National
College o
Ireland

National College of Ireland

BSc in Computing
Cloud Computing
2022/2023
Kevin O’'Rourke
X15042782
X15042782@student.ncirl.ie

Streamlining Sports Club Management:
A Next.js Application with Strapi CMS and
Supabase

Technical Report

Contents

o CTol UL VI ¥ oY 0 -1 4
1.0 B[4 goTe [0 ATo] o HN TP PPP PR 5
1.1. 2ol o] o FS SRR 5
1.2. A 0 PP PP PP PPPRR 6
1.3. B IE=Tel a1 0] (o =4V AU 6
1.4.) 0 E ot (U1 = PSPPSR 7
2.0 I3 =] o U URPRPR Nt 8
2.1. R 0=To T 1T =T 0 U=) 3 8
2.1.1. Functional REQUIrEMENTS ..cceeiiiieeeeeeee e e e e e e e ae s 8
0t O S S U T O (Y-l DI - = - T o o ST URRP 8
2.1.1.2. Requirement 1: User Registration and Authentication..........ccccccceeveeiiiiiiiicinnnnnneen. 10
2.1.1.3. DeSCription & Priority . ccccceee e s s e 10
0 O O U LY = L] PRSPPI 10
2.1.1.5. Requirement 2: Membership Managementcccccceeeiiiiiiiiiiiiieieeee e, 11
2.1.1.6. DeSCription & Priority . ccccccee 11
0 O S U LY = L] PSR PRURP 11
2.1.1.8. Requirement 3: Content ManagemMEeNTtccuvuiviuieriiiiiiiiiiiiee e e ee e e e e e e eeeeeeeeeeeeeeeeeees 13
2.1.1.9. DeSCription & Priority..ccccccce ee e 13
2.1.1.10. USE CaSB.eiieiiieiiee ettt e e et e st e st e s s e e s e s e e s e e e s s e s e nres 13
2.1.1.11. Requirement 4: Team ManagemeNnt........uuucieieeeeeeeie e e e e eeeeeeeeeeeeeeeeee e 15
2.1.1.12. Description & Priority ...ccccceieieeeeeee s e e e 15
2.1.1.13. USE CaSB.eiieiiieiie ettt ettt e st e e s e e s e s e e e e e e e e e e e e nres 15
2.1.1.14. Requirement 5: Lotto Transactionsuccieieieieieie e 16
2.1.1.15. Description & Priority ...cccocieiieeeeeeee s e e e 16

2.1.1.16.

L LI O Y =N 16

2.1.2. D 1= I (=T LU T = '8 =] o) S 18

2.1.3. 8Ly =Y g Y=o [0 =T 0 1= | S 18
2.1.4. Environmental REQUIrEMENTESeeiiiiiiiiiieee e e e e e e e 19
2.1.5. Usability REQUIFEMENTSeeeeieee ettt e e e e e e e e s r e e e e e e e e e e e e nannes 19
2.2. DeSIZN & AFCHITECLUIE ..uveiiieeec e e e e e e e e e eae e 20
2.3. TagY o1 1= 0 =] o1 - 4 To o SRR 21
NEXL.jS APP ROULET STIUCTUIE: ..euiiiiieeicccceeee e e e e e e e e e e e e e 22
PUBIIC ROULES: .ttt sttt ettt et st s e e s b e e s b e e s ne e e sabeeesanenesaneeas 22
AULhenticated ROULES:coiiiii ittt sttt s e s e s e e s b e e snee e 27
Team ManNager ROULES:co i r s s e s e e s e e e e e e e eaaeaeeeeeeeere e e e e eeeeeerensnsnsnnnnnnnnan 30
AdMIN ROULES: ...ttt sttt st e e st e e s bt e e sab e e e sabeeesabeeesarenesaneeesnneeesnenanns 31

APT ROULES ...t e e s e e s et e e s e e e e e e e e e s e e e e e e e e nres 32
Supabase Trigger FUNCLIONSuiiiiiiiiee ettt e e ettt e e e e e e e e e e e srerreeeeeeeaeeeesennnnnns 35

2.4, Graphical User Interface (GUI)couueiie ettt 37
2.5. I o V- 49
=53 T = 1o Yo] £ PSRTR 49
TeStiNG COMPIELEAeeiiiieiiieee e e e e e e e et r e e e e e e e e e e s snnrabreaaeeaaaaaeeas 49

2.6. EVAlUGTION 1. e 52
3.0 CONCIUSIONS ..ttt et e st e s bt e s bee e snbeesne e e sneeessnneesneeesanneenn 53
4.0 FUrther DEVEIOPMENT ...uvviiiiieee s nnnreaeaeeeeeas 54
5.0 AN o] 01T o o 1ol T UEPUURRN 54
5.1. oY1= e oY o T 17| SRR 54

o CTol UL V7SI ¥ oY 0 =1 1
T Ao T [0 4T] o FR PP 1
2101 = 01U Lo Vo U SUUURR 1

A 0TRSO PP R 2

B IE=Tel a1] Fo =413 SPUURRN 3
I3 =] 2 USRSt 3
0=To [0 1T =T 0 =Y o 3
FUNCLIONAl FEQUITEMENTES .evieeiiiee e e e e e e e e e e e e nnerraaeeeeeaaeeas 3

(0L O T =T D = = - o F RS 4
Requirement 1 User REGISTIrationuuiciiieieee e e e e 4

Requirement 2 Club Registration........ccuuviiiiiieeei et e e e e e e e 5

Requirement 3 Join Club (Membership payment)........cccccccvieeeeciiiie et 6

Requirement 4 Create Group Within Club ..o 7
Requirement 5 Distribute SMS/Email - club/group membersccoveeeveeeeeiveeecieeeeeee e, 8
Non-Functional REQUIFEMENTS..........uuiiiiiiieee eeeeeennnnns 9
Performance/Response time reqUIrE@MENT.........ccueieeeeeeceee e e eeeee e eetee e eeareeeeteeeeeareeeeareeens 9
Availability reqUIrEMENT ...ceeeeee e e e e e e e e e e raa e e e e aaaeeas 9
Y=ol)<Y ol =Y LU 1 =T 0 T=1 o RS 9
RODUSENESS rEQUIFEMENT ...evviiiiieee ettt e e e e e e e e e s e e e e e e e e e e e e e ennnrraaeeeeeaaeeas 9
Y=L ol UL VA = To [U1 =T o' = o | 9
Reliability reqUIrEMENTuveiiieee e e e e e e e e e rae e e e e e e e s 9
Maintainability reqQUIrEMENTt.. ..o e e e e e e e s 9
Portability rEQUIFEMENToeeeeeee e e e e e e e e e e e e e e e e e e nnrrraeeeeeaaaeeas 9
DeSIZN aNd AFCHItECLUIE .coieee e e et e e e e e e e e e e e s resreeaeeaeaeeeesennnnnes 10
TaqY o1 =T 0 g V=T o1 = 1 4 Lo o [P UUUUR 10
Graphical User Interface (GUI) LAYOUT........eeii ittt e e e 10
I o V- 14
EVAIUATION . e s st e e s b sre e e s reresneeas 14
Yo 01T o | PR 14
oY1= o o Yo 1Y | U UUUURUS 14
(0] oY =T 1 171U 14

2% Tol €= oYU 1o o TR 15

B I=Tel a1] or= 1 I o] o o Y=ol o FON SRR 15
Special RESOUIrCES REQUITEMuuiiiiiieieeeeieccccitiiee e e e e e e e e e seccarrre e e e e e e e e e e e e s abssreeeeeeeaeeeesnsnsnns 15
oY T=Tor il od - T o T SRR 16
TEChNICAl DELAIIS ..ttt et s e s e s e e s ree e sneeeas 16
Y 1[4 To] o TS U PP ROTRO 16

o oY1= - T 1 USUURS 16

Executive Summary

Max 300 words. Summarise the key points of the report. Restate the purpose of the
report, highlight the major points of the report, and describe any results, conclusions, or
recommendations from the report.

This report encapsulates the development process and functionality of a comprehensive
website developed for a local sports club. The website, assembled using an array of
modern technologies including Next.js, Tailwind CSS, Supabase DB, Strapi CMS, and
Stripe, addresses diverse needs for different user types including members, potential
members and team managers.

The main purpose of the platform is to simplify the membership registration and
payment process, allowing a single account holder to enrol multiple family members.
The secure payment processing for memberships and other purchases, like lotto tickets,
is facilitated through an integration with Stripe. The website also provides a crucial news
hub, an informational about section, and a downloads section for important resources.

One notable feature of this platform is its capacity to enable non-authenticated users to
purchase lotto tickets, expanding its functionality beyond the membership
management. Furthermore, team managers have the ability to view members in their
respective teams, promoting better team management and communication.

The aim of this report is to explain the technology stack, discuss the design and
architectural decisions, and to outline how the website meets both its functional and
user requirements. The report concludes that the website effectively achieves its goals,
presenting an efficient, intuitive, and multipurpose platform for the sports club. Future
considerations for development involve the potential of a messaging platform for team
managers and administrator to message members.

1.0 .Introduction

1.1. Background
Why did you undertake this project?

As the treasurer of my local sports club, | frequently encountered challenges while
managing the membership payments. | was tasked with manually tracking each
member's payment status, updating records, and ensuring timely fee collection. The
process was labour intensive, time consuming, and often led to inconsistencies.

