input Placeholder Styling for Profile Update Form:

• The placeholders contained within the input elements of the profile update form are the
focus of the #profile-update-form input::placeholder selector. It changes the color of the
placeholder text to a pale grey (#aab7c4).

Country Dropdown Styling:

• The default country dropdown element is the focus of the #id_default_country selector. It
changes the dropdown menu's text color to black.

Country Dropdown Placeholder Styling:

• The first choice in the dropdown, which is typically a placeholder, is not targeted by the
#id_default_country option:not(:first-child) selector. It changes these options' text colors to
black.

Country Dropdown Placeholder Styling:

63

• The first option of the dropdown, which is typically a placeholder like "Select a Country," is
the focus of the #id_default_country option:first-child selector. This option's text is set to
the same light grey (#aab7c4) as the input placeholders' text.

Checkout:

This checkout.css styles the overlays, as well as some additional styling for the integration of
Stripe elements and form controls.

Stripe Element and Form Control Styling:

• Styling for Stripe elements and form controls, which are utilized in the processing of
payments. The appearance of Stripe components and input fields is specified by
the.StripeElement and.stripe-style-input classes. They consist of the attributes for box-
sizing, height, padding, border, border-radius, background color, and box-shadow. When
an element or input field is in focus, the StripeElement--focus and.stripe-style-input:focus
classes specify the appearance.

Stripe Element Autocomplete Styling:

• When the Stripe element holds data that was autocompleted, the StripeElement--webkit-
autofill class changes the background color.

Placeholder Styling for Input Fields:

• The input fields' placeholder text color is set by the.stripe-style-input::placeholder class.

64

Fieldset Label Adjustment:

• The fieldset label's location is changed by the.fieldset-label class.

Form Control Styling for Payment Form:

• The #payment-form has form control styling for the payment form. The text color and
border for form controls used in the payment form are configured using the form-control
and #card-element selectors.

Styling for Country Fields:

• Styles for nation selection fields, such as the color of the options and how to handle
incorrect selections, are available.

65

Overlay Styling for Checkout:

• Styles for the overlay that will be utilized during the checkout process. The position and
look of the overlay, when it is shown, are set by the #loading-overlay selector. The
loading spinner is centred inside the overlay using the.loading-spinner class.

Application level file(star_app):

Settings.py:

66

The settings.py file is crucial for configuration and acts as the central file for the entire project and
is located in the applications main directory.

DEBUG:

• The DEBUG setting, which is meant for development environments, is set to True. When
failures happen, it enables you to view comprehensive error pages with stack traces.

ALLOWED_HOSTS:

• A list of hostnames that the application is permitted to serve is contained in the
ALLOWED_HOSTS option. It only permits queries from the IP address '8000-colinshaw1-
starnutritio-wfudkbs11uc.ws-eu102.gitpod.io'.

CSRF_TRUSTED_ORIGINS:

• Cross-Site Request Forgery (CSRF) protection is provided by
CSRF_TRUSTED_ORIGINS, which specifies trusted origins. These origins' requests
won't need CSRF tokens.

INSTALLED_APPS:

• Lists each Django application that has been installed in the project. The applications
consist of 'Django.contrib' apps, third-party apps like 'allauth' for authentication and
'crispy_forms' for form styling, as well as custom apps like 'homepage',
'products','shoppingbag', 'checkout', and 'profiles'.

MIDDLEWARE:

• Defines the collection of middleware classes that the application will use. Each request
and answer trigger a different sequence of middleware executions.

ROOT_URLCONF:

67

• Points to the project's URL configuration, which contains the routing rules.

TEMPLATES:

• Specifies how HTML template configuration should be rendered. Context processors,
template directories, and other options are included.

DATABASES:

• Describes the settings of the database. In this instance, a file called "db.sqlite3" houses
an SQLite database.

AUTHENTICATION_BACKENDS:

• Lists the user authentication backends in use, including the 'allauth' and default Django
backends.

SITE_ID:

• The ID of the current Django site is SITE_ID. The setting is 1.

EMAIL_BACKEND:

• Sets the email backend's settings so that emails can be sent.
'Django.core.mail.backends.console.EmailBackend' is used in this instance to display
emails in the console while developing.

ACCOUNT_* settings:

• Settings for user accounts and authentication using the 'allauth' package are contained in
the ACCOUNT_* file.

68

LANGUAGE_CODE:

• Defines the application's default language code.

TIME_ZONE:

Defines the application's default time zone.

STATIC_URL and STATICFILES_DIRS:

• Settings for managing static files including CSS, JavaScript, and pictures are
STATIC_URL and STATICFILES_DIRS.

69

MEDIA_URL and MEDIA_ROOT:

• Settings for managing uploaded media files include MEDIA_URL and MEDIA_ROOT.

DEFAULT_AUTO_FIELD:

• The default primary key field type for models is specified by DEFAULT_AUTO_FIELD.

FREE_DELIVERY_THRESHOLD and STANDARD_DELIVERY_PERCENTAGE:

• Variables used to estimate shipping costs for the online store include
FREE_DELIVERY_THRESHOLD and STANDARD_DELIVERY_PERCENTAGE.

• STRIPE_* settings:
• Configuration options for integrating Stripe payment processing are found in the

STRIPE_* settings.

URLS:

The main application urls.py file is an essential part of the application for routing the systems
URLS. It works by mapping incoming requests to the appropriate views and endpoints within the
application. Each URL pattern is associated with a view function that handles a request and
returns the appropriate response.

Import Django Modules:

• The admin site and other built-in Django applications are located in the Django.contrib
module.

Django.urls:

70

• The Django URL manipulation tools are contained in this module.

Import Static Files Related Modules:

• Access to Django's settings variables is made possible through the django.conf.settings
module.

django.conf.urls.static:

• During development, you can use this module to provide static resources like CSS,
JavaScript, and pictures.

URLS:

• /admin/: The Django admin interface.
• /accounts/: URLs related to user authentication and registration using allauth.
• homepage/: The homepage URLs.
• /products/: URLs related to products.
• /shopping bag/: URLs related to the shopping bag or cart.
• /checkout/: URLs related to the checkout process.
• /profile/: URLs related to user profiles.

• + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
• While MEDIA_ROOT is the absolute filesystem path to the directory holding media files,

MEDIA_URL is defined in Django's settings.py file and points to the URL where media
files are served.

Homepage:

Models:

The homepage has no models file as it does not have any use for one.

URLS:

In the urls.py located on the homepage application. The index view function will be run when a
user accesses the app's root URL, returning the proper homepage response. The logic to render
the homepage's content will be found in the view function index, which is anticipated to be defined
in the homepage's views.py module.

Import Django Modules:

71

• The admin site and other built-in Django applications are located in the django.contrib
module.

django.urls:

• The Django URL manipulation tools are contained in this module.

from . import views:

• The views are imported from the current app using the from. import command. The view
functions that process various HTTP requests and produce the necessary responses are
contained in the views module.

path('', views.index, name='homepage'):

• The URL pattern for the app's home page. Django calls the index view function from the
app's views.py module when a user accesses the root URL, and the view function
processes the request and returns an HTTP response to render the homepage content.

Views:

Import:

• Render: from django.shortcuts import importing the render method from Django's
shortcuts module. Rendering templates and returning HTTP replies are done by this
function.

def index(request):

• This is a view function called index. It is in charge of responding to HTTP requests
from the homepage URL.

return render(request, 'home/index.html'):

returns:

• This line renders the index.html template and returns it as an HTTP response using the
render function.

request:

• The user's HTTP request object includes details about the browser they used, any
session data, and any supplied data (GET/POST parameters).

72

'home/index.html':

• This is the relative path to the index file within the templates directory of the homepage
app. It instructs Django to use the templates folder of the app's home directory's
index.html template.

Admin:

• The admin.py file is not called on for the homepage.

Products:

Models:

The models specify how the database tables that store categories and products should be
structured. The Product model represents specific products with their features, such as name,
description, and price, while the Category model is used to categorise products.

Category Model:

• The model's Meta class is used to alter the model's behaviour via the Django admin
interface. In this instance, it transforms the model's plural name "Categories" into the
correct "Categories."

• It serves as a representation of the product category and is utilised in the application to
classify products.

• A character field (CharField) with a 254 character maximum is used for the name field.
The name of the category is stored.

