

National College of Ireland
BSc (Honours) in Computing (BSHC4)

Software Development
2022/2023

Gabriel Salas Segura
19104162

x19104162@student.ncirl.ie

Travel Smart Plus
Software Requirements Specification

2

Contents
Executive Summary .. 4

1 Introduction... 4

1.1 Background ... 4

1.2 Aims ... 4

1.3 Technologies ... 5

1.4 Structure ... 6

2 System... 6

2.1 Functional Requirements ... 6
2.1.1 Use Case Diagram ... 7
2.1.2 Requirement 1: User Sign Up .. 8

2.1.2.1 Description & Priority ... 8
2.1.2.2 Use Case – FR-1 .. 8

2.1.3 Requirement 2: User Sign In ... 10
2.1.3.1 Description & Priority ... 10
2.1.3.2 Use Case – FR-2 .. 10

2.1.4 Requirement 3: Book Trip ... 12
2.1.4.1 Description & Priority ... 12

2.1.5 Requirement 4: User management .. 15
2.1.5.1 Description & Priority ... 15
2.1.5.2 Use Case – FR-4 .. 15

2.1.6 Requirement 5: Trip Management ... 17
2.1.6.1 Description & Priority ... 17
1.1.1.1 Use Case – FR-5 .. 18

2.1.7 Requirement 6: Authorise .. 19
2.1.7.1 Description & Priority ... 19
2.1.7.2 Use Case – FR-6 .. 19

2.1.8 Requirement 7: Sign Out... 21
2.1.8.1 Description & Priority ... 21
2.1.8.2 Use Case – FR-7 .. 21

2.1.9 Requirement 8: Passenger Information Management ... 23
2.1.9.1 Description & Priority ... 23
2.1.9.2 Use Case – FR-09 .. 23

2.1.10 Requirement 9: Staff Travel Management ... 24
2.1.10.1 Description & Priority .. 24
2.1.10.2 Use Case – FR-10.. 24

2.1.11 Requirement 10: Profile Management ... 26
2.1.11.1 Description & Priority .. 26
2.1.11.2 Use Case – FR-1 .. 26

2.1.12 Requirement 11: Setup Account .. 28
2.1.12.1 Description & Priority .. 28
2.1.12.2 Use Case – FR-1 .. 28

2.2 Data Requirements ... 30

2.3 User Requirements .. 30

2.4 Environmental Requirements .. 30

2.5 Usability Requirements ... 31

2.6 Design & Architecture ... 31

3

2.7 Implementation .. 32
2.7.1 Authentication .. 32
2.7.2 Booking ... 34
2.7.3 KKN Algorithm... 36
2.7.4 Content-Base Algorithm ... 37
2.7.5 User Management .. 38
2.7.6 Booking Management ... 41
2.7.7 Live Data ... 42
2.7.8 Deployment .. 43

2.8 Graphical User Interface (GUI) ... 44

2.9 Testing .. 48
2.9.1 Objectives ... 48
2.9.2 Scope .. 48
2.9.3 Testing Tools ... 48
2.9.4 Test Cases ... 48
2.9.5 Automated Testing Results ... 50

2.10 Evaluation ... 51
2.10.1 Performance Evaluation ... 51
2.10.2 Network Evaluation .. 51
2.10.3 Startup Benchmark Results .. 51

3 Conclusions .. 52

4 Further Development and Research ... 52

5 References ... 53

6 Appendices .. 54

6.1 Project Proposal .. 54
Objectives .. 56
Background .. 56
State of the Art .. 56
Technical Approach .. 57
Technical Details .. 57
Special Resources Required ... 58
Project Plan .. 58
Testing .. 60

6.2 Reflective Journals .. 61

4

Executive Summary

This document outlines the software requirements for the Travel Smart Plus application, an Android
application that uses machine-learning algorithms to predict travel itineraries for business users,
automating the job of a corporate travel agent and removing the need to select items separately.

Most companies rely on Travel Management Companies (TMC) to book their travels which often
requires multiple steps and fees to complete a reservation. This application aims to automate and
simplify this process, reducing booking times and costs.

The purpose of this document is to provide a clear and concise description of the functionality and
features of the system and serve as a guide for the development process. It includes relevant
information about the idea and technologies, along with a detailed explanation of each one of the
requirements, their implementation, interface and testing.

1 Introduction

1.1 Background

This application was born as an idea to simplify the booking process for corporate travel.
Having worked in the corporate travel industry for a few years, I understand how much
companies rely on Travel Management Companies (TMC) to manage their travel
arrangements.

Although some TMCs, such as CWT or Concur, have platforms to allow users to book their
trips, these applications are not that different from other applications in the market, and users
have to research and select each element on their own, which can be time-consuming.

To save time, most users will send a request with their travel preferences directly to the TMC.
A travel agent will research the best options for that specific user, send it back for approval
and book all flights and hotels using a global distribution system (GDS), resulting in back-and-
forth emails, long turnarounds and multiple fees and commissions.

1.2 Aims

TravelSmart Plus aims to streamline and automate the travel booking process using the power
of machine learning algorithms, filling a gap in the market, as most travel applications using
machine learning only provide basic predictions based on a budget or market trends.

The main novelty features that make this application unique to other applications in the
market are:

• Automatic booking search: The application uses machine learning algorithms to
process real-life flight and hotel data and predict an itinerary with the best option for
the user, based on previous bookings and preferences. This removes the need to
select each item manually from a long list, simplifying the booking process. You get
what you need without having to look for it.

5

• Book trips with one single click: After the application displays the predicted itinerary
to the user, they can click the "Book" button, and the application will process the
booking using Amadeus, removing the need to enter your details for each booking
and reducing booking time, fees and commission. All passenger data required to
process the booking will be encrypted and securely stored.

1.3 Technologies

This section highlights some of the technologies chosen for the development process; after
carefully researching and comparing the options available.

Back End

• Ktor: Ktor is a powerful and flexible asynchronous that allows you to build server-side
applications using Kotlin (Ktor, 2023). The simple integration with Kotlin makes it the
ideal choice for the back-end API; one single language for the whole development
process.

• Amadeus API: Amadeus is one of the leading travel technology companies and offers
an array of services that allows you to search for live flight and hotel data from
different countries. This data is processed by the application to build the itinerary
predictions. (Amadeus, n.d.)

• Google Places API: The places API provided the images and addresses. Their data set
size, accuracy and the free credits are some of the features that made this the best
choice for this project. (Google, 2023)

• PostgreSQL: A powerful, open-source object-relation database (PostgreSQL, n.d.). Its
scalability, large support community and AWS RDS support make it ideal for this
project.

• AWS: Amazon Web Services offers a wide range of could computing services,
including a free tier for most of the services. The application API is deployed using an
EC2 instance connected to an RDS instance that hosts the database.

Front End

• Android Studio: Although considered more of a tool, it is the official IDE for Android
development and includes all the tools and technologies required to develop an
Android application, making it the best IDE for the development process. (Google,
n.d.)