In addition, the club's team managers were reliant on weekly excel spreadsheets to
keep track of their team members. These spreadsheets, while functional, were not
the most efficient or reliable method to manage and communicate membership
status or updates.

The motivation to undertake this project stemmed from these operational
difficulties and the recognition of the potential for digital transformation within the
club. The aim was to develop a web-based solution that could automate the
membership management process, enable online payments, provide real-time
updates to team managers, and offer other useful features to the club's members
and potential members.

1.2. Aims
What does the project aim to achieve?

This project aims to achieve several key goals:

Improve Membership Management: The primary aim is to automate and digitize
the membership management process. The new system allows users to join as
members and make payments online, thereby minimizing manual tracking and
administrative tasks.

Facilitate Team Management: By providing team managers with the ability to
view and manage their team members in real-time, the project aims to
streamline the communication between managers and members, thereby
improving team organization and coordination.

Enable Non-Authenticated Transactions: In addition to member-specific features,
the system also allows non-authenticated users to purchase lotto tickets. This
broadens the user base and potential revenue streams for the club.

Enhance Communication: With a dedicated news section managed through
Strapi CMS, the project aims to create a centralized platform for sharing updates
and important information, thereby improving communication within the club.
Provide Resources: The platform also serves as a resource hub, providing
members with access to downloadable materials and information related to the
club.

Increase Efficiency: By automating manual processes and creating a one-stop
platform for members and team managers, the project ultimately aims to
increase the overall operational efficiency of the club.

Overall, the project aims to leverage modern technology to enhance the functionality,
user experience, and operational efficiency of the club's administrative and
communication processes.

1.3. Technology
What technology will you use to achieve what you have set out to do and how will
you use it?

To achieve the set objectives, the project uses a range of modern technologies, each
playing a vital role in the overall functionality and efficiency of the website:

Next.js: An open-source JavaScript framework, Next.js forms the backbone of the
website's user interface. Its server-side rendering capability ensures a fast, SEO-

optimized frontend, laying the groundwork for an interactive and user-friendly
experience.

e Tailwind CSS: This utility-first CSS framework is used to enhance the aesthetic
appeal of the website. Tailwind CSS provides low-level utility classes that help to
design custom styles, thereby crafting a responsive and visually engaging user
interface.

e Supabase DB: Supabase, an open-source alternative to Firebase, serves as the
database and backend service for the website. It handles the creation, reading,
updating, and deleting of membership data, alongside managing user
authentication. This ensures a secure login functionality and efficient
management of user data.

e Amazon SES: For sending authentication emails as part of the user
authentication process managed by Supabase, Amazon Simple Email Service
(SES) is used. This ensures the delivery of reliable, secure, and scalable email-
sending capabilities.

e Strapi CMS: Hosted on Heroku, Strapi is a headless CMS used to manage and
distribute content for the website's news and downloads sections. This provides
a flexible platform for club administrators to update news and upload resources
without needing to modify any code.

e Stripe: Stripe's payment platform handles all transactions on the website,
including membership fees and lotto ticket purchases. By integrating Stripe, the
website offers a secure and streamlined payment process, ensuring a seamless
user experience.

e Vercel & Heroku: Vercel is the hosting platform for the Next.js frontend, offering
optimized performance for Next.js applications and continuous deployment from
Git repositories. Heroku, on the other hand, is used for hosting the Strapi CMS,
ensuring the reliable performance and availability of the content management
system.

By strategically utilizing these technologies, the project effectively delivers a
comprehensive, efficient, and user-friendly platform that caters to the varied needs of
the local sports club.

1.4. Structure
The document begins with an introduction that lays the foundation, presenting the
challenges faced by the club treasurer and the inspiration for the project.

In the project overview, we look into the project's aims and how it improves existing
processes.

The technologies used section describes the chosen technology stack, emphasizing
the role of Next.js, Strapi CMS, Supabase, Stripe, and Amazon SES in the framework.

This leads into the requirements and system architecture, which presents a high
level view of the flow of the applications and connection to various services.

In implementation, the focus shifts to the project's functions, and the router
structure of the Next.js app. Then testing, a look at the tools and methodologies
used, including unit, and end-user testing, while also highlighting performance,
accessibility, and SEO metrics.

The project's advantages and disadvantages are discussed in the conclusion while
future aspirations are then discussed in future directions.

2.0 System

2.1.Requirements

2.1.1. Functional Requirements
2.1.1.1. Use Case Diagram

Content Management

Post News Articles
Update About Page

Manage Downloads Section

StrapiUser

/]

Non-authenticated Transactions

_ Purchase Lotto Tickets

NonAuthenticatedUser
‘ Team Management
View Team Members
TeamManager ‘

User Registration and Authentication

Create Account

Membership Management

s

View Payment Due
Make Payment

W\

User

/]

2.1.1.2. Requirement 1: User Registration and Authentication

2.1.1.3. Description & Priority
High Priority. The system must allow users to register for an account and
authenticate their credentials for secure login.

2.1.1.4. Use Case
Scope

The scope of this use case is to establish a secure user registration and login
process.

Description

This use case describes how users register for an account and authenticate
their credentials for secure login.

Use Case Diagram

Register (Email, Password) \I

>

Validate input

1
I
I
I
I

\‘

[l

Send confirmation email _
”~

Confirmation email

i

|
1
|
|
|
|
|
|
|
!

«

|

|

Confirm email

Y

Activate user account

>

Login (Email, Password)

I
|
f
I
\I
'I
I

< Authentication successful

|
|
|
|
J
|
|
1 |
|
|
|
|
|
|
|
|
| | |

Flow Description
Precondition

The system is operational, with Supabase, Next.js, and Amazon SES correctly
configured and functioning.

Activation

b w

This use case starts when a potential User chooses to create an account.
Main flow

User navigates to the registration page and inputs necessary details for
registration, email and password.

Supabase validates and stores the data, then sends a confirmation email
through Amazon SES.

User verifies their email address via the confirmation email.

System acknowledges the verification and activates the user account.
User is able to log in using their registered email and password.

Alternate flow
N/A
Exceptional flow

If the user inputs invalid or incomplete details, the system notifies the user
and prompts for correct information.

Termination

The use case ends when the user has successfully registered and is able to log
in using their credentials.

Post condition

The user's account is active and ready for secure login and use of the sports
club's website.

2.1.1.5. Requirement 2: Membership Management

2.1.1.6. Description & Priority
High Priority. The system must facilitate users to join the club, add members
and make online payments securely.

2.1.1.7. Use Case
Scope

The scope of this use case is to enable the members of the sports club to
manage their memberships online.

Description

b w

This use case describes the process of joining the club, add members, and
making online payments securely.

Use Case Diagram

[Srms) (570

Create member (Status: payment due) _

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
J |
| |
| |

| |

[1

| |

| | >

. Clicks pay >l

i : Verify and process payment >
i : < Confirm payment

i 3 Update payment status >i i
._ Send confirmation receipt | : :
- I | |

[getess | [stipe

Flow Description

Precondition

The system is online, and the user has successfully registered and logged into
their account.

Activation

This use case starts when a User navigates to the membership page after
login.

Main flow

User navigates to the registration page and inputs necessary details for
registration, email and password.

Supabase validates and stores the data, then sends a confirmation email
through Amazon SES.

User verifies their email address via the confirmation email.

System acknowledges the verification and activates the user account.
User is able to log in using their registered email and password.

Alternate flow

N/A

Exceptional flow

If the payment fails, the system notifies the user about the failed transaction
and prompts to try again.

Termination

The use case ends when the user has successfully purchased their
membership and received a confirmation receipt.

Post condition

The user's membership status is updated in the system, and the user receives
a confirmation receipt in their email.

2.1.1.8. Requirement 3: Content Management

2.1.1.9. Description & Priority
High Priority. The system must allow authorized Strapi users to manage content
on the website, specifically, post news articles, update the about page, and
manage the downloads section.

2.1.1.10. Use Case
Scope

The scope of this use case is to facilitate effective management of website
content, including the news articles, about page, and downloads section.

Description

This use case describes how authorized Strapi users can log in and manage
content on the website.

Use Case Diagram

Log into Strapi CMS

A\

Provide access to content management sections

<
Y

Navigate to desired content management section

Y

Create, edit, or delete content as needed

Y. Y 1Y

<
<

StrapiUser StrapiCMS

Flow Description

Precondition

The system is operational, with Strapi CMS correctly configured and
functioning.

Activation

This use case starts when an authorized Strapi User chooses to manage
content on the website.

Main flow

1. Strapi User logs into the Strapi CMS.

2. Strapi User navigates to the desired content management section.
3. Strapi User creates, edits, or deletes content as needed.

4. The website fetchs the content changes.

Alternate flow
N/A
Exceptional flow

If the Strapi User inputs invalid or incomplete details, the system notifies the
user and prompts for correct information.
Termination

The use case ends when the Strapi User has successfully updated the desired
content.

Post condition

Fetch content changes

The website's content is updated as per the Strapi User's input.

2.1.1.11. Requirement 4: Team Management

2.1.1.12. Description & Priority
High Priority. The system must enable team managers to view members of
their respective teams.

2.1.1.13. Use Case
Scope

The scope of this use case is to provide team managers with access to the
profiles of members in their respective teams.

Description

This use case describes how team managers can log in and view the profiles
of members in their team.