• A character field (CharField) with a 254 character limit is also used for the friendly_name
field. It keeps a name for the category that may be seen in the user-friendly programme.

• __str__() method:
• The string representation of the model instance, which is the name of the category, is

returned by the __str__() method.
• get_friendly_name() Method:
• A custom model method named get_friendly_name() can be used to access the

friendly_name property of a Category instance. If the category's friendly_name has been
set, it will be returned. It will return None if not.

Product Model:

73

• A product is represented by it in the application.
• A foreign key (ForeignKey) that connects the product to a category is the category field. It

enables the product to be connected to a particular category, and if that category is
eliminated, the on_delete=models function is activated.Instead of removing the product,
the SET_NULL option guarantees that the category will be set to null in the product.

• A character field (CharField) with a 254 character maximum is the SKU field. It is used as
an identifier number for the products.json file in the fixtures folder.

• A character field (CharField) with a 254 character maximum is used for the name field.
The product's name is kept there.

• A longer description of the product may be entered in the description box, which is a text
field (TextField).

• Has_sizes are a boolean field (BooleanField) that specifies whether or not the product is
available in various sizes. The product has sizes if True; else, it does not.

• A maximum of 6 digits and 2 decimal places can be stored in the price field
(DecimalField), which is a decimal field.

• With a maximum of 6 digits and 2 decimal places, the rating field (DecimalField) stores
the rating of the product. It is not necessary and can be null or blank.

• An image for the product may be uploaded using the image field. It is not necessary and
can be null or blank.

• __str__() method:
• The string representation of the model instance, which is the name of the category, is

returned by the __str__() method.

URLS:

Import Django Modules:

74

• django.urls: The Django URL manipulation tools are contained in this module.

from . import views:

• The views are imported from the current app using the from. import command. The view
functions that process various HTTP requests and produce the necessary responses are
contained in the views module.

path('', views.products_view, name='products'):

• The products_view view function is associated with this address. It represents the root
URL of the app The products_view function will be used when a user accesses this URL
to display the products page with a list of the available products. 'products' is the term
given to the URL pattern, which can be used to reverse the URL for the products page.

path('<product_id>', views.product_detail, name='product_detail'):

• This is used to display information about a specific product. A URL parameter called
"product_id" stores a product's unique identifier (ID). The function will then retrieve the
relevant product details and show them on the product detail page. The 'product_detail'
URL pattern can be used to reverse the URL to reveal information about any particular
product.

Views:

The product view functions to manage and show products and their details in the application. The
'products.html' template is in charge of showing a list of items, while the 'product_detail.html'
template is in charge of showing specific product details.

Imports:

render:

• Render is a Django shorthand for generating template renderings and HTTP response
backends.

get_object_or_404:

• The function get_object_or_404 retrieves an object from the database using its primary
key (pk) and raises a 404 page not found error if the object is missing.

messages:

• A Django module is used to show users messages (such as success, error, and warning)
while processing requests.

Q:

75

• A class from Django's query objects that enables the creation of sophisticated database
queries utilising OR and AND logic.

Lower:

• A database function from Django that is used for queries' case-insensitive sorting.
• Models imported from the app's models.py file for the products and categories.
• Product and Category: These models correspond to product and category database

tables.

products_view(request):

76

• This view function manages the products page, which showcases all of the products. It
has features for categorising and sorting products according to search terms and chosen
categories.

• The code initially uses the database to retrieve all products using Product.objects.all()
• It determines whether any query parameters are present in the GET request and then

takes the appropriate steps following those parameters. For instance, it may filter
products based on certain categories and search terms, and it can sort products by
name, category, cost, or rating.

• The products variable holds the sorted and filtered products.
• The function additionally receives and processes information from the GET request

regarding search queries (q), selected categories (category), sorting, and direction (sort
and direction).

• The filtered products, search terms, chosen categories, and current sorting options are
used to generate the context dictionary.

• The 'products.html' template is then rendered with the context and returned as the HTTP
response by the function.

product_detail(request, product_id):

77

• The product detail page, which displays comprehensive details about a single product, is
handled by this view function.

• The get_object_or_404 function is used by the function to retrieve the specific product
with the specified ID from the database. The function accepts the argument product_id.

• If the specified product ID is invalid, a 404 page not found message is returned.
• The product variable holds the product object.
• The product information is used to generate the context dictionary.
• The 'product_detail.html' template is then rendered with the context and returned as the

HTTP response by the function.

Admin:

The Django admin is a great feature for customising the application models. It allows managing
products and categories efficiently in the admin interface. This helps with user-friendliness.

78

Imports:

• To customise the admin interface, it imports the Django admin module.
• The current app's Product and Category models are imported.

Classes:

• The Product model's specific ModelAdmin class is called ProductAdmin.
• The fields that will be shown in the Product list view are specified by list_display.
• ordering determines how the products are shown in the list view by default.
• The Category model has a special ModelAdmin class called CategoryAdmin.
• The fields that will be shown in the Category list view are specified by list_display.
• The relevant custom admin classes are registered for the Product and Category models.

Shopping bag:

Models:

No model was used.

URLS:

79

The admin site and other built-in Django applications are located in the django.contrib module.

django.urls:

• The Django URL manipulation tools are contained in this module.

from . import views:

• The views are imported from the current app using the from. import command. The view
functions that process various HTTP requests and produce the necessary responses are
contained in the views module.

 path('', views.view_bag, name='view_bag'):

• The URL pattern for the app's shopping bag. Django calls the bag view function from the
app's views.py module when a user accesses the root URL, and the view function
processes the request and returns an HTTP response to render the shopping bag
content.

path('add/<item_id>/', views.add_to_bag, name='add_to_bag'):

• This links URLs to the function add_to_bag. The add_to_bag function will receive the
<item_id> as a URL argument.

path('adjust/<item_id>/', views.adjust_bag, name='adjust_bag'):

• This links URLs to the function adjust_bag. It makes use of the URL parameter item_id,
just as above.

path('remove/<item_id>/', views.remove_item, name='remove_item'):

• This links the remove_item method to the URL. Once more, item_id is a URL parameter
used.

Views:

Imports:

80

render:

• Render is a Django shorthand for generating template renderings and HTTP response
backends.

redirect:

• The shortcuts module of Django offers the redirect feature. It's employed to carry out an
HTTP redirect to a certain URL. This instructs the browser of the client to send a fresh
request to the specified URL. It is frequently utilised in view functions to manage form
submissions or to redirect users to a different page after a specific action.

Reverse:

• The shortcuts module of Django offers the reverse function. In the Django application, it is
used to generate URLs for named URL patterns. The real URL is returned as a string
after passing in the name of the URL pattern.

HttpResponse:

• The HTTP module of Django provides the class known as HTTPResponse. It symbolises
an HTTP reply that may be returned to the client once a view is called.

get_object_or_404:

• The function get_object_or_404 retrieves an object from the database using its primary
key (pk) and raises a 404 page not found error if the object is missing.

messages:

• A Django module is used to show users messages (such as success, error, and warning)
while processing requests.

Product:

These models correspond to product database tables.

view_bag(request):

• The shopping bag content page ('bag/bag.html') is displayed using this view. It shows the
items and their quantities that have been added to the shopping bag.

add_to_bag(request, item_id):

81

• It requires the two parameters item_id (the unique ID of the product to add) and request
(the HTTP request object).

• The product with the specified item_id is retrieved from the database.
• It extracts the product's amount from the HTTP POST data and turns it into an integer.
• The page to which the user will be redirected after adding the item is obtained from the

HTTP POST data as the redirect_url.Admin:
• If the product has a particular size, it determines whether that size is already present in

the shopping bag. If so, the amount for that size is updated; if not, the product with the
requested size and quantity is added.

• It checks to see if the item already exists in the bag and if the goods lack a specified size.
If so, the quantity is updated; if not, the product is added to the stated quantity.

• It saves the updated bag in the user's session after adding or modifying the item in the
bag.

• The user is then forwarded to the specified redirect_url.

adjust_bag(request, item_id):

82

• Request, an HTTP request object, and item_id, the specific ID of the product to be
adjusted, are the two parameters it requires.