• Kotlin: Kotlin is a modern and concise programming language. It has features like null
safety and coroutines that make it a popular choice for Android development. It also
integrates seamlessly with Java, giving you a lot of flexibility. (Kotlin , n.d.)

• OKHttp: OkHttp is an efficient HTTP client for Android applications and it is used to
make the HTTP call to the API along Retrofit.

• Retrofit: This type-safe REST client simplifies the HTTP calls.

6

1.4 Structure

This report includes six sections that aim to provide a complete overview of the project:

• Introduction: Covers the project's idea, background, objectives, unique features, and
technologies used during the development process.

• System: Outlines the main functional and non-functional software requirements to
guide the development process.

• Conclusions: Summarise the key findings and outcomes, including the strengths and
limitations of the project.

• Further Development or Research: Explores some of the ideas to further develop the
project in the future.

• References: Lists all sources that contributed to the project's research and
development; cited throughout the report.

• Appendices: Includes all supporting materials and documents, such as the project
proposal and journals.

2 System

2.1 Functional Requirements

This section defines the features and capabilities of the travel application. The requirements
have been prioritized based on their importance to the overall functionality of the application.

ID Requirement Priority
FR-1 User sign up Critical
FR-2 User sign in Critical
FR-3 Book trip Critical
FR-4 User management Critical
FR-5 Trip management Important
FR-6 Authorise Important
FR-7 User sign out Important
FR-8 Passenger Information Management Important
FR-9 Staff travel management Desirable

FR-10 Profile management Desirable
FR-11 Setup Account Desirable

7

2.1.1 Use Case Diagram

Figure 1 - Use case diagram

8

2.1.2 Requirement 1: User Sign Up

2.1.2.1 Description & Priority

The sign-up requirement allows an administrator to register their company and gain
access to the application. This requirement involves creating a form to submit the
administrator and company information. The system should validate the user input
and call the API to store the company and first administrator in the database.

This requirement is critical as the administrator needs to create an account to use the
application and add other users.

2.1.2.2 Use Case – FR-1

 Scope

The scope of this use case is to allow an administrator to register a new account.

Description

This use case describes the process of creating a new account. The Admin must enter
their details and company information to complete the sign-up.

Use Case Diagram

Flow Description

Preconditions

• The Admin has downloaded the app and is connected to the internet.
• The Admin has not already signed up.

9

Activation

This use case starts when the Admin taps the “Sign Up” button on the landing screen.

Main flow

1. The system directs the Admin to the sign up screen.
2. The Admin inputs their company and personal details, including name, email,

password, company name and DUNS number (international unique company
identifier).

3. The Admin taps the “Sign Up” button.
4. The system validates the input. (A1)(A2)
5. The system makes a call to the API to store the user and company details in the

database. (E1)
6. The system completes the account creation and automatically signs the user in.

Alternate flow

A1: One or more input fields are blank

1. The system detects that some of the fields are blank and displays an error
message to the Admin.

2. The system highlights the empty fields and prompts the Admin to enter missing
information.

3. The Admin enters the missing information.
4. This use case continues at step 3.

 A2: The password doesn’t match

1. The system detects that the password and confirmed password don’t match and
displays an error to the Admin asking to re-enter the details.

2. The Admin enters the password again.
3. The system validates that both password fields match.
4. This use case continues at step 5

Exceptional flow

E1: The company is already registered

1. The system detects that the company entered by the Admin already has an
account.

2. The system displays a message to the Admin asking them to contact their
company to be added to the existing account.

3. The use case ends.

 E2: The user is already registered

1. The system detects that the email entered by the Admin is already registered and
displays a message to the Admin.

2. The system redirects the Admin to the sign in page.
3. The use case ends

10

Termination

Admin is successfully registered and is signed in.

Postcondition

The Admin has created an account and the system goes into a waiting state

2.1.3 Requirement 2: User Sign In

2.1.3.1 Description & Priority

The user sign-in allows registered users to authenticate and access the app functions
and resources. The user must enter their email and password, and the system must
authenticate the user. If the credentials are valid, the API will authorise the user and
generate a JSON Web Token (JWT) and a session and return them to the user.

The session will be stored locally, allowing the system to check if a user is signed in
and keep the session alive until they sign out.

This requirement is critical as users should be able to sign in to use the app, and it
guarantees the integrity of the app resources.

2.1.3.2 Use Case – FR-2

Scope

The scope of this use case is to authenticate the User.

Description

This use case describes the process a User needs to follow to sign into their account
and gain access to the app resources.

11

Use Case Diagram

Flow Description

Preconditions

• The User has an active account.
• The User has a valid email and password.
• The User is not currently signed in.

Activation

The use case starts when the User taps the “Sign In” button on the landing screen.

Main flow

1. The system directs the User to the sign in screen.
2. The User inputs their email and password.
3. The User taps the “Sign In” button.
4. The system will validate the input. (A1)
5. The system sends a request to the API to validate the credentials.
6. The API authenticates the User by checking if they are registered and their

password is valid. (E1)
7. The API authorises the User. (See Use Case FR-6)
8. The API creates a session for the User and stores it in the database.
9. The API sends the JWT token and the session information back to the system.
10. The system saves the session and JWT locally and directs the user to the main

screen.

Alternate flow

12

A1: One or more input fields are blank

1. The system detects that some of the fields are blank and displays an error
message to the User.

2. The User enters the missing information and taps the “Sign in” button.
3. This use case continues at step 4.

Exceptional flow

E1: The User enters an invalid email or password

1. The API cannot find the email address or the password is not valid
2. The API sends an unauthorised HTPP error to the system.
3. The system displays “Invalid email or password” error to the User.
4. The use case ends.

Termination

The user is signed in and directed to the main screen.

Postcondition

The User is authenticated and has access to the app resources. The system goes into
a waiting state.

2.1.4 Requirement 3: Book Trip

2.1.4.1 Description & Priority

This requirement involves using machine learning to predict a complete itinerary for
the user, avoiding the need to hand-pick each one of the elements and saving the user
time and effort.

The user enters the destination and dates, and the API use Amadeus API to look for
travel options and build an itinerary based on user preferences, previous trips, and
company policies. The user should see the option to accept or edit the itinerary, and
the API will process the booking.

This requirement is critical for the system since this is the core feature of the
application and essential to its success.

2.1.4.2 Use Case – FR-3

Scope

The scope of this use case is to book a trip for the User.

Description

13

This use case describes the process of booking a complete travel itinerary for the user.
The booking will include flights and hotels, which are determined by machine learning
algorithms based on user preferences and other relevant factors.

Use Case Diagram

Flow Description

Preconditions

• The User is signed in and authorised
• The User has entered the necessary travel information, such as destination and

travel dates.

Activation

This use case starts when the User opens the app and navigates to the main screen,
which includes the option to book a trip.