Use Case Diagram

Log into the system

Y

Provide access to teams section

<
-

Navigate to teams members section

I AN S

_ Display profiles of team members

[
|
|
f
|
|
|
|
!
|
|
I
|

-

Flow Description
Precondition

The system is operational, and team managers have been granted the
necessary permissions to view member profiles.

Activation

This use case starts when a Team Manager logs into the system to view team
member profiles.

Main flow

1. Team Manager logs into the system.
2. Team Manager navigates to the teams section.
3. The system the members in the Team Manager's team.

Alternate flow
N/A
Exceptional flow

If the Team Manager does not have the permission to view the teams he
must contact the admin.

Termination

The use case ends when the Team Manager has successfully viewed the
desired profiles.

Post condition

The system remains in a secure state, and no unauthorized access to member
profiles is allowed

2.1.1.14. Requirement 5: Lotto Transactions

2.1.1.15. Description & Priority

High Priority. The system must allow non-authenticated users to purchase lotto
tickets securely

2.1.1.16. Use Case
Scope

The scope of this use case is to enable non-authenticated users to purchase lotto
tickets.

Description

This use case describes how non-authenticated users can interact with the website
to purchase lotto tickets.

Use Case Diagram

NonAuthenticatedUser System Stripe

]

i
i Navigate to lotto section

>
>

Select lotto numbers, desired number of tickets, and click purchase ‘: :
>, I

| Verify purchase details and process payment _ |

' _ Send confirmation receipt to user's email
<

{ NonAuthenticatedUser ‘ System Stripe

Flow Description
Precondition

The system is operational and capable of processing lotto ticket purchases
for non-authenticated users.

Activation

This use case starts when a non-authenticated user initiates a lotto ticket
purchase.

Main flow

1. Non-authenticated user navigates to the lotto section.

2. Non-authenticated user selects lotto numbers and the desired number of
tickets and clicks on purchase.

3. The system verifies the purchase details and processes the payment using
Stripe.

4. Stripe sends a confirmation receipt to the user's email.

Alternate flow
N/A
Exceptional flow

If the payment fails, the system notifies the user and prompts for re-trying
the transaction.

Termination

The use case ends when the user successfully purchases the desired lotto
tickets and receives a confirmation receipt.

Post condition

Supabase logs the ticket purchase.

2.1.2. Data Requirements

e User Data: This includes email addresses, and encrypted passwords for each
user. The user's role (user, team manager, or admin) also needs to be stored.

e Membership Data: For each membership, the system needs to store details
like the membership type, the associated user, the payment status, and all
other personal information such as name, address and email.

e Payment Data: Each payment record should include details such as amount,
date and payment id.

e News Data: The system needs to store each news post, including the post
content, , the date and time of posting, and any associated imagery.

e Lotto Data: The system needs to store each lotto transaction, name, phone
number, ticket numbers, the number of tickets, the date and time, and the
payment confirmation.

e Team Data: For each team, the system should store the team name, the
team code, id, and any associated year groups.

2.1.3. User Requirements

Club Member Users: These users need to be able to create an account, login,
purchase and manage their memberships, and view their membership status.
They should also be able to add family members to their account and manage
their memberships as well. Additionally, they should be able to purchase lotto
tickets.

Team Manager Users: These users need to be able to login and view the list of
members in their team. They need to have access to the current status of the
team members' memberships.

Admin Users (Strapi CMS Users): These users need to be able to login, create,
update and delete posts in the news section, manage the content of the about
page, and manage files in the downloads section.

Non-authenticated Users: These users need to be able to access the public pages
of the website, such as the news section, about page, and downloads section.
They should also be able to purchase lotto tickets.

System Users (Stripe, Supabase, Amazon SES): These entities need to be able to
interact with the website to process payments (Stripe), manage user and
membership data (Supabase), and send authentication and confirmation emails
(Amazon SES).

Each of these user roles have specific needs and capabilities. The well-designed user
interface and robust backend services are essential to meet these user
requirements.

2.1.4. Environmental Requirements

Infrastructure Requirements: The application is hosted on a reliable and
scalable infrastructure. This project uses Vercel for hosting the Next.js
application, Heroku for hosting the Strapi CMS, and Supabase as the backend
service.

Software Environment: The application has a stable runtime environment to
function correctly. This includes Node.js for running the Next.js and Strapi
CMS applications, and PostgreSQL database (part of Supabase) for storing
data.

Network Environment: The system requires a stable and secure internet
connection for accessing the hosted services, APls, and the database.
Security Environment: The system is secure to protect sensitive user and
transaction data. This includes using HTTPS for secure connections, secure
handling of user passwords,and secure transaction processing through Stripe.
Browser Compatibility: The web application should be compatible with the
latest versions of popular web browsers like Google Chrome, Firefox, Safari,
and Edge to ensure a broad user reach.

Responsive Design: The application should be compatible with desktop,
tablet, mobile for seamless user experience across multiple device types.
Email Server: Amazon Simple Email Service (SES) is correctly set up to send
authentication and confirmation emails to users.

Third-Party API Environment: The application needs to interact correctly with
the Stripe API for processing payments, Supabase for user and data
management, and Strapi CMS for content management.

2.1.5. Usability Requirements

e Ease of Use: The website should have an intuitive user interface that is easy to
navigate. New users should be able to learn how to use the system quickly, with
experienced users being able to accomplish tasks efficiently. For example,
experienced users should be able to purchase a membership within five minutes.

e Consistency: The system should maintain consistency in the layout, design, and
terminology across all pages. This will make the system predictable and easier to
understand for users.

e Accessibility: The website should comply with accessibility guidelines to cater to
users with different abilities. This includes colour contrast, text size, keyboard
navigation, and screen reader compatibility.

e Responsiveness: The system should provide timely and appropriate feedback in
response to user actions. This includes loading indicators during long operations
and clear confirmation messages after successful actions.

2.2.Design & Architecture
The architecture of the Sports Club Membership Management System is rooted in a
modern, decoupled, and cloud-based approach, with distinct services assigned to
specific components of the application. This structure not only allows for effective
scaling but also ensures each service is robustly capable of performing its dedicated role.

Frontend - Next.js: Next.js, hosted on Vercel's cloud platform, was chosen for its
scalability, performance, and versatility. Its server-side rendering and static site
generation capabilities significantly bolster the website's performance and enhance the
user experience. This cloud-ready framework provides the necessary scalability to
accommodate increasing traffic and content.

Backend - Supabase and Strapi CMS: Supabase and Strapi CMS, both cloud-based
systems, were chosen for their comprehensive features and the scalability they offer.
Supabase, an open-source alternative to Firebase, provides real-time databases,
authentication, and storage. Strapi CMS is a headless solution that permits content
updates for the news, about, and downloads sections of the website without restricting
output to a particular format, offering room for future adaptability. Both these systems
can be scaled up or down based on the demand, a key advantage of cloud-based
technologies.

Payment Processing - Stripe: Stripe, a cloud-based online payment processing platform,
was selected for its robust security and ease of implementation. It can handle a large
volume of transactions, making it a scalable choice for the growing needs of the sports
club.

Email Service - Amazon SES: Amazon's Simple Email Service (SES) is used for email
communications. This cloud-based service is known for its scalability, reliability, and
cost-effectiveness, making it an optimal choice for a growing organization.

Styling - Tailwind CSS: Tailwind CSS, though not a cloud-based technology, plays a
crucial role in the Ul of the system. It offers superior customization and control,
encouraging design consistency and speeding up the development process.

The main algorithms used in this system revolve around CRUD (Create, Read, Update,
Delete) operations on data. These operations are carried out in response to user
interactions on the frontend, which makes calls to the respective APls, processes the
data and updates the user interface accordingly.

Overall, the system's cloud-based architecture allows for enhanced scalability and
maintainability. The modular design provides the flexibility to interchange individual
components if necessary, ensuring the Sports Club Membership Management System is
resilient and capable of accommodating growth and change.

User Authentication/Authorization Supabase

Membership and Lotto Data

Content Request

//—\’ Strapi CMS
[

/Content Data
—

Payment Processing
v Stripe

Payment Confirmation

Tailwind CSS |——Styling—»] Next.js Frontend

Email Confirmation™——___ | Amazon SES

2.3. Implementation
The Next.js App Router framework uses the concept of a folder directory. Page.js file
inside the folder renders the content of that route. Layout.js can be used to wrap the all the sub
pages in the folder. Eg. Protected routes for unauthenticated users.

Next.js App Router Structure:
Public Routes:

These routes are accessible to everyone, including non-authenticated users.

/:

The root directory, the homepage where the Supabase provider, Navbar component and

Footer component wrap the site.

In the code below you can also see a check for a current session before rendering the

StatusBar component.

export default async fun n RootLayout({ children }) {
const session = await ge sion();

return
< L lang="en" className="font-sans">

< y>
<SupabaseProvider session={session}>
<Navbar />
session ? <StatusBar id={session.user.id} /> : null
<div className="relative min-h-screen m-7">
<div className="pb-56">{children}</div>
<Footer />
</div>
</SupabaseProvider>
V>

/about:

The About page, providing information about the sports club.

In the code below you will see the function within the About page to query the

StrapiCMS for About content

async function getData() {
try {

const response = await axios.post('${process.env.STRAPI_URL}/graphql’, {

query: GET_ABOUT_CONTENT,
s

const data } = response.data;

return data.abouts.datal@].attributes;
} catch (error
console.error("Error fetching data:", error);

return H

news:

Displays news articles, similar to About, however in this folder, introduced is the [slug]
feature of the Next JS App Router. The below screenshots show the folder structure and
also the fetch of the url slugs for each article in the generateStaticParams() function.