• The product with the specified item_id is retrieved from the database.
• It extracts the product's amount from the HTTP POST data and turns it into an integer.
• As a result, the product's size variable is set to None, indicating that it has no set size by

default.
• If the product comes in a particular size, it determines whether that size is present in the

POST data. If so, the size variable is updated with the supplied size.
• Request.session.get('bag',) is used to acquire the shopping bag dictionary from the

user's session. It initialises an empty bag if there isn't one in the session.
• The function determines whether the quantity is larger than zero in the case where the

product has a specific size. If the quantity is higher than 0, the quantity of that particular
size in the bag is updated, and a success message is displayed. It removes that particular
size from the bag if the amount is 0 or less, and the entire item from the bag if there are
no more sizes available for that particular item.

• The function tests if the quantity is larger than 0 if the product has no specified size (size
is None). If the quantity is more than 0, the quantity of that item in the bag is updated, and
a success message is displayed. The entire item gets taken out of the bag if the amount
is 0 or less.

• The revised bag is saved in the user's session after the bag has been adjusted.
• The user is then forwarded to the bag view page.

remove_item View:

83

• This view is used to remove items from the shopping bag.
• It only requires the HTTP request object named request as an argument.
• It tries to take the item from the bag that is indicated by the item_id and optional size.
• To show that things have been successfully removed, appropriate success messages are

added.
• A 500 HTTP status response is provided if any errors are made while the process is

running.

Admin:

No Admin file.

Contexts:

• The contexts.py file uses the Djangos context process and its named bag_contents for
this application. A context processor in Django adds variables to the context of each
template that is rendered. The context processor makes calculations and gives various
information about the shopping bag here.

Imports:

Import Decimal:

• The Decimal class is imported on this line from the decimal module. To eliminate
rounding mistakes in financial calculations, decimal is employed for accurate arithmetic
operations using floating-point integers.

84

Import settings:

• Accessing Django project settings requires importing the settings module.

get_object_or_404:

• The function get_object_or_404 retrieves an object from the database using its primary
key (pk) and raises a 404 page not found error if the object is missing.

Product:

• These models correspond to product database tables.

Initializes variables:

bag_items:

• An empty list called bag_items will include dictionaries that describe the things in the
shopping bag.

total:

• Starting with a value of 0, it will keep tabs on the total price of everything in the bag.

Product_count:

• Will keep track of the overall number of products in the bag and is initially set to 0.

bag:

85

• Retrieves the user's session's shopping bag. A dictionary with item IDs as keys and either
quantities or dictionaries with sizes and quantities as values is anticipated to be included
in the bag.

FOR Loop that loops through the items in the bag:

• If an item has a quantity (integer value), it advances the product count, adds the item to
bag_items as a dictionary with the necessary information, and adds the price * quantity to
the total.

• If an item has many sizes and quantities, the price and quantity for each size are added
together to create the final price for the item. The product count is increased, and each
item is added to bag_items as a dictionary containing size-specific information.

Calculates shipping costs:

• Shipping costs are calculated by determining if the total worth of the items in the bag is
less than the settings.FREE_DELIVERY_THRESHOLD. If yes, it determines the delivery
fee as a % of the entire amount.

• Asa prompt to inform the user, it also determines the difference required to meet the free
delivery threshold (free_delivery_delta).

• The delivery cost and the free_delivery_delta are both set to 0 if the overall value is equal
to or more than the free delivery threshold.

Calculates the grand total:

• Get the final grand_total by adding the delivery fee to the total.

Returns a dictionary as the context:

• Various details about the shopping cart are included in the context dictionary, including
bag_items, total, product_count, delivery, free_delivery_delta, free_delivery_threshold,
and grand_total.

86

Checkout:

Models:

The models.py file located in the checkout application is for orders and order line item models.
They together reflect the data structure used by an e-commerce website to manage orders and
line items.

Imports:

import uuid:

• Importing the uuid module will enable you to create unique order numbers by using UUID.

models:

• Importing the model's module of Django to construct database models from django.db.

Sum:

• Importing the Sum aggregation method to compute the sums of query sets from
django.db.models.

from the import settings in django.conf:

• Accessing Django project settings requires importing the settings module.

import from django_countries.fields CountryField:

• Adding the CountryField as a model field to manage country selection.

Products:

• Importing the Product model from the products app is what models import.

from profiles.models import UserProfile:

• importing the UserProfile model from the profiles application, from profiles.models.

Order model:

87

• In the application, this object represents an order.
• Contains fields for order information including the order number, user profile, shipping

details, date, delivery cost, order total, and overall total.
• Creates a unique order number at random using the uuid.
• Contains a special technique to modify the order total and delivery price based on the line

item totals.
• If the order number hasn't been specified before storing the order, it will be set by

overwriting the default save procedure.

OrderLineItem model:

88

• Represents a single order line that is connected to a product.
• Includes fields for the related order, item, size, quantity, and line item total.
• Computes the line item total using the product's price and quantity.
• The line item total is calculated and set when saving the line item, overriding the save

function.

URLS:

Imports:

django.urls:

• The Django URL manipulation tools are contained in this module.

from . import views:

• The views are imported from the current app using the from. import command. The view
functions that process various HTTP requests and produce the necessary responses are
contained in the views module.

From .webhooks:

• Imports the webhooks function form the webhook module.

89

Paths:

path('', views.checkout, name='checkout'):

• connects the root URL to the views module's checkout view method.
• A user will start the checkout procedure using this URL.
• path('checkout_sucess/<order_number>', views.checkout_success,

name='checkout_success'):
• URLs that map, to the checkout_success view function, enter the order number.
• A URL parameter called "order_number" will be supplied to the checkout_success view

method.
• After the checkout is complete, this URL will be used to display a success page that

includes the order_number.

path('cache_checkout_data/', views.cache_checkout_data, name='cache_checkout_data'):

• Maps the cache_checkout_data view function to the URL.
• Before completing the payment, this URL will be used to cache the checkout information.

path('wh/', webhook, name='webhook'):

• Maps the URL from the webhooks module to the webhook function.
• The handling of incoming webhook events connected to payment processing or other

external services will take place at this URL.

Views:

The checkout view handles the checkout process for the application, while integrating stripe
payment API for secure payments and provides feedback to users. It will provide messages
during checkout and order confirmation.

90

Imports:

render:

• Render is a Django shorthand for generating template renderings and HTTP response
backends.

redirect:

• The shortcuts module of Django offers the redirect feature. It's employed to carry out an
HTTP redirect to a certain URL. This instructs the browser of the client to send a fresh
request to the specified URL. It is frequently utilised in view functions to manage form
submissions or to redirect users to a different page after a specific action.

Reverse:

• The shortcuts module of Django offers the reverse function. In the Django application, it is
used to generate URLs for named URL patterns. The real URL is returned as a string
after passing in the name of the URL pattern.

HttpResponse:

• The HTTP module of Django provides the class known as HTTPResponse. It symbolises
an HTTP reply that may be returned to the client once a view is called.

get_object_or_404:

• The function get_object_or_404 retrieves an object from the database using its primary
key (pk) and raises a 404 page not found error if the object is missing.

from django.views.decorators.http import require_POST

• Using the Django decorator require_POST, you can make sure that a view only permits
HTTP POST requests and denies GET, PUT, and DELETE. It limits the HTTP methods
that are permitted for a certain view to just POST.

messages:

• A Django module is used to show users messages (such as success, error, and warning)
while processing requests.

Import settings:

• Accessing Django project settings requires importing the settings module.
• import OrderForm,Order, OrderLineItem

91

• Imports OrderForm, OrderLineItem, and other checkout-related forms and models.

Product:

• These models correspond to product database tables.

Imports user profile:

• it imports the models and associated forms from other the profile section of the
application UserProfile.

from shoppingbag.contexts import bag_contents:

• Imports the bag_contents method from the shoppingbag package's contexts module.

Stripe Integration:

• To communicate with the Stripe API, the code imports the stripe module. Stripes payment
processor is used to safely process payments made online.

cache_checkout_data:

92

93

94

• This view only allows POST queries, as indicated by the decoration @require_POST.
• It is in charge of caching metadata for the Stripe Payment Intent's checkout process.
• To change the Payment Intent on the Stripe platform, it takes the Stripe Payment Intent

ID (client secret) from the POST request.
• As metadata for the Payment Intent, it saves the contents of the shopping bag, the user's

decision to save information for future transactions, and the username of the person
placing the order.