Main flow

1. The User enters the travel information, such as destination, travel dates, type and
the number of adults.

2. The User taps the “Search” button.
3. The system validates the input. (A1)
4. The system sends a request to the API with all the travel details.
5. The API looks for flights and hotels and uses machine learning algorithms, such as

K-NN, to create an itinerary according to the User preferences and company
policy, and sends it back to the system. (E1)(E2)

6. The system displays the complete itinerary to the User.
7. The User accepts the itinerary. (A2)
8. The system sends the confirmation to the API.
9. The API sends the request to Amadeus API to book all the options and sends the

confirmation back to the system. (E1)
10. The system displays the confirmation screen.

14

Alternate flow

A1: One or more fields are black

1. The system detects that some of the fields are blank and displays an error
message to the User.

2. The system highlights the invalid fields and prompts the User to enter missing
details.

3. The User enters the required information.
4. The use case continues in step 2.

 A2: The User wants to edit one or more of the suggested options

1. The User taps the “Edit” button next to the option they want to edit.
2. The system sends a request to the API to get a list of alternatives.
3. The API responds with alternate options, whether flights or hotels.
4. The system displays a list of the options to the User on a different screen.
5. The User selects the new option
6. The system displays the updated itinerary
7. The use case continues in step 7.

Exceptional flow

E1: The API fails to connect to Amadeus' API

1. The API is unable to connect to Amadeus's API
2. The API responds to the system with an internal server error
3. The system displays the error to the User and asks them to try again later.
4. The use case ends.

 E2: No options found

1. The API is unable to find any options matching user travel information,
preferences and company policy.

2. The API responds to the system with an error, such as not found.
3. The system displays a message to the User and asks them to start again with other

travel details.
4. The use case ends.

Termination

The User has been redirected to the confirmation screen where they can see their
itinerary.

Postcondition

The User has successfully booked their trip. The trip is saved in the database and can
be accessed by the User.

15

2.1.5 Requirement 4: User management

2.1.5.1 Description & Priority

The User management requirement allows an administrator to create, edit and delete
users.

The administrator can add a new user to the account by entering their name, email
and role, and the system will then create a temporary password that the user can use
to log in. When the user is created, the administrator can edit their role or delete the
user completely. The administrator will also have the option to view the list of all
users.

This requirement is critical as only administrators will have the option to add new
users to the account. This requirement also helps administrators manage user
privileges and ensure data integrity.

2.1.5.2 Use Case – FR-4

Scope

The scope of this use case is to allow the administrator to manage the users in their
company.

Description

This use case describes the steps the administrator needs to follow to add a new user,
edit their role, delete the user, and view all their active users.

16

Use Case Diagram

Flow Description

Preconditions

• The Admin needs to be signed in.
• The Admin has the appropriate role to manage users.

Activation

The use case starts when the Admin taps the “Users” tab on the main screen.

Main flow

1. The system directs the Admin to the user's screen and displays a list of all active
users.

2. The Admin taps the “New User” button.
3. The system displays a form to add a new user.
4. The Admin enters the user’s information, including name, email and role, and taps

the “Submit” button.
5. The system validates the input. (A1)
6. The system sends the data to the API.
7. The API generates a temporary password for the new user, stores all the

information in the database and responds to the system with a successful
message. (E1)

8. The API responds to the system with a created message.

17

9. The system directs the Admin back to the users' screen and displays a message.
10. The Admin can open the user’s profile to edit and delete the user.

Alternate flow

A1: The Admin enters invalid user information

1. The system detects that some of the fields are blank or contain invalid
information.

2. The system highlights the fields and prompts the Admin to correct details.
3. The Admin enters the required information.
4. This use case continues at step 5.

Exceptional flow

E1: The user already exists

1. The API detects that the email entered by the Admin is already registered and
sends the message to the system.

2. The system displays an error message to the Admin.
3. The use case ends

Termination

The Admin has been redirected to the users' screen.

Postcondition

The system has added, edited, or deleted the user as requested by the Admin. The
system goes into a waiting state.

2.1.6 Requirement 5: Trip Management

2.1.6.1 Description & Priority

The trip management requirement allows users to view the itinerary for their
upcoming trips and cancel the trip. Users should be able to view their trips easily and
quickly, with the option to delete their booking if their plans change.

All trips will be securely stored in the database and can only be accessed by the user
and their account administrators.

This requirement is important to create a better experience for the user and learn
from user preferences.

18

1.1.1.1 Use Case – FR-5

 Scope

The scope of the use case is to allow a user to view and cancel their upcoming trips.

Description

This use case outlines the steps the users need to follow to view and cancel their
upcoming trips.

Use Case Diagram

Flow Description

Preconditions

• The User is signed in.
• The User has created at least one trip.

Activation

The use case starts when the User taps the “Trips” tab on the main screen.

Main flow

1. The system directs the User to the trips screen and sends a request to the API to
get all upcoming trips for that specific user.

2. The API will respond with a list of upcoming trips. (E1)
3. The system will display all the trips with some basic information, such as travel

date and destination.
4. The User taps the trip they want to view or delete.
5. The system displays the complete itinerary for that trip on a new screen.
6. The User can view all the details and tap the “Cancel” button if they want to delete

the trip.

19

Alternate flow

No alternate flows for this use case

Exceptional flow

E1: The User has no upcoming trips

1. The API cannot find any upcoming trips for the User and responds with not found
error.

2. The system will display a message to the User to inform them that there are no
upcoming trips.

3. The use case ends.

Termination

The User has viewed their trip or successfully deleted it.

Postcondition

The system goes into a waiting state.

2.1.7 Requirement 6: Authorise

2.1.7.1 Description & Priority

The authorisation allows an authenticated user to be authorised using a JWT token
that will allow them to access the app resources.

For security reasons, the JWT tokens have a short expiration time. When a user makes
a request with an expired token, the API will reply with an unauthorised HTTP error.
The user can then make another request to get a new token using their session
information.

The API will check if the user has an active session and will issue a new token for the
user. If the user has no active session or the session information is invalid, the user
will be signed out and asked to sign in again.

This requirement is important to ensure that only authorised users can access the API
and guarantee the integrity of the app resources.

2.1.7.2 Use Case – FR-6

Scope

The scope of this use case is to authorise a User that is already signed in.

Description

20

This use case outlines the steps that a user needs to follow to get a JWT token that
allows them to access the API and other app resources.

Use Case Diagram

Flow Description

Preconditions

• The user is signed in and has an active session.

Activation

This use case starts when the User makes a request with an expired token.

Main flow

1. The API sends an unauthorised error to the system.
2. The system sends a request to reauthorise the User that includes the session

information, such as the user id and session key.
3. The API checks if the User has an active session that matches their user id and

session key. (E1)
4. The API generates a new JWT token and sends it back to the system.
5. The system stores the JWT token locally.

Alternate flow

No alternate flows for this use case

Exceptional flow

E1: The User has no active sessions or the session key is invalid

21

1. The API cannot find an active session with the user id or the session key doesn’t
match the active session keys for that user.

2. The API revokes all active user sessions, if any, and sends an unauthorised error
to the system.

3. The system signs the user out and redirects them to the sign in page.

Termination

The system has stored the new JWT token in local memory.

