

Sheila O‟Donnell, 11109815 1

BSc (Hons) in Business Information Systems (Year 4)

Investment Explorer

A first touch automated response to Novice

Investor Queries

Technical Report

Prepared by Sheila O‟Donnell

May 12, 2012

Sheila O‟Donnell, 11109815 2

1 Abstract
Meetings between financial advisors and their clients are often

taken up with explanations about straight-forward financial terms.
While these terms may be straight-forward to the financial advisor,

they are not for the client. This application gives the client a
medium through which to gather information but frees the financial

advisor as the answer need only be given once to populate the

knowledge base. After that, the application responds to the client.

The application uses an AIML engine to try to mimic a human
response to the questions asked. Communication is via email.

The interaction is simple but a useful starting point for the user.

Sheila O‟Donnell, 11109815 3

1 Abstract .. 2

Introduction .. 4

1.1 Background ... 4

1.2 Aims ... 4

1.3 Technologies.. 4

1.3.1 Java in Eclipse IDE .. 4

1.3.2 JUnit ... 5

1.3.3 Spring ... 8

1.3.4 Ant ... 8

1.3.5 ProgramD .. 8

1.3.6 AIML ... 9

1.3.7 MySQL .. 9

1.3.8 IMAP/SMTP .. 9

1.3.9 Tomcat ... 10

2 System .. 11

2.1 System Architecture .. 11

2.2 Process Flow Diagram .. 12

2.3 Code base Structure .. 13

2.4 Requirements ... 13

2.4.1 Functional Requirements .. 13

2.4.2 Data Requirements .. 15

2.4.3 User Requirements .. 15

2.4.4 Environmental Requirements....................................... 16

2.4.5 Usability Requirements ... 16

2.5 Evaluation .. 17

2.5.1 Unit Testing .. 17

2.5.2 System Testing ... 17

3 Conclusions & Recommendations .. 20

3.1 Application Improvements .. 20

3.2 Implementation Improvements ... 20

4 Bibliography ... 21

5 Appendix ... 22

5.1 Database create script ... 22

5.2 Ant build file ... 22

5.3 Ieexplorer-start.bat ... 29

5.4 AIML generator bat .. 30

5.5 AIML files ... 30

5.6 Project Proposal .. 30

5.7 Project Plan .. 35

5.8 Requirements Specification ... 36

Sheila O‟Donnell, 11109815 4

Introduction

1.1 Background

It can be difficult to find consistent information about financial

products and services in Ireland. In particular, many terms that

are used on foreign publications are not used here and therefore
difficult to understand.

The application already has a foundation of useful terms built in but

an experienced business user can improve the service by adding
additional terms and publishing to the application.

Users send emails asking questions which are answered by the

application using the knowledge base.

1.2 Aims

 Seamless communication between the user and the

application
 Give human-like responses

 Easy to support the application and update the knowledge
base

1.3 Technologies

1.3.1 Java in Eclipse IDE

Java in Eclipse was chosen as the main programming language

because it encourages writing modular code. This in turn facilitated
writing effective test scripts. It is a mature programming language

with significant support forums available.

The screenshot below shows the package structure where the

modular nature of the project can be clearly seen.

Breaking the code in to modules allows it to be easily understood
and maintained.

Sheila O‟Donnell, 11109815 5

1.3.2 JUnit

1.3.2.1 Overview

As part of the evaluation process, I needed to write effective test
scripts. JUnit provides a systematic approach to testing and

integrates well with Eclipse. It provides a method by which the
developer can verify that the latest changes haven‟t broken the

build.

The figure below shows the impact of a change made to the code
base that has caused a test to fail. By running the test, the

developer can determine what impact his change has. It is an early

warning that the build may be broken.

This is particularly useful when working in a group on a large code
base as it deters a developer from checking in a change that fails

the JUnit test.

Sheila O‟Donnell, 11109815 6

1.3.2.2 JUnit Example

The following is an example of the type of tests that were created in
order to test and regression test the software.