• If the update is effective, an HTTP 200 response is returned. Otherwise, it detects any
process exceptions and sends back an HTTP 400 response along with an error message.

checkout:

• both GET and POST requests are handled.
• The user's information on the order form is verified if the request method is POST, and an

order is then created in the database.
• After that, the view loops through the items in the shopping bag and generates

OrderLineItem objects for each item in the order.
• The user is taken back to the shopping bag view and an error notice is displayed if the

item in the bag does not exist in the database.
• The user is routed to the checkout_success view to display the order confirmation if the

order is successfully processed, and the user's preference to save information for further
orders is stored in the session.

• If the form is invalid, it displays an error message on the checkout page.

checkout_success:

95

• Following successful order placement, this view is displayed.
• Using the order_number provided in the URL (args=[order.order_number]), it obtains the

order from the database.
• The user's profile is linked to the order if they are authenticated (logged in) and their

shipping information is saved if they wish to do so for future orders.
• Along with the order number and an email confirmation, a success message that the

order was handled successfully is displayed.
• To make room for the user's next purchase, the session's shopping bag gets cleaned.

Signals:

Functions known as signal handlers are called when specific events occur in the application.
When an event occurs, they are utilised to carry out extra tasks or update relevant data. The
application implements two signal handlers for the OrderLineItem model utilising the post_save
and post_delete signals.

96

Imports

from django.db.models.signals import post_save, post_delete:

• To handle post-save certain Django imports are used.

from django.dispatch import receiver:

• This import connects signal handlers to signal sender functions via the decorator function
receiver.

from .models import OrderLineItem:

• It imports the OrderLineItem model from the same application. Individual line items in an
order are typically represented by this model.

update_on_save:

• The OrderLineItem model's post_save signal is attached to the signal handler procedure
called update_on_save.

• This function is linked to the OrderLineItem model's post_save signal by the
@receiver(post_save, sender=OrderLineItem) decorator.

• Every time an existing OrderLineItem instance is modified or a new instance is generated
like a save operation, the function is called.

• When this signal handler is invoked, it calls the corresponding Order instance's
update_total() method to update the order total, which is the sum of the prices of all the
line items in the order.

update_on_delete:

• The OrderLineItem model's post_delete signal is related to this signal handler function.

97

• This function is linked to the OrderLineItem model's post_delete signal via the
@receiver(post_delete, sender=OrderLineItem) decorator.

• Every time an OrderLineItem instance is deleted, the function is invoked.
• When this signal handler is invoked, it runs the corresponding Order instance's

update_total() method to update the order total following the deletion of the line item.

Webhooks:

The webhooks.py file handles incoming webhooks from Stripe.

Import settings:

• Accessing Django project settings requires importing the settings module.

HttpResponse:

• The HTTP module of Django provides the class known as HTTPResponse. It symbolises
an HTTP reply that may be returned to the client once a view is called.

from django.views.decorators.http import require_POST:

• Importing the require_POST decorator from django.views.decorators.http ensures that
the view function can only be accessible through an HTTP POST request. It aids in
preventing unauthorised access to the webhook.

from django.views.decorators.csrf import csrf_exemp

• Cross-Site Request Forgery (CSRF) protection is removed from the view function by
using the csrf_exempt decorator, which is imported in this case. Because CSRF tokens
are not normally included in webhooks, this decorator enables the view to get around
CSRF security.

from checkout.webhook_handler import StripeWH_Handler:

• This import is used to bring in the StripeWH_Handler class from the webhook_handler.py
module of the checkout app. The StripeWH_Handler class is a unique webhook handler
that manages webhook events coming from the Stripe payment gateway.

Webhook:

98

• Only POST requests are accepted by the view, and the CSRF protection is disregarded
thanks to the @require_POST and @csrf_exempt decorators. Due to the lack of CSRF
tokens in webhook requests, this is required for handling them.

• A Django request object that represents the incoming webhook request from Stripe is
passed as a parameter to the method webhook(request).

• From the Django settings (settings.STRIPE_WH_SECRET and
settings.STRIPE_SECRET_KEY), it extracts the Stripe webhook secret and API key.

• From the request, the payload and Stripe signature are taken. The
HTTP_STRIPE_SIGNATURE header contains the Stripe signature.

• The code then uses the stripe.Webhook.construct_event() method to try and validate the
signature. To retrieve the event data, this method verifies the signature and decodes the
payload. If the verification is unsuccessful, several exceptions are triggered to address
invalid payloads and signatures, returning a status code of 400 (Bad Request) in those
circumstances.

• The code then creates a StripeWH_Handler object, which will handle the webhook
events, if the signature can be correctly confirmed.

• Specific webhook events are mapped to matching handler functions in the
StripeWH_Handler class using the event_map dictionary.

99

Webhooks Handler:

Imports:

HttpResponse:

• The HTTP module of Django provides the class known as HTTPResponse. It symbolises
an HTTP reply that may be returned to the client once a view is called.

django.core.mail.send_mail:

• Email notifications are sent using this feature. Users are frequently informed about their
orders, progress updates, or any other pertinent information via this method.

django.template.loader.render_to_string:

• Using this function, a Django template is converted to a string. It is frequently employed to
produce email content using HTML templates.

Import settings:

• Accessing Django project settings requires importing the settings module.

Imports user profile:

• it imports the models and associated forms from other the profile section of the
application UserProfile.

Product:

• These models correspond to product database tables.

import OrderForm,Order, OrderLineItem

• Imports OrderForm, OrderLineItem, and other checkout-related forms and models.

JSON:

• The methods for working with JSON data are provided by this module. When
communicating with external services or APIs, it's frequently used to parse incoming
JSON data or serialise data into JSON format.

Time:

100

• This module offers some time-related features. When working with timestamps or adding
delays to the code, for example, its use may vary.

StripeWH_Handler:

• Sends a confirmation email to the user with the order details using the function
_send_confirmation_email.

• Handles a general, unforeseen, or unexpected webhook event. The webhook received
message is included in the HTTP response that is returned.

handle_payment_intent_succeeded:

• Handles the payment_intent.succeeded webhook event from Stripe. It pulls information
from the event data, makes any necessary adjustments to the user's profile, determines
whether a previous order with identical details already exists in the database, and, if not,
produces a new order. Additionally, the user receives a confirmation email. A message
stating that the webhook was received and the result of the order creation is returned in
an HTTP response.

handle_payment_intent_succeeded:

• Handles the payment_intent.payment_failed webhook event from Stripe using
handle_payment_intent_payment_failed. The webhook received message is included in
the HTTP response that is returned.

Admin:

For handling orders and order line items, use the admin configuration. In the Django admin
interface, it enables admin users to see, add, and edit orders and the accompanying line items.

101

Imports:

• To customise the admin interface, it imports the Django admin module.
• The current app's Order and OrderlineItem models are imported.

OrderLineItemAdminInline:

• The OrderLineItem model is represented by this inline admin class. It enables direct
editing of order line items on the admin page for the order.

• The "lineitem_total" field is read-only because the readonly_fields attribute is set to
('lineitem_total'), which prevents users from directly updating it in the admin interface.

OrderAdmin:

• The Order model is represented by this admin class.
• For modifying order line items on the order admin page, the inlines property is set to

(OrderLineItemAdminInline,), which also includes the inline class
OrderLineItemAdminInline.

• The fields attribute specifies the fields that will be shown on the admin interface's order
detail page. 'Order_number', 'user_profile', 'date', 'full_name', 'email', and other order-
related information are included in these fields.

• The columns that will be shown in the admin interface's list view of orders are specified by
the list_display property. 'Order_number', 'date', 'full_name', 'order_total', 'delivery_cost',
and 'grand_total' are a few of the fields on it.

• The ordering element makes sure that the orders are displayed with the most recent
orders listed first, in descending order according to the 'date' parameter.

102

admin.site.register(Order, OrderAdmin):

• The Order model and OrderAdmin class are registered with the admin site.

Profile:

Models:

When a new user is created or an existing user is saved, the Django model for user profiles
(UserProfile) sets up a signal (post_save) to build or update user profiles.

Imports:

Models:

103

• Importing the model's module of Django to construct database models from django.db.

from profiles.models import User:

• importing the UserProfile model from the profiles application, from profiles.models.

from django.db.models.signals import post_save:

• To handle post-save certain Django imports are used.

from django.dispatch import receiver:

• This import connects signal handlers to signal sender functions via the decorator function
receiver.

import from django_countries.fields CountryField:

• Adding the CountryField as a model field to manage country selection.