On the render of each “slug” the params slug is used to fetch the individual article
details.

async function 01
const response = await axios.post('<{process.env.STRAPI_URL}/graphql’
query: GET_ALL_SLUGS,

st { data } = response.data;
return data.newsArticles.data.map
article = {
slug: article.attributes.urlSlug,

async function getData(params) {
try
const response = await axios.post(’${process.env.STRAPI_URL}/graphgql’, {
query: GET_INDIVIDUAL_POST,
variables: { slugUrl: params.slug },
s

const data ! = response.data;

console. log(data);

return data.newsArticles.data(@].attributes;
} catch (error

console.error("Error fetching data:", error);

return ;

/downloads:

A section where users can access downloadable resources. This section is similar to
about where data is fetched using axios from StrapiCMS. Example of mapping through
data and return JSX array

role="1list" cla ne="divide-y divide-gray-100">
data.map((downlo

download.attributes.url
Name="flex items-center justify-between gap-x-6 py-5"

e="flex min-w-@ gap-x-4">
ssNam n-w-0 flex-auto">
className="text-sm font-semibold leading-6 text-gray-900">
download.attributes.title
</p>

<p className="mt-1 truncate text-xs leading-5 text-gray-500">

download.attributes.description
</p>

>
V>

download.attributes.url
ssName="rounded-full bg-white px-2.5 py-1 text-xs font-semibold text-gray-90@ shadow-sm ring-1 ring-inset ring-gray-30@ hover:bg-gray-50"

/lotto:

Allows non-authenticated users to purchase lotto tickets. This component has complex
logic to achieve the desired outcome. Given the interactive nature of the component
client side code is used.

Client side react functionality useState() is used to manage the state of tickets, name,
phone and errors.

const [tickets, setTickets] = useState([[]]);
const [name, setName] = useState("");

const [phone, setPhone] = useState("");

const supabase = useSupabase();

const [error, setError] = useState("");

The below code handles the ball click. Only add the ball to the ticket if it is not already
present and there is less that 4 numbers selected. If already selected, remove from
ticket using the filter function. Then set tickets array with new value.

const handleBallClick = (ticketIndex, ballNumber) =>
let newTickets = [...tickets];

if (!newTickets[ticketIndex].includes(ballNumber)

if (newTickets[ticketIndex].length < 4) {
newTickets [ticketIndex].push(ballNumber)

}

else

newTickets[ticketIndex] = newTickets[ticketIndex].filter(
number) => number !== ballNumber

|H

setTickets (newTickets);

The handle submit function carries out the following tasks.

Checks for errors

Prepares data for insert to Supabase.

Inserts data to Supabase

Calls the /api/payment route which handles the Stripe checkout session
Then navigates to the Stripe Checkout if there are no errors.

if (!name || !phone
setError("Name and phone number are required!");
return;

for (let i = i < tickets.length; i++
if (tickets[i].length 4) {
setError("Each ticket must have 4 numbers");
return;

const finalSubmit = tickets.map((ticket) => {
return
name: name,
phone: phone,
ticket: ticket,
id: uuidv4(),
draw_id: 2,

};

const r : supabaseError } = await supabase
.from("lotto_ticket"
.insert(finalSubmit);

if (supabaseError
setError("Error submitting tickets: " + supabaseError.message);
return;

const ids = finalSubmit.map((ticket) => {
return ticket.id;
};

const { data, r: apiError ! = await axios.post
"'/api/payment",
{
items: [

price: "price_1NcYBDLIdJAdS6gP@g6Y@nHt",
quantity: finalSubmit.length,
1,
metadata: { ticket_ids: JSON.stringify(ids), product: "lotto"
h
{

headers:
"Con ype": "application/json",

if (apiError
Error(“Error getting stripe
return;

+ apiError.message);

window. location. jn(data) ;

if (error
alert("Error: " + error);

Authenticated Routes:

These routes require user authentication.

Firstly in the layout.js file in the members directory, there is a check for a Supabase
authenticated session. All the Supabase tables are protected by Row Level Security
policies allowing the Supabase admin to define who has permissions to take what
actions on the data. See examples below.

import Login from "@/components/Login";
import { getSession } from "@/supabase/supabase-server";

async function LoggedInLayout({ children }) {
const session = await getSession();
return <>{session ? children : <Login />}</>;

}

export default LoggedInLayout;

Reviewing policy to be created on public.members

This is the SQL statement that will be used to create your policy.

Add policy for the SELECT operation under the policy "Allow users to read their own members"

1 POLICY "Allow users to read their own members" “public"."members"
PERMISSIVE

user_id)

Back to edit ‘ Save policy ‘

/members:

After a club member logs in, they are directed here to view their membership status,
add members and purchase memberships

The Login component is loaded here. Another interactive client component. It uses state
to switch between the Sign In and Create Account flow. In the screenshot below the
signUp state is used to conditionally render either sign in or create account content.

V>
!signUp 7 (
<butt
type="submit"
onClick={handleSignIn
className="flex w-full justify-center rounded-md bg-indigo-60@ px-3 py-1.5 text-sm

Sign in
</button>
(
<butt
type="submit"
onClick={handleSignUp
="flex w-full justify-center rounded-md bg-indigo-60@ px-3 py-1.5 text-sm

</

!signup 7 (

<p className="mt-10 text-center text-sm text-gray-500">
No account?{" "
<

onClick={ => setSignUp(true
className="font-semibold leading-6 text-indigo-60@ hover:text-indigo-500"

Create one now

</button>
</p>
H|
<p className="mt-10 text-center text-sm text-gray-500">
Already have an account?{" ")
<I

onClick= => setSignUp(false)}

className="font-semibold leading-6 text-indigo-60@ hover:text-indigo-500"

Sign In
</bu >
</p>

Supabase functions used to handle sign in and sign up flows.

const handleSignUp = async

e.preven ;
const data, error } = await supabase.auth.signUp({
email,
password,
options:
emailRedirectTo: "5{location.origin}/auth/callback’,

’

};

if (error
setErrorStatus(error.message);
return;

router.push("/");

'

const handleSignIn = async (e) =>
e.pr tDefault();
const data, error = await supabase.auth.signInWithP
email,
password,
};
error 7 setErrorStatus(error.message) : router.push("/"

/members/register:

Where users can add members to their profile. A form data JSON object was used to
populate the inputs for a registration form dynamically. This is the beauty of react and
client side code.

Sample definition

id: 2,

name: "surname",
type: "text",
value: "surname",
label: "Surname",

’

id: 3,

name: "“irish_forename",
type: "text",

value: "irish_forename",
label: "Irish Forename",

Iy

id: 4,

name: "irish_surname",
type: "text",

value: "irish_surname",
label: “Irish Surname",

’

id: 5,
name: "gender",
type: "radio",
value: "gender",
label: "Gender",
options:
{ id: 1, name: "male", label: "Male" },
{ id: 2, name: "female", label: "Female" },

Form component to that checks field type and passes the data(props) to the relevant
field component. 18 fields rendered in a few lines of code.

'mt-10 space-y-8 border-b border-gray-900/1@ pb-12 sm:space-y-@ sm:divide-y sm:divide-gray-900/10 sm:border-t sm:pb-0">
p((field) =>
switch (field.type
case "select":
return (
<SelectSimple
key={field.id}
formData={field
selected={inputValuesfield.name
change={handleChange
/>
)
case "checkbox":
return (
<CheckBoxInput
key={field.id}
={field
nputValues | field.name]}
{handleChange

case "radio":
return (
<RadioInput
key={field.id}

nputValues [field.name]}
change={handleChange
/>
)
default:
return (
<FormInput
={field.id}
={field)
nputValues | field.name)}
handleChange

Team Manager Routes:

Accessible by team managers to view team memberships.

/team-manager:

Lists all the teams available and provides a link to their slug url.

Get all teams from Supabase and populate the Teams table

import TeamsStackedTable from "@/components/TeamTable";
import { createServerSupabaseClient } from "@/supabase/supabase-server";

async function Page() {
const supabase = createServerSupabaseClient();

const data, error } = await supabase.from("teams").select()
console. log(data);
return <TeamsStackedTable teams={data} />;

}

i

export default Page;

/team-manager/[slug]

Dynamic route to populate a members table with team members. The react hook
useEffect is use to fetch the team data and then the members of that team from
Supabase.

useEffect(=>
const getData = async () => {
const teamsData = await getTeam(params.slug, supabase);
if (teamsData &5 teamsData.length > 0) {
setTeams (teamsData) ;
const teamMembersData = await getTeamMembers(teamsData[@], supabase);
setData(teamMembersData) ;

4]
getData();
, !params.slugl);

Admin Routes:

These routes are specific for the Supabase admin role.