Postcondition

The API has generated a new JTW token for the User and the system can continue
with any pending requests.

2.1.8 Requirement 7: Sign Out

2.1.8.1 Description & Priority

The sign out requirement allows users to log out of the application. When a user signs
out, the API revokes the session that matches the session key.

The sign-out requirement is important as it ensures the privacy and security of user
data and helps to provide a better overall user experience.

2.1.8.2 Use Case – FR-7

Scope

The scope of this use case is to sign out the user and revoke their session.

Description

This use case describes the steps the User follows to sign out and how the API revokes
the session.

22

Use Case Diagram

Flow Description

Preconditions

• The User is signed in.

Activation

This use case starts when the User taps the “Sign Out” button.

Main flow

1. The system sends a request to the API to sign out the user.
2. The API will revoke the user session that matches both the user id and session

key, and sends a success message to the system.
3. The system removes the session from local storage and directs the user to the

landing screen.

Alternate flow

No alternate flows

Exceptional flow

No exceptional flows

Termination

The user is redirected to the landing screen.

Postcondition

The user session is revoked and the system goes into a waiting state.

23

2.1.9 Requirement 8: Passenger Information Management

2.1.9.1 Description & Priority

The passenger information management requirements allow the user to add their
travel information, such as date of birth, passport number and expiry date. This data
will be used to process the booking through Amadeus.

2.1.9.2 Use Case – FR-09

Scope

The scope of this use case is to allow the user to manage their personal travel
information.

Description

This use case describes the process a user should follow to add and edit their travel
data.

Use Case Diagram

Flow Description

Preconditions

• The User is signed in.

Activation

This use case starts when the User taps the Edit button on the profile screen.

24

Main flow

1. The system directs the User to the edit screen.
2. The User enters all the required travel information: date of birth, passport

number and expiry date and nationality.
3. The system validates the input. (A1)

Alternate flow

A1: The User leaves blank fields

1. The system detects that some of the fields are blank.
2. The system highlights the fields and prompts the User to correct details.
3. The User enters the required information.
4. This use case continues at step 4.

Exceptional flow

E1: User cancels edit

1. The User clicks the “Cancel” button
2. The use case ends and the user is redirected to the profile screen.

Termination

The Admin has clicked “Saved.”

Postcondition

The system redirects the User to the profile screen and data is stored in the database.

2.1.10 Requirement 9: Staff Travel Management

2.1.10.1 Description & Priority

The staff travel management requirement allows the administrator to manage their
company travel.

An administrator can view a list of all the trips that the staff has booked and cancel
any trip if needed.

This requirement is desirable to allow companies to manage their travel effectively
and improve application usability.

2.1.10.2 Use Case – FR-10

Scope

The scope of this use case is to allow the administrator to view and cancel their user’s
trips.

25

Description

This use case describes the process an Administrator should follow to view and delete
a user’s trip.

Use Case Diagram

Flow Description

Preconditions

• The Admin is signed in.
• There is at least one trip confirmed.

Activation

This use case starts when the Admin taps the “All Trips” tab on the main screen.

Main flow

1. The system directs the Admin to the “All Trips” screen and requests all the trips
for the company.

2. The API gets all the trips for that specific company and responds to the system
with a list of trips. (E1)

3. The system will display all the trips to the Admin.
4. The Admin opens the trip and the system shows the full itinerary.
5. The Admin can tap the “Cancel” button to delete the trip.

Alternate flow

No alternate flows for this use case.

Exceptional flow

E1: No trips found

26

1. The API cannot find any trips for the company and returns a not found error to
the system.

2. The system displays a message to the User to inform them that there are no trips.
3. The use case ends.

Termination

The Admin has viewed or deleted the trip and received appropriate feedback.

Postcondition

The system goes into a waiting state.

2.1.11 Requirement 10: Profile Management

2.1.11.1 Description & Priority

The profile management requirements allow users to manage their personal
information and preferences within the app. This includes the ability to view and edit
personal information such as name, email, email and travel preferences.

The requirement is desirable as it allows users to manage essential details used to
book their trips and can improve user engagement and satisfaction.

2.1.11.2 Use Case – FR-1

Scope

The scope of this use case is to allow a user to view and edit their profile.

Description

This use case outlines the steps a user must follow to view their profile and edit their
details, such as name, password, and travel preferences.

27

Use Case Diagram

Flow Description

Preconditions

• The User is signed in

Activation

This use case starts when the user taps the ”Profile” tab on the main landing screen.

Main flow

1. The system directs the User to the profile screen and requests user details to the
API.

2. The API responds with the User’s details.
3. The system displays the information to the User.
4. The User taps the “Edit” button.
5. The system displays a form to edit the name, email or password.
6. The User enters the new information.
7. The system validates the inputs. (A1)
8. The system sends a request to update the user profile.
9. The API updates details in the database and responds to the system with a

successful message. (A2)

Alternate flow

A1: The User enters invalid user information

1. The system detects that some of the fields are blank or contain invalid
information.

2. The system highlights the fields and prompts the User to correct details.
3. The User enters the required information.

28

4. This use case continues at step 7.

A2: New email is already registered

1. The User enters an email address that is already registered
2. The API responds with a conflict.
3. The system displays a message to the User asking them to enter a different email.
4. The User enters a new email.
5. The use case continues in step 7.

Exceptional flow

No exceptional flows for this use case.

Termination

The system displayed existing or new details to the User.

Postcondition

The system goes into a waiting state.

2.1.12 Requirement 11: Setup Account

2.1.12.1 Description & Priority

The setup account use case allows new users to edit their preferences and update the
temporary password created by their administrator. The priority is a desirable
requirement.

2.1.12.2 Use Case – FR-1

Scope

The scope of this use case is to allow new user to set up their accounts.

Description

This use case outlines the steps a user must follow to update their password and select
the preferences during setup.

29

Use Case Diagram

Flow Description

Preconditions

• The User signs in for the first time.
• The User is active.

Activation

This use case starts when the User signs in for the first time.

Main flow

1. The system directs the User to the setup screen.
2. The User enters a new password and confirms the password.
3. The system validates the password. (A1)
4. The User taps “Continue.”
5. The system displays the screen to select preferred airlines and hotels.
6. The User selects the preferred airlines and hotels.
7. The system validates the inputs. (A2)
8. The API updates details in the database and responds to the system with a

successful message.

Alternate flow

A1: The password doesn’t match

1. The system detects that the confirmation password does not match the password.
2. The system highlights the fields and prompts the User to correct details.
3. The User corrects the password.

30

4. This use case continues at step 3.

A2: Some of the fields are empty

1. The System detects that some of the fields are empty.
2. The System prompts the User to select all preferred airlines and hotels to

continue.
3. The User enters all required information.
4. The use case continues in step 7.

Exceptional flow

No exceptional flows for this use case.

Termination

The User clicks “Done” and User is redirected to the main screen.

Postcondition

The system goes into a waiting state.

2.2 Data Requirements

• User data: This includes basic personal information such as name, email address,
and password. It may also include additional information such as date of birth and
phone number.