UserProfile Model:

• Additional user profile data, such as default shipping details and order history, are stored
using this model.

• The user field uses a OneToOneField to establish a one-to-one link with the built-in
Django User model. As a result, each user can only have a single user profile.

__str__(self) Method:

• The purpose of this method is to return a string that represents the UserProfile instance. It
gives back the related user's username in this instance.

create_or_update_user_profile Signal Handler:

• The post_save signal of the User model is coupled to this method, which is a signal
handler.

• This signal handler will be activated whenever a new User instance is created, and it will
make a corresponding UserProfile object for that user.

• This signal handler will also be activated and save the related UserProfile if an existing
person instance is saved (for example, when a person updates their profile).

URLS:

The URL for the views related to user profiles and order histories configures two URL patterns.

Imports

django.urls:

104

The Django URL manipulation tools are contained in this module.

from . import views:

• The views are imported from the current app using the from. import command. The view
functions that process various HTTP requests and produce the necessary responses are
contained in the views module.

Path('', views.profile, name='profile'),

• The pattern 'profile' is mapped to the views module's profile view function.

path('order_history/<order_number>', views.order_history, name='order_history'),

• This Pattern 'order_history' is mapped to the views module's order_history view function.
The view function can accept an argument in the form of the order_number> component.

Views:

The Django view for managing user profiles and order history.

Imports:

render:

• Render is a Django shorthand for generating template renderings and HTTP response
backends.

get_object_or_404:

• The function get_object_or_404 retrieves an object from the database using its primary
key (pk) and raises a 404 page not found error if the object is missing.

messages:

• A Django module is used to show users messages (such as success, error, and warning)
while processing requests.

Imports user profile:

• it imports the models and associated forms from other the profile section of the
application UserProfile.

Import Order:

• This enables the code to use the Order model in the current module and access the
checkout properties and methods.

105

profile view:

• The user's profile information is displayed and updated via the profile view.
• It retrieves the UserProfile instance linked to the current user using the

get_object_or_404 function. If the user profile is missing, a 404 Not Found answer will be
given.

• The view determines whether the submitted form data is legitimate (form.is_valid()) when
it receives a POST request and stores the changes if it is.

• It uses the Django messages framework to show a success message following a
successful form submission.

• When rendering the profile template (profiles/profile.html), the view renders the
UserProfileForm with the instance data filled in, the user's order history, and the flag
on_profile_page set to True.

order_history View:

106

• The view displays the details of a past order based on the order_number passed as a
URL parameter.

• The Order instance corresponding to the given order_number is retrieved using the
get_object_or_404 function. It responds with a 404 not found error message if the order
with the given number doesn't exist.

• To inform the user that they are seeing a previous order confirmation, the view displays
an information message using Django's messages framework.

• It renders the Order object together with the flag from_profile set to True in the
checkout/checkout_success.html template.

Admin:

No admin file.

2.3. Implementation
Models:

Models in Django serve as a representation of the application's data architecture. Classes like
Product, Category, Order, UserProfiles, and checkout, which describe the database structure and
the relationships between various entities, were frequently included in models in the application.

Homepage:

The homepage did not need a model as it was not adding anything to the database.

Products:

The products model showed how the database stored the categories and products and how they
were structured. The Product model represents specific products with their features, such as
name, description, and price, while the Category model is used to categorise products.

Category Model:

107

• The model's Meta class is used to alter the model's behaviour via the Django admin
interface. In this instance, it transforms the model's plural name "Categories" into the
correct "Categories."

• It serves as a representation of the product category and is utilised in the application to
classify products.

• A character field (CharField) with a 254 character maximum is used for the name field.
The name of the category is stored.

• A character field (CharField) with a 254 character limit is also used for the friendly_name
field. It keeps a name for the category that may be seen in the user-friendly programme.

• __str__() method:
• The string representation of the model instance, which is the name of the category, is

returned by the __str__() method.
• get_friendly_name() Method:
• A custom model method named get_friendly_name() can be used to access the

friendly_name property of a Category instance. If the category's friendly_name has been
set, it will be returned. It will return None if not.

Product Model:

• A product is represented by it in the application.
• A foreign key (ForeignKey) that connects the product to a category is the category field. It

enables the product to be connected to a particular category, and if that category is

108

eliminated, the on_delete=models function is activated.Instead of removing the product,
the SET_NULL option guarantees that the category will be set to null in the product.

• A character field (CharField) with a 254 character maximum is the SKU field. It is used as
an identifier number for the products.json file in the fixtures folder.

• A character field (CharField) with a 254 character maximum is used for the name field.
The product's name is kept there.

• A longer description of the product may be entered in the description box, which is a text
field (TextField).

• Has_sizes is a boolean field (BooleanField) that specifies whether or not the product is
available in various sizes. The product has sizes if True; else, it does not.

• A maximum of 6 digits and 2 decimal places can be stored in the price field
(DecimalField), which is a decimal field.

• With a maximum of 6 digits and 2 decimal places, the rating field (DecimalField) stores
the rating of the product. It is not necessary and can be null or blank.

• An image for the product may be uploaded using the image field. It is not necessary and
can be null or blank.

__str__() method:

• The string representation of the model instance, which is the name of the category, is
returned by the __str__() method.

Shopping Bag:

• The shopping bag used no model.

Checkout:

The Checkout model is for orders and order line item models. They together reflect the data
structure used by an e-commerce website to manage orders and line items.

Order model:

109

In

• Contains fields for order information including the order number, user profile, shipping
details, date, delivery cost, order total, and overall total.

• Creates a unique order number at random using the uuid.
• Contains a special technique to modify the order total and delivery price based on the line

item totals.

110

• If the order number hasn't been specified before storing the order, it will be set by
overwriting the default save procedure.

OrderLineItem model:

• Represents a single order line that is connected to a product.
• Includes fields for the related order, item, size, quantity, and line item total.
• Computes the line item total using the product's price and quantity.
• The line item total is calculated and set when saving the line item, overriding the save

function.

Profile:

• The profile model is for creating new users or adding to an existing user's saved data.
The Django model for user profiles (UserProfile) sets up a signal (post_save) to build or
update user profiles.

UserProfile Model:

111

• Additional user profile data, such as default shipping details and order history, are stored
using this model.

• The user field uses a OneToOneField to establish a one-to-one link with the built-in
Django User model. As a result, each user can only have a single user profile.

• __str__(self) Method:
• The purpose of this method is to return a string that represents the UserProfile instance. It

gives back the related user's username in this instance.

create_or_update_user_profile Signal Handler:

• The post_save signal of the User model is coupled to this method, which is a signal
handler.

• This signal handler will be activated whenever a new User instance is created, and it will
make a corresponding UserProfile object for that user.

• This signal handler will also be activated and save the related UserProfile if an existing
person instance is saved (for example, when a person updates their profile).

Views:

The views handle all the logic of the application for processing incoming requests and returning
an HTTP response.

The homepage view:

A web application's homepage requests are handled by the homepage view. When users visit the
website, it is in charge of rendering the index.html template and displaying it as the web
application's home page.

112

def
index(request):

• This is a view function called index. It is in charge of responding to HTTP requests from
the homepage URL.

return render(request, 'home/index.html'):

returns:

• This line renders the index.html template and returns it as an HTTP response using the
render function.

request:

• The user's HTTP request object includes details about the browser they used, any
session data, and any supplied data (GET/POST parameters).

'home/index.html':

• This is the relative path to the index file within the templates directory of the homepage
app. It instructs Django to use the templates folder of the app's home directory's
index.html template.

Products view:

The product views functions manage and show products and the product details within the
application.While the 'product_detail.html' template is responsible for displaying specific product
details, the 'products.html' template is responsible for displaying a list of products.

products_view(request):

113

• This view function manages the products page, which showcases all of the products. It
has features for categorising and sorting products according to search terms and chosen
categories.

• The code initially uses the database to retrieve all products using Product.objects.all()
• It determines whether any query parameters are present in the GET request and then

takes the appropriate steps following those parameters. For instance, it may filter
products based on certain categories and search terms, and it can sort products by
name, category, cost, or rating.

• The products variable holds the sorted and filtered products.
• The function additionally receives and processes information from the GET request

regarding search queries (q), selected categories (category), sorting, and direction (sort
and direction).

• The filtered products, search terms, chosen categories, and current sorting options are
used to generate the context dictionary.