Here is the check on the layout.js page for the session.role === admin, if it’s not true.
Redirect to homepage

rom "@/supabase/supabase-server";
import { redirect } from "next/navigation";

async function Layout({ children }) {
const session = await getProfile();

console. log(session);
return <>{session.role == "admin" ? children : redirect("/")}</>;

}

export default Layout;

/members/admin: Where the admin can change the role of users and team managers.

useEffect() used again to preload the profiles and then the onClick function using the
Supabase JS library to update the role of the selected user.

useEffect(=
const getData = async () => {
const data = await getProfiles(supabase);
setPeople(data);
I 4]
getData();

const getProfiles = async (supabase) =>
const data, error } = await supabase
om("profiles"

.select
.in("role", ["“user", "team_manager"]);

if (error
console. log(error.message) ;

return data;

const onClick = async (person) => {
let newRole;
person.role === "user" 7 (newRole = "team_manager") : (newRole = "user");
const data, error } = await supabase
.from("profiles"
.update({ role: newRole }
.eq("id", person.id);
if (error
console. log(error.message);

router.refresh();

APl Routes:

Route.js means that this code can only run on the server and is not accessible on the
frontend. Any secrets keys can be used here.

/api/payment/route.js.

Payment route used to create Stripe checkout object.

import Stripe from "“stripe";
import { NextResponse, NextRequest } from "next/server";

export async function POST(request) {

const stripe = new Stripe(process.env.STRIPE_SECRET_KEY);

let data = await request.json();

let items = data.items;

let metadata = data.metadata;

const session = await stripe.checkout.sessions.create
invoice_creation: {

enabled: true,

H
line_items: items,
metadata: metadata,
mode: "payment",
success_url: "${process.env.NEXT_PUBLIC_HOSTNAME}/payment/success’,
cancel_url: "${process.env.NEXT_PUBLIC_HOSTNAME}/payment/failure",

return NextResponse.json(session.url)

}

/api/webhooks/route.js

A webhook endpoint for Stripe to send payment confirmation back to the NextJS server
and handle that data. Here we insert and update payment information in Supabase.
Webhook code below checks for the product type metadata defined by the Stripe
Checkout event and actions it based on that.

let product = event.data.object.metadata.product;
if (event.type == "checkout.session.completed"
switch (product
case "membership":
try {
const checkoutSession = event.data.object;
let data = {};
data.amount = checkoutSession.amount_total;
data.member_ids = JSON.parse(checkoutSession.metadata.memberIds);
await createNewPaymentRecord(data);
console. Log("Checkout Session:", checkoutSession);
catch (error) {
console.error
"Error processing checkout.session.completed event:",
error
)
res.status(400).json
error:
"Webhook handler failed. Check server logs for more details.",
return;
}

break;

case "lotto":
try {
const checkoutSession = event.data.object;
let data = {};

data.ticket_ids = JSON.parse(checkoutSession.metadata.ticket_ids);
await updateLottoTicketR rd(data);
console. log("Checkout Session:", checkoutSession);
catch (error) {
console.error
"Error processing checkout.session.completed event:",
error

res.status(400).j¢«
error:
"Webhook handler failed. Check server logs for more details.",

return;

The Supabase Admin.js functions that are called by the webhooks functions to update
Supabase using admin service key credentials on the server.

const supabaseAdmin = createClient(
process.env.NEXT_PUBLIC_SUPABASE_URL,
process.env.SUPABASE_SERVICE_ROLE_KEY,
{ auth: persistSession: false

);
[const createNewPaymentRecord: (data: any) => Promise<void>

const createNewPaymentRecord = async (data) => {
const paymentData l
amount: data.amount,
member_ids: data.member_ids,

console. Log(paymentData) ;

const { error } = await supabaseAdmin.from("payments").insert(paymentData);
if (error) throw error;
console. log("Payment inserted successfully");

};

const updateLottoTicketRecord = async (data) => {
const ticketIds = data.ticket_ids;

console. log(ticketIds);

const { error } = await supabaseAdmin
L il otto_ticket"
«up payment_complete: true
.in("id", ticketIds);
if (error) throw error
console. log("Payment inserted successfully");
}

Supabase Trigger Functions

Supabase trigger functions have been utilised to insert and update data in Supabase
tables based on other actions.

Below shows a function that creates a record in the profile table when a new user
account is created

Edit 'insertProfileForNewUser' function

Name of function . .
: insertProfileForNewUser

Schema

Arguments

Arguments can be referenced in the function body using either names or numbers.

Definition

The language below should be written in “plpgsql’.

begin
insert public.profiles(id, email)
values (new.id,new.email);

return new;

Name Function Events

nsertProfileForl r AFTER INSERT

Name Function Events

BEFORE INSERT

BEFORE INSERT

nentTablelnsertUpdateMember ts updatelV ntinfo AFTER INSERT

Another function to check whether the new member is over the age on 18 and the adult
column is populated with true or false based on that.

Edit 'updateAdultColumn' function

Name of function
ar unetior updateAdultColumn

Schema o

Arguments

Arguments can be referenced in the function body using either names or numbers.

Definition

The language below should be written in "plpgsql’.

begin
if
new.adult
return new;
iTes
new.adult

return new;

2.4. Graphical User Interface (GUI)
Homepage with logged in team manager status bar

Lotto About Our Club Downloads Members Sign Out >

You are logged in as kev.orourke4+dummyuser@gmail.com Go to Team Manager Portal

| 1 7m

aragh United GAA

Laragh United are a Gaelic football club from Laragh and Stradone, County Cavan in

Ireland: They are affiliated to Cavan GAA.

Latest News

Latest news from around your club

Lotto Ticket Generator

Name I Phone

Ticket #1

1 2 3 4 5 6 7 8 9 10 M 12 138

14 15 16 17

19 20 21 22 23 24 25 26 27 28 29 30 31 32

18

News page
Latest news from around your club
2023-08-08T02:52:30.228Z test title 2023-08- Laragh win another
02T722:13:01.099Z Senior Match

test title

test description

Laragh win another Senior Match

This is another win for Laragh

Stripe Lotto Ticket Checkout

Laragh United GAA Lotto

€2.00

Lotto ticket Email

Or pay with card

Card information

1234 1234 1234 1234 vss (DIE ©

0
o
-]

MM/ YY

Name on card

Country or region

Ireland v

Securely save my information for 1-click
checkout

Pay faster on Laragh United GAA and everywhere Link

Pay

Payment Success

Lotto About Our Club Downloads Members

myuser@gmail.com

v

Payment Success

You should have received an email reciept

Go back to home

Download Content

Lotto About Our Club Downloads Members

You are logged in as kev.orourke4+dummyuser@gmail.com

Code of Behaviour

GAA code of behaviour for underage

Governance

GAA Governance Guide

Download Test

This is a test download

Test Download

Test for Demo

Sign Out >

Go to Team Manager Portal

View

View

View

View

Team Manager Portal

Lotto About Our Club Downloads Members Sign Out >

You are logged in as kev.orourke4+dummyuser@gmail.com Go to Team Manager Portal
Teams
All the teams in the club, click view to see players on the team
Name Code Year
Senior GAA Senior View team members
Senior LGFA Senior View team members
Senior CAMOGIE Senior View team members
u18 GAA ["2005","2006"] View team members
u18 LGFA ["2005","2006"] View team members
u18 CAMOGIE ["2005","2006"] View team members
u16 GAA ["2007","2008"] View team members

Team Members List

About Our Club Downloads Members Sign Out >

You are logged in as kev.orourke4+dummyuser@gmail.com Go to Team Manager Portal

Senior GAA

Back to team page
All the members of your team
Name Phone Number Status Date of Birth
Kevin O'Rourke 0877516521 Active 1992-04-04 View Details
James Doe 0871234567 Active 1980-01-01 View Details
Kevin Doe 0871234567 Active 1980-01-01 View Details
Kevin Doe 0871234567 Active 1980-01-01 View Details

Add New Member

You are logged in as kev.orourke4+dummyuser@gmail.com Go to Team Manager Portal

Create new member

Please fill out all the details below

Forename

Surname

Irish Forename

Irish Surname

Gender Male

Female

Association GAA

All male players and all non playing members

LGFA

All ladies football players, coaches and committee members

Camogie

All Camogie players, coaches and committee members

Player Please select
O Yes
No
Parental Consent Yes

| consent to allowing photos to be taken on my children participating in
club activities

Members Details Page

About Our Club Downloads Members Sign Out >

You are logged in as kev.orourke4+dummyuser@gmail.com Go to Team Manager Portal

id 6265758d-8bc8-4475-b7e1-e7158645d917
created_at 2023-07-30T12:05:44.237311+00:00
user_id 94a8fd43-2491-41e6-a1f0-11dd6704c8da
forename Kevin

surname O'Rourke

irish_forename null

irish_surname null

gender male

dob 1992-04-04

address1 Caragh

Member dashboard and payments due components

You are logged in as kev.orourke4+dummyuser@gmail.com

Go to Team Manager Portal

My Members

Add New Member
The members that are associated with your profile
Name Phone Number Status Date of Birth
Kevin Doe 0871234567 Active 1980-01-01 View Details
Kevin Doe 0871234567 Active 1980-01-01 View Details
Jane Doe 0871234567 Payment Due 2011-05-01 View Details

Payments Due

Adult Member Child Member Playing Adult Member

0 1 0

Pay membership

Pay membership through Stripe

A3 famshrfeaan TS _

Laragh United GAA Membership

€40.00

Or pay with card

Email

Card information

1234 1234 1234 1234 visa (D) IR

MM [YY cve ®

Name on card

Country or region

Ireland v

Securely save my information for 1-click checkout

Enter your phone number to create a Link a unt and pay
on Laragh United (i everywhere Link