• Trip data: This includes information related to the user's travel plans such as
departure and arrival dates and destination.

• Data protection: All data must be stored securely and the application should
provide users with the option to manage their data to comply with GDPR.

2.3 User Requirements

• An administrator should be able to create an account for their company.
• An administrator should be able to add, edit and delete users.
• The user should be signed in.
• The user should be able to search for a trip and edit the itinerary that is created for

them.
• The user should be able to view the itinerary for upcoming trips.
• The user should be able to cancel a trip.
• The user should be able to view and edit their profile.

2.4 Environmental Requirements

• The app requires Android OS or later.
• The app requires a stable internet connection to function.
• The app may require a certain amount of storage space to be downloaded and

installed on the user's device.

31

2.5 Usability Requirements

• The app must have an intuitive and user-friendly interface that allows users to
easily navigate and find the features they need.

• The app should include accessibility features, such as support for text-to-speech
and screen readers.

2.6 Design & Architecture

The front end follows an MVVM (Model-View-ViewModel) architecture, a popular pattern for
Android development and allows for a separation of concerns and improved readability. The
code is divided into three main components:

• Model: The Model handles data sources, services, and API calls and provides some of
the methods used to manipulate the data.

• View: the Views are responsible for the UI component and user interactions.
Following Google's design patterns (Google , 2023), the app has one main Activity that
handles most use cases using Fragments and a Navigation component. There are four
other Activities to handle functions like authentication and setup and separate their
functionality from the main requirements.

• ViewModel: the ViewModel acts as an intermediary between the Model and the
View, processing all the data and related business logic (Google, 2023). The data is
stored LiveData variables, allowing the Fragments to observe changes and share data
among them.

The back end follows a modular architecture, and it has been divided into four main sections:

• Model: similar to the front end, the Model handles the data business logic. It
encapsulates the data using data classes and defines the table's structure.

• DAO: the DAO (Data Access Object) uses Exposed to interact with the database
(JetBrains, 2022). It contains all methods required to perform the basic CRUD (Create,
Read, Update, Delete) operations and extracts these operations from the rest of the
application logic.

• Services: the services integrate the different APIs and DAO, acting as an intermediary
between the application logic and external services.

• Routes: define the API endpoint and handle the HTTP requests. It serves as the entry
point to the application's back end.

32

Figure 2 - Architecture Diagram

2.7 Implementation

2.7.1 Authentication

The authentication is handled using a JWT token that is passed in the Authorization header.
When the user signs in, two tokens are created and sent back to the user; a short-lived token
is used for each request and a long-lived token is used as a refresh token (Figure 3).

 Figure 3 – API Sign in route

33

Both tokens are saved locally using the Android shared preferences. When the user sends a
request to the API, an authentication interceptor adds the token to the request, and the API
will validate this token using the Ktor authentication plugin.

If the token is expired, the interceptor will retry the request with the refresh token, which
should return a fresh token pair if successful. If the refresh token is invalid, the user is
automatically signed out and a message will be displayed asking them to sign in one more
time (Figure 4).

 Figure 4 - Authentication Interceptor Implementation

This authentication process guarantees the integrity of the data on the back end by only
allowing requests from verified users.

34

2.7.2 Booking

The booking process consists of two stages: search and confirmation. During the search stage,
the user enters all the information required to search for a trip, and the system validates the
input and sends a request to the API (Figure 5).

 Figure 5 - Booking search in Fragment

In the back end, the booking search route confirms the user making the request exists, then
calls the booking service to make the prediction and returns the relevant response (Figure 6).

The booking service is responsible for calling the external APIs to get flight and hotel data. This
data is processed using different algorithms to make predictions; a content-based algorithm
when there are no previous bookings and a K-NN algorithm when there is a previous history
(Figure 7 and Figure 8).

35

 Figure 6 - Booking Search Route

 Figure 7 - Booking Service Content-Based Recommendation

 Figure 8 - Booking Service KNN Algorithm

During the confirmation stage, the user can confirm the predicted itinerary with a single click.
This sends a second request to the API to confirm the booking and return the confirmation
with the booking ID and reference. The call is made after navigating to the Booking
Confirmation Fragment to create a smooth UI transition (Figure 9).

 Figure 9 - Booking Confirmation Fragment Implementation

Alternatively, the user can edit any of the recommendations before confirming their booking.
New selections are saved and used to train the algorithms.

36

2.7.3 KKN Algorithm

After carefully evaluating different algorithms, the k-nearest neighbours algorithm (KNN) was
implemented due to its capacity to handle non-linear complex data, easy implementation and
previous experience.

However, the KNN algorithm has been modified to use 1-nearest neighbour (1-NN) to choose
the instance with the single nearest neighbour, as all instances are the same class, and the
main goal is to find the flight or hotel closest to an existing booking (Figure 10).

 Figure 10 - KNN Algorithm Implementation

Once the algorithm has been trained with previous booking data, the prediction function
extracts the features of each flight or hotel to create a list of labelled instances. These
instances are passed to the KNN algorithm to predict the one closest to an existing flight or
hotel (Figure 11).

 Figure 11 - Flight Prediction Example

When extracting features, each feature is encoded and normalised using numerical values.
The weight of preferred airlines and hotels is increased to influence the prediction (Figure 12).

37

 Figure 12 - Hotel Feature Extraction

 Figure 13 - Hotel Encoding

2.7.4 Content-Base Algorithm

Predicting an itinerary using the KNN algorithm mentioned above requires data to train the
algorithm, which raises a challenge for new users with previous bookings.

 Figure 14 - Content-Based Algorithm Implementation

38

To overcome this problem, a content-based algorithm is used to predict itineraries when users
have fewer than two previous bookings. Content-based algorithms use item features to
recommend other items similar to the user preferences, which makes it ideal for this use case
(Figure 14).

The user preferences and each one of the items used for prediction are encoded into a
numerical value using a one-hot approach to create a matrix. The user preferences are then
compared with each item to calculate their similarity using the dot product.

 Air France Aer Lingus Ryanair Iberia United
Preferences 0 2 1 0 0
Flight #1 0 0 0 1 0
Flight #2 0 1 0 1 0

𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝𝑝𝑝,𝐹𝐹1) = (0 ∗ 0) + (2 ∗ 0) + (1 ∗ 0) + (0 ∗) = 0
𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝𝑝𝑝𝑝𝑝,𝐹𝐹2) = (0 ∗ 0) + (2 ∗ 1) + (1 ∗ 0) + (0 ∗) = 𝟐𝟐

The table above shows how flight results are compared to preferences to determine their
similarity. In this case, flight #2 is one of the user's preferred airlines and the predicted flight.

2.7.5 User Management

The user management implementation consists of a series of functions to allow an
administrator to view, add, edit and delete other users in their company.

When the administrator visits the Users fragment, a call is made through the user view model
to get all users. This call is made in the onResume() call-back to guarantee new data is available
when the fragment is resumed or becomes visible for the first time (Figure 14).