• The 'products.html' template is then rendered with the context and returned as the HTTP
response by the function.

product_detail(request, product_id):

114

• The product detail page, which displays comprehensive details about a single product, is
handled by this view function.

• The get_object_or_404 function is used by the function to retrieve the specific product
with the specified ID from the database. The function accepts the argument product_id.

• If the specified product ID is invalid, a 404 page not found message is returned.
• The product variable holds the product object.
• The product information is used to generate the context dictionary.
• The 'product_detail.html' template is then rendered with the context and returned as the

HTTP response by the function.

Shopping bag view:

The shopping bag view manages all shopping bag functionality in the application. It allows users
to add, update, and remove items form there shopping bags as required.

view_bag(request):

• The shopping bag content page ('bag/bag.html') is displayed using this view. It shows the
items and their quantities that have been added to the shopping bag.

add_to_bag(request, item_id):

115

• It requires the two parameters item_id (the unique ID of the product to add) and request
(the HTTP request object).

• The product with the specified item_id is retrieved from the database.
• It extracts the product's amount from the HTTP POST data and turns it into an integer.
• The page to which the user will be redirected after adding the item is obtained from the

HTTP POST data as the redirect_url.Admin:
• If the product has a particular size, it determines whether that size is already present in

the shopping bag. If so, the amount for that size is updated; if not, the product with the
requested size and quantity is added.

• It checks to see if the item already exists in the bag and if the goods lack a specified size.
If so, the quantity is updated; if not, the product is added to the stated quantity.

• It saves the updated bag in the user's session after adding or modifying the item in the
bag.

• The user is then forwarded to the specified redirect_url.

adjust_bag(request, item_id):

116

• Request, an HTTP request object, and item_id, the specific ID of the product to be
adjusted, are the two parameters it requires.

• The product with the specified item_id is retrieved from the database.
• It extracts the product's amount from the HTTP POST data and turns it into an integer.
• As a result, the product's size variable is set to None, indicating that it has no set size by

default.
• If the product comes in a particular size, it determines whether that size is present in the

POST data. If so, the size variable is updated with the supplied size.
• Request.session.get('bag',) is used to acquire the shopping bag dictionary from the

user's session. It initialises an empty bag if there isn't one in the session.
• The function determines whether the quantity is larger than zero in the case where the

product has a specific size. If the quantity is higher than 0, the quantity of that particular
size in the bag is updated, and a success message is displayed. It removes that particular
size from the bag if the amount is 0 or less, and the entire item from the bag if there are
no more sizes available for that particular item.

• The function tests if the quantity is larger than 0 if the product has no specified size (size
is None). If the quantity is more than 0, the quantity of that item in the bag is updated, and
a success message is displayed. The entire item gets taken out of the bag if the amount
is 0 or less.

• The revised bag is saved in the user's session after the bag has been adjusted.
• The user is then forwarded to the bag view page.

remove_item View:

117

• This view is used to remove items from the shopping bag.
• It only requires the HTTP request object named request as an argument.
• It tries to take the item from the bag that is indicated by the item_id and optional size.
• To show that things have been successfully removed, appropriate success messages are

added.
• A 500 HTTP status response is provided if any errors are made while the process is

running.

Checkout View:

The checkout page view manages the application's checkout process, integrates the Stripe
payment API for safe payments, and gives users feedback. Messages will be displayed upon
checkout and during order confirmation.

cache_checkout_data:

118

• This view only allows POST queries, as indicated by the decoration @require_POST.
• It is in charge of caching metadata for the Stripe Payment Intent's checkout process.
• To change the Payment Intent on the Stripe platform, it takes the Stripe Payment Intent

ID (client secret) from the POST request.
• As metadata for the Payment Intent, it saves the contents of the shopping bag, the user's

decision to save information for future transactions, and the username of the person
placing the order.

• If the update is effective, an HTTP 200 response is returned. Otherwise, it detects any
process exceptions and sends back an HTTP 400 response along with an error message.

checkout:

119

• both GET and POST requests are handled.
• The user's information on the order form is verified if the request method is POST, and an

order is then created in the database.
• After that, the view loops through the items in the shopping bag and generates

OrderLineItem objects for each item in the order.
• The user is taken back to the shopping bag view and an error notice is displayed if the

item in the bag does not exist in the database.
• The user is routed to the checkout_success view to display the order confirmation if the

order is successfully processed, and the user's preference to save information for further
orders is stored in the session.

• If the form is invalid, it displays an error message on the checkout page.

checkout_success:

120

• Following successful order placement, this view is displayed.
• Using the order_number provided in the URL (args=[order.order_number]), it obtains the

order from the database.
• The user's profile is linked to the order if they are authenticated (logged in) and their

shipping information is saved if they wish to do so for future orders.
• Along with the order number and an email confirmation, a success message that the

order was handled successfully is displayed.
• To make room for the user's next purchase, the session's shopping bag gets cleaned.

Signals:

121

• Functions known as signal handlers are called when specific events occur in the
application. When an event occurs, they are utilised to carry out extra tasks or update
relevant data. The application implements two signal handlers for the OrderLineItem
model utilising the post_save and post_delete signals.

Profiles view:

The profiles view manages, the profiles view controls, the user's profile and displays their order
history. The order_history view displays information about a specific past order when a user visits
it from their profile, whereas the profile view enables users to read and change their profile
information.

profile view:

• The user's profile information is displayed and updated via the profile view.
• It retrieves the UserProfile instance linked to the current user using the

get_object_or_404 function. If the user profile is missing, a 404 Not Found answer will be
given.

• The view determines whether the submitted form data is legitimate (form.is_valid()) when
it receives a POST request and stores the changes if it is.

• It uses the Django messages framework to show a success message following a
successful form submission.

• When rendering the profile template (profiles/profile.html), the view renders the
UserProfileForm with the instance data filled in, the user's order history, and the flag
on_profile_page set to True.

order_history View:

122

• The view displays the details of a past order based on the order_number passed as a
URL parameter.

• The Order instance corresponding to the given order_number is retrieved using the
get_object_or_404 function. It responds with a 404 not found error message if the order
with the given number doesn't exist.

• To inform the user that they are seeing a previous order confirmation, the view displays
an information message using Django's messages framework.

• It renders the Order object together with the flag from_profile set to True in the
checkout/checkout_success.html template.

Forms:

The homepage has no form.

Products have no form.

The shopping bag has no form.

Checkout:

The checkout form called OrderForm is associated with the order model. Which allows users to
submit information for an order.

123

OrderForm:

• The class is defined using the form class.ModelForm. The form will be generated
automatically using the Order model.

• The model is related to the fields to be included in the form and is specified by the Meta
inner class within OrderForm.

• The __init__ method is overridden to alter the initialization behaviour of the form.
• To improve the user experience, form fields have placeholders and classes inserted

inside the __init__ method. Additionally, the fields' auto-generated labels have been
eliminated.

• The form fields' placeholders are stored in the placeholders dictionary. To help users
decide what data to enter, these placeholders will be visible in the form inputs.

• The base class ModelForm is initialised with the supplied parameters by calling
super().__init__(*args, **kwargs).

• Widgets are used for the form fields by using the self.fields[field].widget.attrs portion.
Since the 'class' attribute in this instance is set to'stripe-style-input', this CSS class will be
applied to each type of field.

124

• The field in self.fields. fields become buried when label = False is used to remove their
automatically produced labels.

Profiles form:

The profiles form uses the UserProfile model, called UserProfileForm. Users can submit data for
their user profiles.

UserProfileForm:

• The class is defined using the form class.ModelForm. The form will be generated
automatically using the UserProfile model.

• The UserProfileForm's Meta inner class identifies the model it belongs to and the form
fields that should be present. The 'user' field is excluded from the form using the exclude
property. As a result, the 'user' field won't be included in the form and will instead be
handled separately.

• The __init__ method is overridden to change the initialising behaviour of the form.
• To improve the user experience, form fields have placeholders and classes inserted

inside the __init__ method.
• The form fields' placeholders are stored in the placeholders dictionary. To help users

decide what data to enter, these placeholders are visible in the form inputs.
• The base class ModelForm is initialised with the supplied parameters by calling

super().__init__(*args, **kwargs).

125

• Widgets are used for the form fields by using the self.fields[field].widget.attrs portion.
Since the 'class' attribute in this instance is set to'stripe-style-input', this CSS class will be
applied to each type of field.