1§ 085012 3456 Option:

o

livde - More.info

, Pay
Powered by stripe | Tetms Rrivecy

Payment complete and payment due status and components have changed

My Members
Add New Member
The members that are associated with your profile

Name Phone Number Status Date of Birth

Kevin Doe 0871234567 Active 1980-01-01 View Details
Kevin Doe 0871234567 Active 1980-01-01 View Details
Jane Doe 0871234567 Active 2011-05-01 View Details

Admin view to change the role of profiles

About Our Club Downloads Members Sign Out -

You are logged in as kev.orourke4@gmail.com Go to Admin Portal

kev.orourke4+tm@gmail.com
Update role to team manager
Role: user

kev.orourke4+tm2@gmail.com

Role: user

Update role to team manager

kev.orourke4+tmdemo@gmail.com
Update role to team manager
Role: user

kev.orourke4+testuser@gmail.com

Role: team_manager

Update role to user

kev. ked il.com

Update role to team manager
Role: user
kev. ked il.com

Update role to user
Role: team_manager

ey ?(ra pi Dashboard Content

Downloads O ——

COLLECTION TYPES 4 entries found

PLUGINS about

Q < Filters

B content-Type Bu 4 currently selected ~ &

News Article
B Media Library

DESCRIPTION
User

GENERAL

Plugi - Code of Behaviour GAA code of behaviour for underage https://www.gaa.ie/api/pdfs/image/upload/uk... iblished

W Marketplace
¢ Download Test This is a test download https:/flearning.gaa.ie/sites/default/files/Gov... iblished

O settir

Governance GAA Governance Guide https:/flearning.gaa.ie/sites/default/files/Gov... Published

4 Test Download Test for Demo https:/flearning.gaa.ie/sites/default/files/Gov... Published

10 ~ | Entries per

e] Strapi Dashboard

Workplace

Content

About our club laragh

COLLECTION TYPES APIID : about

PLUGINS

B content-Type Builder Downloads Content , Editing published
. version
ia Library (=BT Add atitle ~ B I = Preview mode
User
[Laragh United are a Gaelic football club from Laragh and Stradone, County Cavan in INFORMATION
SINGLE TYPES Ireland. They are affiliated to Cavan GAA.

#£ Plugins Created 8 hour:
History :1% Kevin O'Rourke

W Marketpla In 1972 two local teams Laragh and Stradone amalgamated under the name St Brigid's for
the Cavan Senior Football Championship. They reached the final, losing to the great seven-

& Ssettings in-a-row Crosserlough. The success united the parish and in 1973 they came together
under one name Laragh United. The club has the distinction (along with another Cavan
club, Ramor United) of being one of the few GAA clubs with the suffix United.

Last update 3 hour
By Kevin O'R

It wasn't long before Laragh United delivered their first major success. In 1974 they won
the Cavan Minor Football Championship and repeated the feat in 1976 and 1977. They won
the Cavan Under-21 Football Championship in 1975 and 1976. This underage success was

Expand

gallery (1/1) title

About our club laragh

description

Laragh United are a Gaelic football club frc

e \S flaliashboard

Content &

Create an entry e (Tome
COLLECTION TYPES API D : news-article

PLUGINS + about

B content-Type Builder * Downloads urlslug * Editing draft version

B Media Library

= User INFORMATION
GENERAL description

SINGLE TYPES Created
& Plugins By

Last update
%

W Marketplace

& Ssettings
content

Add atitle ~ Preview mode

Expand 3

KB) Kevin O'Rourke ¢

2.5. Testing
Testing Tools:

Jest: A comprehensive testing framework used primarily for unit testing in JavaScript
applications. Its ability to quickly run tests in watch mode, generate snapshots, and
work seamlessly with various libraries makes it an essential tool for testing Next.js
applications.

React Testing Library: A utility built on top of Jest to test React components. It
emphasizes testing components as users would, making it perfect for unit and
integration tests.

Testing Completed

Unit Tests:

e Testing individual functions or components in isolation.
e Ensuring core utility functions return expected outputs for given inputs.

e Validating Ul components display correctly and react to user inputs as
intended, using snapshots and React Testing Library.

Evidence of unit tests passing on functions below

PASS CheckBoxInput.test.jsx
PASS ProfileElement.test.js

Test Suites: 4 passed, 4 total

Tests: 5 passed, 5 total
Snapshots: @ total
Time: 1.105 s

End User Testing:

e Simulating real-world scenarios where a user interacts with the application.
e This was manual.

e Gathered feedback from actual users to find usability pain points or uncaught
bugs.

Client side validation introduced below as a result of this.

Ticket #1

1 2 3 4 5 6 7 8 9 10 MM 12 183 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32

Name and phone number are required!

Kevin | Test ’

Ticket #1

1 2 3 a 567 8°1o 11@131415161718

19 20 21 22 23 24 25 26 27 @29 30 31 32

Ticket #2

1 2 3 4 5 6 7 8 9 10 M 12 183 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32

Each ticket must have 4 numbers

Speed, SEO and Accessibility testing:

e Speed testing is crucial in evaluating the performance of web applications,
especially in today's fast-paced digital world where user patience is limited.
Slow-loading websites can deter users and negatively affect user experience.

e SEO testing ensures that the web application is optimized for search engines,
leading to better visibility, higher organic traffic, and improved user
engagement.

e Accessibility testing ensures that the application is usable by everyone,
including people with disabilities.

Results of Google Lighthouse test below on both a client and server component.

You are logged in as kev.orourke4+dummyuser@gmail.com

Lotto

About Our Club Downloads Members Sign Out >

Go to Team Manager Portal

Name

Ticket #1

1.2 3 4 5
19 20 21

Remove Ticket

You are logged in as kev.orourke4+dummyuser@gmail.com

Latest News

Latest news from around your club

2023-08-08T02:52:30.228Z test title

test title

test description

2.6. Evaluation

Lotto

6 7 8 9 10 M 12 18 14 15 16 17 18

22 23 24 25 26 27 28 29 30 31 32

m

About Our Club Downloads Members Sign Out -

Go to Team Manager Portal

Laragh win another
Senior Match

2023-08-
02T22:13:01.099Z

Laragh win another Senior Match

This is another win for Laragh

ix [0

Elements Lighthouse >> Bl & i X
+ | 06:05:46 - laragh-club.vercel.c¥ @)

i hitps://laragh-club.vercel.app/iotto :

® @@

Performance Accessibility Best
Practices

PWA

‘There were issues affecting this run of Lighthouse:

« Chrome extensions negatively affected this page's
load performance. Try auditing the page in incognito
mode or from a Chrome profile without extensions.

() N

Console What'sNew Issues X
[Group by kind (] Include third-party cookie issues | B30 10 =
» B 1 Audit usage of navigator.userAgent,

f¥ [0 Elements Lighthouse >> Bl @ X
+ | 06:06:51 - laragh-club.vercel:v Q)

i https:/laragh-club.vercel.app/news :

OJOJOXO)

Performance Accessibility
Prncﬁces

®

Performance

lues are estimated and may vary. The
rmance score s calculated directly from
these metrics. See calculator.
Console What's New

[0 Group by kind [Include third-party cookle issues

» B 1 Audit usage of navigator.userAgent,
, and

Issues X X
Bomo B

The evaluation process proved the robustness and efficiency of the application. User
feedback was positive, and technical benchmarks such as the lighthouse report shines a

light on the technology used for the application. There are also many areas of
improvement identified.

3.0 Conclusions
Advantages
User-Centric Design: The project caters to a diverse set of user roles, from club

members to team managers and admin users. By ensuring each role has a tailored
user experience, the system maximizes usability and user satisfaction.

Scalability: Leveraging technologies like Next.js, Strapi CMS, and Supabase, the
project is designed to efficiently handle increased user loads and traffic spikes,
ensuring consistent performance.

Security: The integration of established services like Stripe for payment processing
ensures high standards of data protection and financial transaction security.

Modern Technologies: By employing a cutting-edge tech stack, including Next.js and
Strapi CMS, the project offers speed, efficiency, and future-readiness.

Functionality: Beyond member management, the system offers functionalities like
lotto ticket purchasing and content management, making it a comprehensive
solution for club management needs.

Disadvantages

Complexity: The range of functionalities and user roles means that the system's
backend is complex, which can pose challenges in maintenance and further
development.

Dependence on Third-Party Services: The system's reliance on services like Stripe,
Supabase, and Amazon SES means that any disruptions or changes in these services
can directly impact the project's performance and functionality.

Steep Learning Curve: It was challenging to develop, integrate and deploy this
cutting-edge tech stack. Integration with the third party services being a challenge as
there is limited documentation on Next.js App Router.

The project, while having its set of strengths, particularly in usability, scalability, and
integration of modern technologies, also has certain limitations, mainly around
complexity and dependence on third-party services. However, the advantages
significantly outweigh the disadvantages, making it a valuable solution for club
management needs.

4.0 Further Development
Given additional time and resources | would expand in the following areas.

e Manage lotto draw, lotto results and winners within the application. Including an
analytics dashboard to help drive revenue and recurring use.

e Enhance the user profile so they can manage more of their details.

e Migrate to a mobile app to enable push notifications for lotto draws, team
events/messages and fundraisers.

e Expand to a number of clubs, given the backend system is all third party services.
Templating the current application and rolling out at scale is a very feasible task.