39

 Figure 15 - getAllUser() function in User View Model

On the server side, the route validates the organisation ID parameter, extracts the requestor's
user ID from the JWT token payload and finally checks if the administrator belongs to the same
company before returning all users for that specific company to the client (Figure 15). This
route is authenticated using Ktor's authentication plugin.

 Figure 16 - Get All Users Route in API

The users are displayed using a RecyclerView with a custom adapter allowing to reuse the
items and filter results using the Filterable class. The adapter also adds an on-click listener to
each item using a custom interface to make the item clickable and access the correct user
profile.

The administrator can also add new users. When they click the button, they are redirected to
the new user fragment, which contains the form to add a new user. All the details are validated
before submitting the form, and the API will once again authenticate the request and validate
the user ID in the JWT token before adding the data to the database (Figure 16).

40

 Figure 17 - New User Route in API

To delete a user, the system displays a dialogue to the user before sending a request to the
API. The API validates the user ID in the call parameters and the JWT token deletes the user
and sends a confirmation to the client (Figure 17). This option is also available to a user
deleting their account; in such case, the system redirects the user to the landing page after
deleting the account (Figure 18).

 Figure 18 - Delete User Route in API

41

 Figure 19 - Delete User Implementation in Fragment

2.7.6 Booking Management

The booking management implementation includes several functions to view and cancel
bookings.

When a user visits the Bookings fragment, a call is made to request all user's bookings.
Bookings are displayed to the user using a RecyclerView with a custom adapter, reusing the
booking card item and adding an image to the booking (Figure 19).

 Figure 20 - Get All User Bookings Implementation in View Model

Administrators can visit the all bookings fragment, which calls the API to obtain all the
bookings for a company. The API verifies the organisation ID parameter and user ID in the JWT
before returning the response to the client (Figure 20).

42

 Figure 21 - Get Company Bookings Route in API

Both staff users and administrators can cancel a booking. When the user clicks the cancel
button, a dialogue is displayed, and the request is sent to the API upon confirmation. The
route in the API validates the parameter and requestor before deleting the booking (Figure
21).

 Figure 22 - Delete Booking Route in API

2.7.7 Live Data

LiveData is an observable data class which notifies its observer every time data changes
(Google Android for Developers, 2023).

This is used throughout the app to notify activities and fragments about data changes and
update the UI accordingly. In the examples below, the fragments observe the LiveData in the
view models to display a loading animation when calls are processing and show errors to the
user (Figure 15).

43

Each data object has a private variable used in the View Model, which is then assigned to a
read-only public variable that can be observed by the activities and fragments and guarantees
data integrity (Figure 14).

 Figure 23 - LiveData private variables and read-only variables

 Figure 24 - Observer example

2.7.8 Deployment

The API was deployed using an EC2 instance using a fat JAR file containing all project files
and dependencies. A service was created to run the application even when the terminal is
closed (Mukadam, 2021).

44

2.8 Graphical User Interface (GUI)

Sign up Screen

Displays sign-up form allowing new users to create an
account.

All inputs are validated before submitting the form and clear
errors are displayed to the user.

Sign In Screen

Displays the options to sign in for registered users. It also
shows an option to navigate to the Sign Up screen if the
user does not have an account.

45

Main Screen

Displays a search box to allow users to enter their travel
details. It also displays an upcoming booking, if available.

 Predicted Booking Screen

Displays an entire itinerary based on the user’s preferences
and previous bookings, removing the need to select each
item separately and allowing users to book their trip with
one click.

The users also have the option to edit any of the
suggestions. The new selections will help train the algorithm
and improve future predictions.

46

Profile Screen

Displays the user’s information, such as name, email, travel
data and preferences.

Users have the option to edit any of these details or delete
their accounts.

My Bookings Screen

Displays the upcoming bookings for the current user. The
search bar can be used to search for specific destinations
and booking IDs.

Each booking displays an image using Google Places API.

47

Bookings Screen

Administrators can view all the bookings for their company.
The search bar allows administrators to search for
destinations, IDs and countries.

All Users Screen

Displays all the users to an administrator. It has the option
to add new users to the account and search users by name
and email address.

48

2.9 Testing

The project has been developed using a test-driven development approach. A set of unit,
integration and functionals test were written to guide the implementation process.

2.9.1 Objectives

• Guide the development process. Following the test-driven development approach,
each test is run before implementation, playing a fundamental part in the
development process.

• Verify that all requirements are met and all functionalities are working as expected.
• Identify any bugs and security vulnerabilities.

2.9.2 Scope

• Unit testing: it focuses on the individual components of the application, such as the
models used to store data, the serialization functions, view models logic and the
machine learning algorithms.

• Integration testing: targets the interaction between different elements of the
application. It includes the different services, external API calls and functions that
interact with the database.

• Functional testing: it focuses on testing the main requirements of the application as
a whole. This included the main requirements and use cases.

• Manual beta testing: focuses on testing the UI/UX, identifying any bugs and
gathering feedback before releasing the project. This will be performed by a small
group of testers (family and friends).

2.9.3 Testing Tools

• Junit: this is the main testing framework. It allows us to set up the testing
environment and verify results using assertions.

• MockK: this Kotlin testing library allows you to mock the elements used in the Unit
testing, isolating the test from the rest of the code.

2.9.4 Test Cases

The following test cases were used to guide manual testing using Android Emulator. Each
test was performed by a small group of 5 beta testers.

ID 1 Priority High

Description The user attempts to sign up with a positive outcome
Test Data • First name: John

• Last name: Smith
• Email: john@test.com
• Password: Pass1234!
• Company name: MyCompany LTD

mailto:john@test.com

49

• DUNS: 12345678
Steps Expected Result Actual Result

1. Click the sign up button
on the landing screen

The user is redirected to
the main screen and a new
user and company is added
to the database.

The user was redirected to
the database and records
were created in the
database.

2. Fill out the form using
test data

3. Click the Sign-Up button

ID 2 Priority Medium
Description The user attempts to sign up with a duplicate company
Test Data • First name: Sara

• Last name: Smith
• Email: john@test.com
• Password: <any password>
• Company name: MyCompany LTD
• DUNS: 12345678

Steps Expected Result Actual Result
1. Click the sign up button

on the landing screen

An error message is
displayed “Duplicate
organisation.” The user is
asked to sign in.

The message was
successfully displayed to the
user. 2. Fill out the form using

test data
3. Click the Sign-Up button

ID 3 Priority High

Description The user attempts to sign in using valid credentials
Test Data

• Email: john@test.com
• Password: Pass1234!

Steps Expected Result Actual Result
1. Click the sign in button

on the landing screen
 The user is redirected to

the main screen.