While parsing the users email, we need to identify and present
questions to the knowledge base. The following test verifies the

getQuestion() method of the ParseService class.

We present „question‟ and „noQuestion‟ to the method. If the class
returns the expected response, the test will pass. If not, it will fail.

Sheila O‟Donnell, 11109815 7

1.3.2.3 Test Execution

Eclipse allows all tests to be executed and shows the result of the
test output. This feedback is shown below.

As can be seen, there are 21 JUnit tests that have been executed in

under 20 seconds. This is a useful and efficient way to regularly
verify the code base.

 /**

 * Identify questions

 */

 @Test

 public void testGetQuestion() {

 String question = "Am I a question?";

 String noQuestion = "I am not a question.";

 String q = parseService.getQuestion(question);

 String nq = parseService.getQuestion(noQuestion);

 if (q != null && q.length() > 0 && nq == null) {

 assertTrue("Found the question, ignored the non-question.", true);

 }

 else {

 fail("That didn't work.");

 }

 }

Sheila O‟Donnell, 11109815 8

1.3.2.4 Test Configuration

The tests are configured in ServiceTest-context.xml file which can

be found in the package under test/resources.

An example bean configuration is

<bean id="parseService"

class="org.aitools.programd.sod.service.ParseService"/>

1.3.3 Spring

Where possible I have used the Spring Framework to simplify the
development process. Spring is the most popular application

development framework for enterprise Java*.

Spring facilitates the development of code that is
1. Easily tested

2. Reusable
3. Clearly structured

Specifically, Spring simplified database access for the application
through the use of the JdbcTemplate object.

Spring objects were also used in the JUnit test scripts.

1.3.4 Ant

Apache Ant is a command line tool which builds a code base by

following the instructions defined in the build file (build.xml). It is
used in a similar fashion to „make‟ in Unix.

It provides a robust and consistent build process. In order to start

the build, the user should navigate to the project folder
(c:\ProgramD) and call „ant‟.

C:\ProgramD>c:\apache-ant-1.8.2\bin\ant

The build.xml for this project is included in the Appendix.

1.3.5 ProgramD

ProgramD is the AIML platform that I have chosen to build into this
application. According to its website†, it is the most widely used

open-source AIML bot platform.

* Source: www.springsource.org

Sheila O‟Donnell, 11109815 9

1.3.6 AIML

AIML is an XML-compliant language which allows the user to

configure automated responses from a bot. The important units of
an AIML document are

<aiml> - tag that begins and ends the XML document.

<category> - tag that marks a unit of knowledge in the knowledge

base.

<pattern> - tag that contains a simple pattern that the bot can
match against.

<template> - tag that contains a detailed response to the pattern
given above.

1.3.7 MySQL

1.3.7.1 Overview

MySQL is an open source database. It is reliable and easy to use

and has a mature support structure which aides in the resolution of
development issues.

1.3.7.2 Configuration Settings

The database settings are configured in

c:\programd\conf\db.properties.

driver=com.mysql.jdbc.Driver

url=jdbc:mysql:///iehobbes

username=maureen

password=password

1.3.8 IMAP/SMTP

1.3.8.1 Overview

IMAP stands for internet message access protocol and is used to

read incoming emails.

SMTP stands for simple mail transfer protocol and is used to send
outgoing emails.

† www.aitools.org/Program_D

Sheila O‟Donnell, 11109815 10

Gmail (www.gmail.com) is the host that is used to relay emails for

this application.

1.3.8.2 Configuration Settings

Email settings are configured in C:\ProgramD\conf\email.properties.

email=iehobbes@gmail.com

username=iehobbes

password=colette.8

host=smtp.gmail.com

port=587

1.3.9 Tomcat

Tomcat is included as part of the ProgramD application. Here I

have used it to test the generated AIML file.

The name (“YourBot”) of the bot is specified in properties.xml under

c:\programd\conf.