5.0 Appendices

5.1. Project Proposal
National College of Ireland

BSc in Computing
2017/2018

Kevin O’Rourke
X15042782
X15042782@student.ncirl.ie

MyClubSubs

Technical Report

‘ﬁ
\ National
College o

Ireland

Table of Contents

Executive Summary

1 Introduction

1.1 Background 1

1.2 Aims

2

1.3 Technologies 3

2 System

2.1 Requirements 3

211
2.1.2
2.13
2.14
2.15
2.16
2.17

Functional requirements 3

Use Case Diagram 4

Requirement 1 User Registration 4

Requirement 2 Club Registration 5

Requirement 3 Join Club (Membership payment) 6
Requirement 4 Create Group within club 7

Requirement 5 Distribute SMS/Email - club/group members

2.2 Non-Functional Requirements 9

221
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8

Performance/Response time requirement 9
Availability requirement9

Recover requirement 9

Robustness requirement 9

Security requirement 9

Reliability requirement 9

Maintainability requirement 9

Portability requirement 9

2.3 Design and Architecture10

2.4 Implementation 10

2.5 Graphical User Interface (GUI) Layout 10

2.6 Testing 14

2.7 Evaluation 14

3 T AN o 01T o T [SSUURRN
3.1 Project Proposal 14
3.1.1 Objectives 14
3.1.2 Background 15
3.13 Technical Approach 15
3.14 Special Resources Required 15

3.1.5 Project Plan 16
3.1.6 Technical Details 16
3.1.7 Evaluation 16

3.2 Project Plan 16

Executive Summary

This report provides the background, goals and requirements for the MyClubSubs web application.
The MyClubSubs application aims to fill a gap in the market for a club members management web
application. The end goal of the application is to provide a members management for all club types.
For the purpose of this project — the main focus will be on having the application production ready
for all soccer and GAA clubs. There are over 2000 affiliated GAA clubs and over 1500 soccer clubs in
Ireland.

The solution will be to provide a web application where users can register and join multiple clubs as
a member. To join as a member the user will be required to pay the membership fee specified by the
club. MyClubSubs will provide club admins with many tools to reduce the man hours spent managing
the club. Digital and automated tools will allow club admins to manage key duties with maximum
efficiency and free up some time.

The goal of this application is to be the complete solution for all club members and administrators.

Introduction

Background

| have been involved in my local GAA club since | was 5 years old. For many years, | was an active
playing member. In 2015, | was given the role of club registrar. Club registrar is a role recently
introduced by the GAA. The role of the club registrar is to collect membership for every member of
the club. My predecessor passed me on sheet of paper with a list of names and addresses for all the
club members of the previous year.

The club registrar has no system to work on —in the majority cases all the work is manual. This
includes going to training sessions and organized registration nights collecting memberships. The
membership fees would be collected in cash and would need to be lodged into a bank account. A
written receipt would be given by the registrar to the member and the registrar would keep a hard
copy for themselves.

Setting up email distribution groups and SMS distribution groups require a lot of work and
management.

The situation is the same in soccer clubs around the country.

| believe this area of amateur sports has been very slow to adopt new technology to make life easier
and free up time for club administrators.

Aims

This project aims to address current digital gaps in the running and administration of a volunteer
club or organization. The objective is to create a web application to provide club administrators a

time saving and cost-efficient platform to manage the day-to-day running of the club. The secondary
objective is to provide club members a platform where they can manage their interactions with all
the clubs they hold membership.

The aims will be met by providing the following services

e Club Admin services

0O O O O O O O

Set memberships types and fees

Set up groups

Distribute email and text messages to all club members or specific groups.
Create membership payment reminders and installment plans

Upload fixtures via csv to be displayed on a calendar in the club website
Shop for club merchandise, tickets and fundraiser tickets eg. Weekly lotto
View income dashboards from membership fees and shop sales

e Club member services

o

o

View all clubs in central dashboard

All upcoming fixtures for the clubs you hold membership will be displayed in one
calendar

Google maps to provide directions to away games

Option to add other family members to user account

Forum to chat with other members of the club/group

Technologies
The web application will be developed using a serverless architecture.

An Amazon S3 bucket will be used to host all the static content. | will use Amazon DynamoDB for the
database. Lambda functions will be used to request data from the database and return it to the front
end. React combined with HTML and CSS will be used to parse the JSON data returned to the front
end and present the data on the page to the user.

For my application the following tools, applications and languages will be used.

e Amazon S3

e Amazon DynamoDB
e Amazon Lambda

e Amazon SQS

e HTML
e (SS

e React
e IS

e SQL

e Python

e Google Maps API

System

Requirements

Functional requirements
The key functional requirements are ranked in order of priority

e User Registration

e Club Registration

e Join Club (Membership payment)

e Create group within club

e Distribute SMS emails to group/club

Use Case Diagram

User Registration
Non MCS Repistered User

Club Registration

Join Club
(Membership
Payment)

MCS Regigtered User

Group Admin
Create Group with oup Admi

club

Club Member

Distribute
SMS/Emails to

lub/group member: Club Admin

Requirement 1 User Registration

Description & Priority

User Registration is the highest priority functional requirement. To become a club member or to
register a club — the user is required to be a registered user.

Use Case — User Registration

Scope

The scope of this use case is to allow users to register to the MCS platform.
Description

This use case describes the steps to be taken by the user to register.

Flow Description

Precondition

The web application is on the homepage

Activation

This use case starts when a user navigates to the register page.

Main flow

1. The system displays a form to the user with all the required fields

2. The User submits all the mandatory fields
3. The system validates the details and returns a confirmation
4. The user logs in to their dashboard

Alternate flow

User is already registered.
1. The system returns the message that the user is already registered.
2. The user enters some new details that aren’t registered.
3. The use case continues at position 3 of the main flow

Exceptional flow

User does not enter all mandatory data
1. The system returns a message stating not all mandatory fields are filled
2. The user completes the mandatory fields
3. The use case continues at position 3 of the main flow

Termination

The system presents the logged in user dashboard.

Post condition

The system goes into a wait state

Requirement 2 Club Registration

Description & Priority

Add club to MyClubSubs is the highest priority functional requirement. This is the highest priority
because without this functionality there would be no clubs for users to subscribe to.

Use Case — Club Registration

Scope

The scope of this use case is to allow registered users to register their club to the MCS
platform.

Description

This use case describes the steps to be taken by the user to add the club to the MCS platform.
Flow Description

Precondition

The web application is on the homepage

Activation

This use case starts when a club administrator navigates to the add club page.

Main flow

The system displays a form to the user with all the required fields
The User submits all the mandatory fields
The system validates the details and returns a confirmation
4. The user logs in to manage the club
Alternate flow

wN e

Club is already registered.
1. The system returns the message that the club is already registered.
2. The user enters a new club that isn’t registered.
3. The use case continues at position 3 of the main flow

Exceptional flow

User does not enter all mandatory data
1. The system returns a message stating not all mandatory fields are filled
2. The user completes the mandatory fields
3. The use case continues at position 3 of the main flow

Termination

The system presents the logged in club management dashboard.

Post condition
The system goes into a wait state

Requirement 3 Join Club (Membership payment)

Description & Priority
After a club has been created. Registered users need to join clubs

Use Case — Join Club (Membership payment)
Scope

The scope of this use case is to allow users to join a club.
Description

This use case describes the steps to be taken by the user to join a club. The payment process is
included in this process

Flow Description

Precondition

The web application is on the homepage

Activation

This use case starts when a user navigates to the join club page.
Main flow

1. The system displays a list of clubs available in MCS

The User selects the club they wish to join

The system loads the selected club membership page

The user selects the membership type and completes the payment process
5. The system returns confirmation of club membership

Alternate flow

PN

Payment failed
1. The system returns the message the payment has been declined.
2. The user enters some new payment details.
3. The use case continues at position 4 of the main flow

Termination

The system presents the logged in user dashboard.

Post condition
The system goes into a wait state

Requirement 4 Create Group within club

Description & Priority
The next functional requirement is to allow club administrators to create a group within club.

Use Case — User Registration

Scope

The scope of this use case is to allow club administrators to create a group within club.
Description

This use case describes the steps to be taken by the club admin to create a group.
Flow Description

Precondition

The web application is on the club admin dashboard

Activation

This use case starts when a user clicks the add group button.

Main flow
1. The system displays a form to the user with all the group details.
2. The User submits all the mandatory fields
3. The system validates the details and returns a confirmation
4. The user logs in to their dashboard

Termination

The system presents the logged in club dashboard.

Post condition
The system goes into a wait state

Requirement 5 Distribute SMS/Email - club/group members

Description & Priority

The club and group admins need the functionality to send group texts or emails to all club members
or to a particular group.

Use Case — Distribute SMS/Email to club/group members
Scope

The scope of this use case is to allow users send group texts or emails.
Description

This use case describes the steps to be taken to send a group text or email.

Flow Description

Precondition

The web application is on the club dashboard

Activation

This use case starts when a user clicks the send message button on the club page.
Main flow

1. The system displays the message options
2. The User submits all the message details
3. The system validates the message is sent and returns a confirmation
4. The user returns to club dashboard
Alternate flow

User only has permissions to send to specific group.
1. The system returns the message that the user does not have permission to send
message to all members.
2. The user selects a group they have permissions to send a message to.
3. The use case continues at position 3 of the main flow

Termination

The system presents the club dashboard.