The user was successfully
signed in and redirected to
the main screen. 2. Enter credentials

3. Click sign in button

ID 4 Priority High
Description User search books a trip with a flight and hotel
Test Data • From: London (LHR)

• To: New York (JFK)
• Departure/Check-in: 23/11/23
• Return/Checkout: 28/11/23
• Adults: 1
• Class: Economy

Steps Expected Result Actual Result
1. Enter information in the

search box

The system displayed the
predicted itinerary. When
the user clicks Book, the

The itinerary was
successfully displayed. The
user was redirected to the

mailto:john@test.com
mailto:john@test.com

50

2. Click the Search button user is redirected to the
confirmation screen and
the booking is added to the
database.

confirmation screen and
data was added to the
database. 3. Click Book button

ID 5 Priority High

Description Add a new user with a Staff role
Test Data • First name: Paul

• Last name:
• Email: p@test.com
• Role: Staff
• Password: <any password>

Steps Expected Result Actual Result
1. Click User tab

A confirmation message is
displayed to the user. The
user shows in the user list
and the database is
updated.

The confirmation message
was displayed. The users'
list and database were
updated to reflect the new
user.

2. Click Add User button
3. Fill out the form with

user data
4. Enter any temporary

password
5. Click Save

2.9.5 Automated Testing Results

 Figure 25 - Back end Testing Summary

 Figure 26 - Front end Testing Summary

mailto:p@test.com

51

2.10 Evaluation

2.10.1 Performance Evaluation

The Android Profiler was used to measure the performance of CPU, memory and battery
usage while performing the main use cases, such as booking a trip, adding a user and
viewing all bookings and users.

This shows an average CPU usage of 36% and Memory usage of 240MB when performing
main tasks. The battery usage peaks at medium when performing tasks like booking search,
and low when performing other tasks that use fewer resources.

2.10.2 Network Evaluation

The main network calls were evaluated using the Network Inspector in Android Studio. Each
call was made three times to calculate the average time.

Call 1st Run 2nd Run 3rd Run Average
Sign In 468ms 92ms 81ms 213.66ms

Booking Search 4s 791ms 8s 207ms 6s 964ms 6s 654ms
My Bookings 2s 85ms 331ms 333ms 916ms
All Bookings 336ms 272ms 252ms 286.66ms

All User 113ms 87ms 111ms 103.66ms
User Profile 75ms 108ms 71ms 84.66ms

Add User 141ms 116ms 149ms 135.33ms
Delete User 136ms 84ms 90ms 103.33ms

2.10.3 Startup Benchmark Results

 Figure 27 - Startup Macro benchmark

52

3 Conclusions

One of the main strengths of the application is the ability to predict complete itineraries, which can
change how we book a trip by taking advantage of machine learning to remove the need to select
each element of our trip manually. This feature is particularly relevant in a world that is becoming
more reliant on technology and artificial intelligence, helping us get things done with little effort and
interaction.

Concerning the weaknesses, the main limitation is the limited features. Due to time constraints, the
application focuses on booking prediction and booking and user management, which can be seen as
a disadvantage against other applications in the market.

Overall, I think the application offers a new way of booking a trip and it could be extended to reach
the general public and not only business users.

4 Further Development and Research

With additional time and resources, some features could be improved and extended. Currently, it is
not possible to process the reservation using the Amadeus API as it requires additional verification
and a contract with an airline consolidator, all of which can be obtained with additional resources.

Another area of improvement is the authentication process, as there is no option to revoke the JWT
tokens. With more time, a solution could be implemented to securely store tokens in the database,
allowing to revoke tokens and increase the security.

The booking prediction is another area that could be improved in the future. The machine learning
algorithms can be enhanced to include additional features, such as company policies and partners.
Additionally, a new feature can be implemented to offer live suggestions during a trip, such as car
rentals, car-sharing services, shuttles, airport information, and any other valuable information.

53

5 References

• Amadeus, n.d. Amadeus for Developers. [Online]

Available at: https://developers.amadeus.com
[Accessed 2023].

• Google , 2023. Migrate to the Navigation component. [Online]
Available at: https://developer.android.com/guide/navigation/migrate
[Accessed 2023].

• Google Android for Developers, 2023. LiveData overview. [Online]
Available at: https://developer.android.com/topic/libraries/architecture/livedata
[Accessed 2023].

• Google, 2023. Google Maps Platform. [Online]
Available at: https://developers.google.com/maps/documentation/places/web-
service/overview
[Accessed 2023].

• Google, 2023. ViewModel overview. [Online]
Available at: https://developer.android.com/topic/libraries/architecture/viewmodel
[Accessed 2023].

• Google, n.d. Android for Developers. [Online]
Available at: https://developer.android.com
[Accessed 2023].

• IBM, n.d. K-Nearest Neighbors Algorithm. [Online]
Available at:
https://www.ibm.com/topics/knn#:~:text=The%20k%20value%20in%20the,as%20its%20sin
gle%20nearest%20neighbor.
[Accessed May 2023].

• JetBrains, 2022. Exposed. [Online]
Available at: https://github.com/JetBrains/Exposed/wiki
[Accessed 2023].

• Kotlin , n.d. Kotlin Docs. [Online]
Available at: https://kotlinlang.org/docs/home.html
[Accessed 2023].

• Ktor, 2023. Ktor Server. [Online]
Available at: https://ktor.io/docs/welcome.html
[Accessed 2023].

• Mukadam, H., 2021. Deploying Ktor Web Service on AWS EC2 Instance. [Online]
Available at: https://dev.to/hsm59/deploying-ktor-web-service-on-aws-ec2-instance-209h
[Accessed 2023].

• PostgreSQL, n.d. PostgreSQL. [Online]
Available at: https://www.postgresql.org

• Rosidi, N., n.d. Step-by-Step Guide to Building Content-Based Filtering. [Online]
Available at: https://www.stratascratch.com/blog/step-by-step-guide-to-building-content-
based-filtering/

• Shakhnarovich, G., Darrell, T. & Indyk, P., 2005. Nearest-Neighbor Methods in Learning and
Vision : Theory and Practice. s.l.:The MIT Press.

54

6 Appendices

6.1 Project Proposal

National College of Ireland

Project Proposal

Business Travel Application
20 December 2022

BSc (Honours) in Computing

Software Development

2022/2023

Gabriel Salas Segura | 19104162| x19104162@student.ncirl.ie

55

Contents

1. Objectives ... 56

2. Background .. 56

3. State of the Art ... 56

4. Technical Approach ... 57

5. Technical Details ... 57

6. Special Resources Required ... 58

7. Project Plan .. 58

4. Testing .. 60

56

Objectives

I plan to develop a one-stop solution for business travel that uses machine learning to
predict and show itineraries and useful suggestions based on the user's preferences and
schedule.

The project seeks to achieve the following objectives:

1. Help users save time and effort by providing a user-friendly platform to book and
manage flights and hotels following their company's travel policy. The application
can use machine learning to learn from the user's travel patterns and preferences to
suggest personalised travel itineraries. For example, once the user searches for a
city, the app could automatically display a full itinerary that the user can accept with
one single click.

2. These itineraries can include other useful information, such as airport lounges,
shuttles, restaurants, events and more, and they can update in real-time based on
the user's location and any changes in their schedule.