• The field in self.fields. fields become buried when label = False is used to remove their
automatically produced labels.

Sorting:

Code to sort products by price, category, or rating.

• “By Price" link: Sorts products by price in ascending order when clicked.
• "By Rating" link: Sorts products by rating in descending order when clicked.
• "By Category" link: Sorts products by category in ascending order when clicked.
• "All Products" link: Displays all products when clicked.

 products_view:

• The products_view lists items with sorting and search features that will be displayed by
this view.

• The view begins by using the Product model to retrieve all of the products from the
database.

• The variables query, categories, sort, and direction are all initialised to None. Search
queries, chosen categories, sorting options, and sorting direction will all be stored in
these variables, in that order.

• The view then determines whether the request contains any GET parameters to search
through.

• The view sorts of data according to the specified choice if a sorting option is provided in
the GET parameters. It can sort by name, category, or any other available information.

• When a category is chosen in the GET parameters, only the products that fall within that
category are displayed in the view.

• The view filters the products depending on the search query if one is provided in the GET
parameters. The product names and descriptions are compared to the search query
using case-insensitive partial matching.

• The current sorting choice and direction are stored in the variable current_sorting, which
will be utilised in the template for display reasons.

• The filtered products, search terms, chosen categories, and current sorting data are used
to generate the context dictionary.

• The view then renders the 'products/products.html' template using the supplied context.

Context processor:

• A context processor is a function that makes data available for use in all Django
application templates. bag_contents: Calculations and information about a shopping bag
or cart are handled by this context processor.

• It initialises variables for product count, total price, total price of bag components, and
more.

• The bag data, which includes the products and their quantities, is retrieved from the
session.

126

• By multiplying the number of each item by its corresponding product price, it goes through
the things in the bag one by one and determines the overall cost.

• The price and number of products for each size are computed iteratively if an item in the
bag has different sizes.

• Based on the entire cost, it assesses if the user qualifies for free delivery and, if so,
computes the delivery fee.

• It computes the grand_total, which accounts for both the delivery fee and the overall cost.
• All of the calculated data is used to generate the context dictionary, which is then used as

context in all application templates.

Cart Management:

Checkout:

Payment Processing using Stripes API:

The payment process is covered in the checkout.html and confirmed in the
checkout_success.html files. The process is handled in the checkout views file.

cache_checkout_data view:

• Gets payment information (such as the client's secret) from the client side via a POST
request.

• Use Stripes API to adjust the payment intent with user preferences and shopping bag-
related metadata (such as save_info and username).

• returns an HTTP response with a 200 success status code or a 400 error status code.

checkout view:

• It creates a form to collect customer information and a Stripe card element for safe
payment entry on the checkout page.

• If the user submits the form, a new Stripe payment intent is created depending on the
total cost of the bag.

• checks the form's data for accuracy before creating an Order object and saves it directly
to the database.

• checkout view:
• Based on the contents of the bag, and then creates OrderLineItem objects and links them

to the order.
• The order is deleted and an error message is displayed if any item in the bag cannot be

found.
• After a successful payment, the page redirects to the checkout_success view while taking

the order number as input.

Signals:

Signals:

Functions known as signal handlers are called when specific events occur in the application.
When an event occurs, they are utilised to carry out extra tasks or update relevant data. The
application implements two signal handlers for the OrderLineItem model utilising the post_save
and post_delete signals.

127

Imports

from django.db.models.signals import post_save, post_delete:

• To handle post-save certain Django imports are used.

from django.dispatch import receiver:

• This import connects signal handlers to signal sender functions via the decorator function
receiver.

from .models import OrderLineItem:

• It imports the OrderLineItem model from the same application. Individual line items in an
order are typically represented by this model.

update_on_save:

• The OrderLineItem model's post_save signal is attached to the signal handler procedure
called update_on_save.

• This function is linked to the OrderLineItem model's post_save signal by the
@receiver(post_save, sender=OrderLineItem) decorator.

• Every time an existing OrderLineItem instance is modified or a new instance is generated
like a save operation, the function is called.

• When this signal handler is invoked, it calls the corresponding Order instance's
update_total() method to update the order total, which is the sum of the prices of all the
line items in the order.

update_on_delete:

• The OrderLineItem model's post_delete signal is related to this signal handler function.

128

• This function is linked to the OrderLineItem model's post_delete signal via the
@receiver(post_delete, sender=OrderLineItem) decorator.

• Every time an OrderLineItem instance is deleted, the function is invoked.
• When this signal handler is invoked, it runs the corresponding Order instance's

update_total() method to update the order total following the deletion of the line item.

Fixtures:

Fixtures are used in JSON, XML, or YAML file formats. They serve as an image of all the data in
your application, including model instances and the data they are linked to. Fixtures can be used
to populate data for a variety of purposes, including setting up sample material, pre-loading
reference data, and creating default user accounts. The folder is found in the application of the
product in the fixtures folder.

In this application, they are used to load the product categories and product details using a JSON
file.

Categories:

The categories.json are represented as a list of product categories in JSON format together with
the corresponding data. A primary key (pk), a model type (model), and a set of fields with the
category name (name) and a friendly name (friendly_name) are all present for each category.

To load the categories the command line command is used. “python3 manage.py loaddata
categories”

Here is an example of the first category loaded below.

[{"pk": 1, "model": "products.category", "fields": {"name": "vitamins", "friendly_name": "Vitamins"}}]

Products:

The products.json is a JSON representation that contains data about the application's products. A
primary key (pk), a model type (model), and some fields with information on the product—
including its SKU, name, description, price, category, rating, and image—are included in each
entry for a given product. this helps preload the database with the product information.

To load the products the command line command is used. “python3 manage.py loaddata
products”

Here is an example of the first product loaded below.

 "pk": 1,

 "model": "products.product",

 "fields": {

 "sku": "p000000001",

 "name": "Beeline Multivitamins Tablets",

 "description": "Beeline Multivitamin Tablets contain our most advanced vitamin and
mineral formula to provide comprehensive nutritional support. Suitable for vegetarians, the
supplement supports health, vitality, wellbeing and energy levels.",

 "price": 6.80,

129

 "category": 1,

 "rating": 4.4,

 "image": "multi.jpg"

 }

 },

2.4. Graphical User Interface (GUI)

Main Navbar:

The main navbar is available on all pages of the application.

On the top left-hand side of the page, the Star Nutrition logo is present as a clickable logo.

In the centre of the page, there is a search bar that will return any product once the search relates
to the name, key word, category etc.

In the top right-hand side of the page, there is my account icon which is a clickable button that is a
dropdown menu, allowing a user to register or log in if logged in the user can logout or go to their
profile page to update their orders.

In the centre below the search bar, the applications dropdown menus the first dropdown menu is
for “ALL PRODUCTS”. When clicked the dropdown menu shows 4 options.

All Products:

130

By Price:

Sorts products and displays by price in an ascending order, when clicked.

By Rating:

Sorts products and displays by rating in a descending order, when clicked.

By Category:

Sorts products and displays by category in an ascending order, when clicked.

By Products:

Displays all products when clicked.

Vitamins & Supplements:

Vitamins:

Sorts products and displays by category vitamins, when clicked.

Minerals:

Sorts products and displays by category Minerals, when clicked.

Supplements:

Sorts products and displays by category Supplements, when clicked.

All Vitamins & Supplements:

Sorts products and displays by Vitamins and supplements, when clicked.

Sports Nutrition:

131

Protein Powders:

Sorts products and displays by category protein, when clicked.

Bars, Drinks, Snacks:

Sorts products and displays by category Bars, Drinks, and Snacks, when clicked.

Creatine:

Sorts products and displays by category Creatine, when clicked.

Electrolytes:

Sorts products and displays by category electrolytes, when clicked.

Energy Gels:

Sorts products and displays by category Energy Gels, when clicked.

Amino Acids:

Sorts products and displays by category Amino Acids, when clicked.

All Sports Nutrition Products:

Sorts products and displays by Sports Nutrition, when clicked.

Weight Management:

Fat Burners:

132

Sorts products and displays by category Fat Burners, when clicked.

Weight Management:

Sorts products and displays by category Weight Management, when clicked.

All Weight Management products:

Sorts products and displays by weight management, when clicked.

Free Delivery on all orders over €50:

Displays the free delivery banners.