Post condition

The system goes into a wait state

Non-Functional Requirements

Performance/Response time requirement

The performance and response times will need to meet customer expectations. There seems to be
no defined industry standard for web applications but it is widely suggested that web applications
need a response time of less than 1 second. MCS web application aims to achieve an average
response time of 0.5 seconds. The application will use the AWS serverless web architecture. The site
performance and response time will need to be monitored to ensure users are having a good user
experience.

Availability requirement

The MCS web application will be available at all times. It is forecasted that the peak usage months
for the application will be the first quarter of the year. It is expected that the majority of
membership payments will take place in these three months, therefore 100% uptime will be
required. The serverless web architecture will allow MCS to be fully scalable and meet all availability
requirements.

Recover requirement

The MCS web application will be developed locally and all changes will be pushed to Github with
version control in place before being deployed to production. All static content and database will be
managed and maintained by AWS.

Robustness requirement

Each piece of functionality on MCS web application will go through a thorough QA phase after each
development phase. This testing phase should uncover the majority of the bugs a user may
encounter.

Security requirement

Security is major requirement for the MCS web application. Personal data is required to register.
Payment details are also being processed on the web application. It is vital to the integrity of MCS
that all data remains safe and secure and that there are no customer data breaches. MCS will use
data encryption techniques and strict UAM policies and processes to ensure the security of the
system.

Reliability requirement

There is an expectation that the MCS web application will be available over 99.5% of the time. This is
the standard set by AWS. Therefor the number of failures of the system is expected to be at a
minimum.

Maintainability requirement

All deployments to the production environment will be documented and version controlled. This will
give the development team the option to roll back to previous deployments if an operational error
was to occur. Therefore, the time taken to resume a fully operational service after failure should be
less than six hours.

Portability requirement
The MCS web application will be developed to be mobile responsive. MCS should be usable on all
devices

Design and Architecture

Amazon S3 (static content)

Amazon DynamoDB
(Data Store)

Web Client
—
Amazon AP| Gateway
(REST Interface)

1 ‘ /
T Bl |

AWS Lambda
(Backend Logic)

Implementation

MyClubSubs will be implemented using AWS lambda functions developed in python. These functions
will call data from the database and complete all the backend logic. The frontend will be display
using static content form the S3 buckets. | will use the React JavaScript library to display that data on

the front end retrieved by the lambda function

Graphical User Interface (GUI) Layout

) My Club Subs

Welcome to My Club Subs

Login to your account

Username

View All Clubs

Password

Login

or register for an account

10

Q My Club Subs

Club Listings

Filter by: | Please select v ‘ Search ...

Club 1

Club 1

Club 1

Club 1

Club 1

Club 1

Club 1

Page 1 of 4

=
=~

Q My Club Subs

Club 1 Home

Latest News

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Proin vitae nunc at quam euismod pretium. Cras nec lectus
tristique felis hendrerit finibus vitae quis magna. Mauris
sed ex in neque finibus efficitur sit amet in lacus. Proin eget
ex ligula. Donec turpis odio, tempor et dignissim non,
tincidunt sit amet orci. Nunc non nunc sit amet nisl aliquet
vestibulum nec in justo. Pellentesque sagittis vestibulum
malesuada. Nunc a mollis ipsum. Donec accumsan libero ac
lorem pellentesque maximus. Aliquam quis nisl urna.

Upcoming Fixtures

Membership options

Membership type

Please select v

Join

Club 1vs Club 7 12/12/18 1lam
Club 1 vs Club 7 12/12/18 1pm
Club 1 vs Club 7 12/12/18 llam
Club 1 vs Club 7 12/12/18 3pm
Club 1 vs Club 7 12/12/18 1pm
Club 1vs Club 7 12/12/18 2pm
Club 1 vs Club 7 12/12/18 10am

12

Q My Club Subs

Welcome to My Club Subs

My Latest News

Forums
Filter by: | Please select v
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Laragh United has just ... 12/12/18
Proin vitae nunc at quam euismod pretium. Cras nec lectus
tristique felis hendrerit finibus vitae quis magna. Mauris Laragh United has just ... 12/12/18
sed ex in neque finibus efficitur sit amet in lacus. Proin eget
ex ligula. Laragh United has just ... 12/12/18
Donec turpis odio, tempor et dignissim non, tincidunt sit L h United has | 12/12/18
amet orci. Nunc non nunc sit amet nisl aliquet vestibulum aragh United has just ... 12}
nec in justo. Pellentesque sagittis vestibulum malesuada.
Nunc a mollis ipsum. Laragh United has just ... 12/12/18
Donec accumsan libero ac lorem pellentesque maximus. Laragh United has just ... 12/12/18
Aliquam quis nisl urna.
Laragh United has just ... 12/12/18

My Upcoming Fixtures
Filter by: | Please select v Search ...

Club 1 vs Club 7 12/12/18 llam

Club 1 vs Club 7 12/12/18 1pm

Club 1 vs Club 7 12/12/18 llam

Club 1 vs Club 7 12/12/18 3pm

Club 1 vs Club 7 12/12/18 1pm

Club 1 vs Club 7 12/12/18 2pm

Club 1 vs Club 7 12/12/18 10am

13

Testing
There will be a number of test phases completed during the course of the development.

These tests include

e Integration testing

e Functional testing

e Stress testing

e Performance testing
e UAT testing

e User testing

Evaluation

MyClubSubs will provide the ultimate solution to club members and administrators around the
country. The main functional requirements are very realistic and should be completed after a short
period of development. Security will need to be given high priority as there will be personal data
used in the application. This will add a lot of complexity to the development stages to ensure the
application is secure. After the functional requirements are complete there will more complex
features added to the application.

MyClubSubs has huge commercial potential as | feel it would be quickly adopted around the country
by all types of clubs.

Appendix
Project Proposal

Objectives

This project aims to address current digital gaps in the running and administration of a volunteer
club or organization. The objective is to create a web application to provide club administrators a
time saving and cost-efficient platform to manage the day-to-day running of the club. The secondary
objective is to provide club members a platform where they can manage their interactions with all
the clubs they hold membership.

The aims will be met by providing the following services

e Club Admin services
Set memberships types and fees
Set up groups
Distribute email and text messages to all club members or specific groups.
Create membership payment reminders and instalment plans
Upload fixtures via csv to be displayed on a calendar in the club website
Shop for club merchandise, tickets and fundraiser tickets eg. Weekly lotto
View income dashboards from membership fees and shop sales
o Club member services

o View all clubs in central dashboard

0O O O O O O O

14

o All upcoming fixtures for the clubs you hold membership will be displayed in one
calendar

o Google maps to provide directions to away games

Option to add other family members to user account

o Forum to chat with other members of the club/group

o

Background

| have been involved in my local GAA club since | was 5 years old. For many years, | was an active
playing member. In 2015, | was given the role of club registrar. Club registrar is a role recently
introduced by the GAA. The role of the club registrar is to collect membership for every member of
the club. My predecessor passed me on sheet of paper with a list of names and addresses for all the
club members of the previous year.

The club registrar has no system to work on —in the majority cases all the work is manual. This
includes going to training sessions and organized registration nights collecting memberships. The
membership fees would be collected in cash and would need to be lodged into a bank account. A
written receipt would be given by the registrar to the member and the registrar would keep a hard
copy for themselves.

Setting up email distribution groups and SMS distribution groups require a lot of work and
management.

The situation is the same in soccer clubs around the country.

| believe this area of amateur sports has been very slow to adopt new technology to make life easier
and free up time for club administrators.

Technical Approach

Firstly, | will scope out all the requirements for the web application and document them in the
Requirement Specifications. The next stage will be to build out the front end/Ul for the mid-point
prototype. The Ul will use dummy data. The approach to develop the Ul first will provide added
insight into what data | will need to pull from the database and other web services.

A database will be used to store all member and club data. The web application will be built using a
Serverless web architecture. This will require functions to be created that when triggered on the
front end, will then run and retrieve data from the database. The function will return the data in
JSON format. | will then then parse and present the data on the front end using a JavaScript library.
There will be several other services required to perform specific tasks.

Special Resources Required

There will be a number of research resources required for the development of this application.
There are multiple AWS services being used in this application therefore | will be using their online
guideline documentation to aid the development.

Initially, | will meet with club administrators and members to gather requirements for the features in
the web application. When the prototype is complete, | will get the same users to test the

15

application and provide some feedback. The application will go through multiple rounds of testing.
There will be many people required for this user testing.

Project Plan
Project plan attached.

Technical Details
The web application will be developed using a serverless architecture.

An Amazon S3 bucket will be used to host all the static content. | will use Amazon RDS for the
database. Lambda functions will be used to request data from the database and return it to the front
end. React combined with HTML and CSS will be used to parse the JSON data returned to the front
end and present the data on the page to the user.

For my application the following tools, applications and languages will be used.

e Amazon S3

e Amazon RDS

e Amazon Lambda
e Amazon SQS

e HTML
e (CSS

e React
e IS

e SQL

e Python

e Google Maps API

Evaluation

MyClubSubs will provide the ultimate solution to club members and administrators around the
country. The main functional requirements are very realistic and should be completed after a short
period of development. Security will need to be given high priority as there will be personal data
used in the application. This will add a lot of complexity to the development stages to ensure the
application is secure. After the functional requirements are complete there will more complex
features added to the application.

MyClubSubs has huge commercial potential as | feel it would be quickly adopted around the country
by all types of clubs.

Project Plan
attached

16

17