3. The app would learn from other users in the same company or industry to offer
better suggestions.

Background

I used to work for a travel management company (TMC), and one of the main issues I found
is that most requests are processed manually by travel advisors, which can be time-
consuming. Even solutions like TravelPerk or Concur, intended to simplify the booking
process, require users to follow many different steps to book a simple trip.

To add to this problem, most solutions only focus on booking flights, hotels and cars but
don't provide any suggestions for the rest of the trip, resulting in users having to use other
resources to find this information, which can be a problem for someone with a packed
schedule.

My idea is to create a one-stop application that uses machine learning to predict and suggest
trip itineraries and other useful information, allowing business users to book a trip with a
single tap and see information about airports, shuttles, restaurants and more.

State of the Art

Currently, there are travel management companies and applications that allow users to
book and manage their business travel, such as BCD Travel, TravelPerk and Concur or in-
house travel desks. However, most of these solutions will have travel agents process the
requests manually or will require users to choose each flight and hotel one by one, which
can be time-consuming.

On top of that, most alternatives only focus on booking flights, hotels and cars, leaving users
with the responsibility of searching for other parts of their trip on other platforms.

57

My project intents to simplify the booking process by automating the tasks of a business
travel agent, offering personalised itineraries to business users, including all the other
components of a trip that are often ignored by existing solutions.

This application will put the user's needs and satisfaction at the front while respecting
companies' policies and limits, giving business travellers all they need for their trip in one
place.

Technical Approach

This project will follow an agile and test-driven development approach, focused on
delivering small improvements regularly and using automated tests to verify that the code is
working as intended and catch errors and bugs in the early stages of development.

The development process would involve the following steps:

• Define the goals and requirements: The first step will be to identify the
requirements using the project objectives and use cases. This will help to prioritise
the features and functionality and break down the project into small pieces or
"sprints." Once I have identified all the requirements, I will use Trello to manage the
project and keep track of the progress.

• Use Trello to manage the project: Once I have identified all the requirements, I will
use Trello to manage the project and keep track of the progress.

• Write automated tests: As the application is being developed, I will write automated
tests for each new feature to ensure that they are working as intended. Tests will be
run regularly to catch any errors or bugs.

• Review and update the project plan: I will review and update the project plan to
ensure that all goals are met. This involves adapting to feedback and making any
necessary changes.

Technical Details

I intend to develop an Android application using Kotlin. Kotlin is a modern language that
runs on the Java virtual machine and has become quite popular for Android development.

The other technologies I will use are:

• Server: I plan to use Ktor to create the server for my application. Ktor is a framework
for building asynchronous web applications in Kotlin, making it easy to integrate
with the rest of the project.

• Machine Learning Algorithms: I plan to use the KNN (k-nearest neighbours)
algorithm to offer recommendations to the customers, as it is simple and intuitive.

• Design patterns: I will try to implement different design patterns to solve common
design problems and save time. Some design patterns that might be useful for this
project are the observer, factory and decorator.

• Libraries: Some of the libraries I plan to use are:

o Kovenant: provides a set of asynchronous libraries for Kotlin, which
could be useful for making API calls.

58

o OKHttp: a simple HTTP client for Kotlin, which could be useful for
interacting with web services that provide travel information.

• Database: the database will be created using PostgreSQL to simplify the back-end
deployment using Heroku.

Special Resources Required

As of now, I am not using any special resources for my application other than Figma to
design the user interface.

Project Plan

Using Trello, I have defined the main requirements for the project and added them to the
backlog. Some of the requirements will be added to the sprints every 4 weeks, and they will
be reviewed and updated as needed:

I have created a project roadmap using a Gantt chart to outline the overall timeline for the
project and identify the key milestones and deliverables. Each sprint has 4 weeks, and the
task will be added during the planning stage:

59

60

Testing

Following a test-driven development approach, I will write different tests before
implementing the functions:

• Unit testing: test individual units or components of the app to ensure that they are
working as intended, such as the functionality of the machine learning model,
classes or some of the main methods. This will use Synthetic Data to guarantee
privacy and security.

• Integration testing: test how well the various units or components of the app work
together. This can include testing the integration of the user interface with the other
elements and external APIs.

• Beta testing: I will deploy the app to a small group of family and friends as a beta
test.

61

6.2 Reflective Journals

62

63

64

65

66

67

68

69

	Executive Summary
	1 Introduction
	1.1 Background
	1.2 Aims
	1.3 Technologies
	1.4 Structure

	2 System
	2.1 Functional Requirements
	2.1.1 Use Case Diagram
	2.1.2 Requirement 1: User Sign Up
	2.1.2.1 Description & Priority
	2.1.2.2 Use Case – FR-1

	2.1.3 Requirement 2: User Sign In
	2.1.3.1 Description & Priority
	2.1.3.2 Use Case – FR-2

	2.1.4 Requirement 3: Book Trip
	2.1.4.1 Description & Priority
	2.1.4.2 Use Case – FR-3

	2.1.5 Requirement 4: User management
	2.1.5.1 Description & Priority
	2.1.5.2 Use Case – FR-4

	2.1.6 Requirement 5: Trip Management
	2.1.6.1 Description & Priority
	1.1.1.1 Use Case – FR-5

	2.1.7 Requirement 6: Authorise
	2.1.7.1 Description & Priority
	2.1.7.2 Use Case – FR-6

	2.1.8 Requirement 7: Sign Out
	2.1.8.1 Description & Priority
	2.1.8.2 Use Case – FR-7

	2.1.9 Requirement 8: Passenger Information Management
	2.1.9.1 Description & Priority
	2.1.9.2 Use Case – FR-09

	2.1.10 Requirement 9: Staff Travel Management
	2.1.10.1 Description & Priority
	2.1.10.2 Use Case – FR-10

	2.1.11 Requirement 10: Profile Management
	2.1.11.1 Description & Priority
	2.1.11.2 Use Case – FR-1

	2.1.12 Requirement 11: Setup Account
	2.1.12.1 Description & Priority
	2.1.12.2 Use Case – FR-1

	2.2 Data Requirements
	2.3 User Requirements
	2.4 Environmental Requirements
	2.5 Usability Requirements
	2.6 Design & Architecture
	2.7 Implementation
	2.7.1 Authentication
	2.7.2 Booking
	2.7.3 KKN Algorithm
	2.7.4 Content-Base Algorithm
	2.7.5 User Management
	2.7.6 Booking Management
	2.7.7 Live Data
	2.7.8 Deployment

	2.8 Graphical User Interface (GUI)
	2.9 Testing
	2.9.1 Objectives
	2.9.2 Scope
	2.9.3 Testing Tools
	2.9.4 Test Cases
	2.9.5 Automated Testing Results

	2.10 Evaluation
	2.10.1 Performance Evaluation
	2.10.2 Network Evaluation
	2.10.3 Startup Benchmark Results

	3 Conclusions
	4 Further Development and Research
	5 References
	6 Appendices
	6.1 Project Proposal
	Objectives
	Background
	State of the Art
	Technical Approach
	Technical Details
	Special Resources Required
	Project Plan
	Testing

	6.2 Reflective Journals