Homepage:

Star Nutrition’s home page serves as its landing page. To aid consumers in finding what they're
looking for fast, it consists of all the platform's products, shopping bags, delivery information, a
navbar, logo, user profiles and a search bar.

Applications main landing image.

This is an inspirational quote to try to engage users to browse products.

A let's get started button which brings the user to the products page when clicked.

133

Products Page:

A list of products in a particular category is displayed on this page. Every product has a
description, price, image, and "Add to Cart" button.

All products have been displayed.

Just a single category has been displayed. Vitamins in this instance.

134

The products page has the navbar like all pages.

At the top left of the page, the number of products in the category you have selected has been
displayed.

All products have been displayed.

Just vitamins show four products are being displayed and a button to return to the whole products
page.

Sort by dropdown:

135

Price:

Users can sort products by the lowest price to highest or highest price to lowest.

Rating:

Users can sort products by the lowest rating to highest or highest rating to lowest.

Name:

Users can sort products by name in alphabetical order from A-Z or in reverse Z-A.

Category:

Users can sort products by name in category order from A-Z or reverse Z-A.

Products:

The products are displayed via an image, with the name, price, category and rating displayed.

136

Products Details Page:

The product detail bag has the nav bar the same as both other pages. This page displays the
product's image, name, price, description, category, and rating. JavaScript button to add a certain
quantity, a continue shopping button and an add to bag button.

137

Product Image:

Product Information:

The product information is displayed for users to read more about certain products.

Quantity selector:

138

Users select the quantity of products they want to add to their shopping cart.

Continue Shopping:

Users can select continue shopping after adding items to their bag or if they simply want to return
to the products selection they were on before.

Add to Bag:

Users can click the add to bag button and this will add the items to their shopping cart.

Successfully adding items to the bag:

When a user has selected the item they want to add to their shopping cart a success message
will appear showing the items added to the cart and the shopping cart icon will appear.

139

Shopping Cart:

The nav bar is present like other pages except this time with the cart present as items are in the
shopping cart. The shopping cart page shows every item the user has added. It displays the
name, quantity, cost, and total cost of every item in the cart, and delivery fee, continue shopping
and secure shopping bag. Customers can change amounts or take things out of their shopping
carts.

140

Product description:

Shows the product's image, and name and if the item has a size shows the size.

Item price:

Item quantity selector and subtotal:

A quantity selector is available to add or remove items from the card as well as display the
subtotal.

Shopping bag total:

The bag total is displayed, the delivery cost and the total with delivery charges. A message is
displayed to show the user if the spend a certain amount they will get free delivery.

141

Continue Shopping:

A button to bring the user bag to the products bag to continue shopping.

Secure Checkout:

A button to securely checkout this button will bring the user to the checkout bag to enter their
details.

Checkout:

Users enter their shipping and payment details on the checkout page. Before going to the
payment gateway, they can review their order.

142

Complete the order form:

Users enter the details such as name, email, and delivery detail:

Stripe Payment:

Users enter the card details into the stripe payment API.

Order Summary:

143

The order summary so users can check all is in order before checking out.

Complete order:

Users can adjust their bags by clicking the adjust bag button. Complete the order by clicking the
order button and will be brought to the checkout success page. The red warning information tells
the user their card will be charged.

Checkout Succes:

The nav bar is present like other pages. The checkout success page shows users what they have
purchased along with their details. It displays the order information, details, delivery address and
billing info and a back-to-profile button and a success message with the order number.

Order details:

The user is showing the order information, order details, delivery address and billing information.

144

Order Success:

An order success message is showing and the order number.

Back to Profile:

Profile Page:

The profile page has the navbar like all other pages. This is where users can update their details,
like number address, number etc. The user can view previous orders also.

145

Delivery information:

Users can update their delivery information in this form.

Order history:

Users can check previous order details.

146

2.5. Testing
First Time User

a. As a user visiting the site for the first time you want to be able to understand the main objective
of the application.

• This is achieved and a user can easily find the way through the application.

b. As a user visiting the site for the first time you want to easily navigate the site.

• A user will navigate through and find products and register easily.

c. As a user visiting the site for the first time you want to be able to set up a profile.

• A user can register for a profile easily through the profile icon which allows a user to register or
log in.

147

d. As a first-time user you want to be able to add items to your cart.

• As a first-time user, you can add items to your cart.

e. As a first-time user you want to be able to create an account at checkout.

• As a first-time user, you can create an account while entering your details at the checkout
page.

Frequent User

a. As a returning user you want to be able to log in to your profile.

• A returning user can log in easily if they have a profile set up.

148

b. As a returning user you want to be able to edit your profile.

• A user can edit details or reset passwords easily.

149

c. As a returning user you want to be able to add products to your cart.

• A user can products and a selected quantity to their cart.

d. As a returning user you want to be able to check your cart.

• A user can check their cart through the cart icon and view and update their cart.

150

e. As a returning user you want to be able to edit your cart.

• a user can update the cart, and remove or update quantities of items.

f. As a returning user you want to be able to check out your cart.

• A user can easily checkout and fill in their details for secure checkout.

151

g. As a returning customer you want to be able to check out securely.

• As a returning customer, you can check out securely.

g. As a returning user you want to be able to log out.

• A user can log out of their account once they want to end their session.

152

Testing:

Smaller screen testing.

Homepage working on smaller screens:

153

Navbar working on smaller screens:

Products working on smaller screens and only displaying 2 products per column.

154

Working on smaller screens and only displaying one product per column.

155

156

Product details working on smaller screens.

Shopping bag working on smaller screens.

157

Checkout working on smaller screens.

158

159

Checkout success working on smaller screens.

160

161

My profile page working on smaller screens.

162

Allowed hosts:

Adding the environment to allow hosts.

Fix add the below to settings.py files allowed hosts.

Installing a pillow to stop pixilated images.

Had to install an older version of crispy forms to authenticate checkout payments.

163

The homepage image has been pixilated had to install pillow and change the image.

164

After testing on multiple devices the text was not good visually had to change the colour for
certain screens.

Before

After

165

2.6. Evaluation
Overall the system is quick and responsive and dose everything it is asked to do with no errors or
bugs.

The system was evaluated on mobile devices, laptop screens, iPad screens and larger screens
via the developer tools on google chrome.

The code passed validation tests and gives no errors on the virtual studio code.

The system is well able for scalability and it will be very easy to add products and more growth in
the future.

Correctness: Extensive testing and bug fixing ensured the system's correctness and robustness.
This is evident in the above testing section and the use case approach to building the application
ensured continuous testing while building.

3.0 Conclusions
Advantages:

Django helped in a rapid development environment.

User-friendly interface with a seamless shopping experience.

Efficient search algorithms enhance user satisfaction.

The scalable and well-organized architecture enables future expansions.

Search Engine Optimisation was easy with Djangos URL structure to help SEO performance.

Security was handled by Django with its built-in protection against SQL injection and cross-site
scripting, and cross-site request forgery.

Disadvantages:

Lack of support for multiple languages.

Lack of products.

No clothes or accessories.

Not deployed to the cloud.

166

4.0 Further Development or Research

Deployment:

Due to the deadline being brought forward three weeks further than we had expected to submit our
document and code, some things had to give to apply on time. The application would have been
deployed through Heroku and AWS for static files.

Database:

the database would have been transferred to an Elephant SQL database for deployment to keep it
secure when deployed on the cloud.

Marketing:

More marketing campaigns and revenue would lead to better products and more ideas around the
application.

Social media advertainment:

Social media adds more revenue.

Reviews:

In future versions of the applications, customers will be able to write and post their reviews on
products.

Likes:

Customers will be able to like the products they have bought and be able to build an algorithm to
show products that they might like.

Subscriptions:

Customers will be able to subscribe to certain products for delivery every month and update the
subscriptions.

167

5.0Appendices
4.1. Poster

4.2. Project Proposal

Proposal Template
Software Cyber DBT

	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Requirements:
	2.1.1.3. Description & Priority
	2.1.1.4. Use Case
	2.1.2. Data Requirements
	2.1.3. User Requirements
	2.1.4. Environmental Requirements
	2.1.5. Usability Requirements
	2.2. Design & Architecture
	2.3. Implementation
	2.4. Graphical User Interface (GUI)
	2.5. Testing
	2.6. Evaluation

	3.0 Conclusions
	4.0 Further Development or Research
	5.0Appendices
	4.1. Poster
	4.2. Project Proposal