Sheila O‟Donnell, 11109815 11

2 System

2.1 System Architecture

High Level System Architecture Diagram is shown below. All
components except the Gmail server are installed on one server.

Sheila O‟Donnell, 11109815 12

2.2 Process Flow Diagram

 Check if there‟s a new email
 If so, parse the message and find the questions

 Present the questions to the knowledge base engine
 Add the answers given to the message. Add any unknowns to the message

 If the user is unknown, create in the database
 Store the answers against the user

 Send the message to the user

Sheila O‟Donnell, 11109815 13

2.3 Code base Structure

The application code base is built on the existing ProgramD code

base and follows the package structure of same.

All code under the structure org.aitools.programd.sod was

written by me.

All code in the Eclipse project was written by me.

All other code belongs to Noel Bush as the original owner of

ProgramD.

All code is included on the CD. Only the code that I‟ve written has

been uploaded to moodle.

2.4 Requirements

2.4.1 Functional Requirements

The key functional requirements can be identified as

2.4.1.1 Email Exchange

Gmail provides a POP and IMAP interface which allows users to

download messages from the Gmail servers without using the web
GUI.

Equally, Gmail also provides support for sending email messages

through an SMTP gateway.

As this is a fundamental requirement of the application, it is
considered a high priority deliverable.

Risks & Technical Issues

There were no technical issues setting up email exchange.

As the application requires internet connectivity in order to function,

there is a risk that it will not work if this is not available.

2.4.1.2 Database Access

In order to maintain a history of interactions with users, a database

was required. The schema is shown below;

Sheila O‟Donnell, 11109815 14

IE_USERS table stores the users who have interacted with the
application.

IE_CONVERSATION stores the topics that a user has asked about.

IE_TOPIC stores the knowledge of the application.

IE_UNKNOWN stores the questions that there is no answer in the

knowledge base for.

IE_RAW_MESSAGE stores the incoming and outgoing messages.

Risks & Technical Issues

There were no technical issues setting up the MySQL instance.

2.4.1.3 AIML Parser

One of the key requirements was the identification of an AIML

parser.

Program D is the mostly widely used open source AIML bot

platform‡. It has an open architecture which facilitated integration
into my code base.

It is implemented in Java and I found it to be a robust AIML engine.

Risks & Technical Issues

‡ From www.aitools.org

Sheila O‟Donnell, 11109815 15

There is limited community activity. Any issues or problems need

to be resolved in isolation.

2.4.2 Data Requirements

Data requirements for this application were focused on gathering

and collating definitions and explanations for common and
uncommon financial terms.

This information was obtained from many sources which are listed

in the bibliography.

2.4.3 User Requirements

2.4.3.1 Generating AIML

In order to facilitate setting up the application, a program was
written which transforms a Microsoft Excel spreadsheet into an

AIML file.

The reason for this is that in most business situations, it is
preferable that the business owner can manage the application

themselves without constantly having to refer back to their IT
resources.

The AIML is generated by running the following batch file;

C:\ProgramD\bin>aiml_gen.bat

The batch file starts the main class IEAIMLGenerator.class.

In a production environment, this would be setup as a scheduled

task. The onus would rest with the business user to update the
document before the scheduled task ran.

2.4.3.2 Running application

The main application program is also run from a batch file. The

program is started by running the following;

C:\ProgramD\bin>ieexplorer-start.bat

This calls a batch file that starts the main class IEExplorer.class.

Sheila O‟Donnell, 11109815 16

An obvious improvement to this process would be to configure the

application as a windows service thereby negating the need to
interactively log on in order to start the application.

2.4.4 Environmental Requirements

The application requires the following to run;

1. Internet access in order to send and receive emails

The application requires the following to build;

1. Apache Ant

2. Java 1.7

2.4.5 Usability Requirements

The user is expected to use email in order to interact with the
application. It is assumed that the user is familiar with sending and

receiving emails.

A sample email sent and received is shown below;

Sent:

Received:

Sheila O‟Donnell, 11109815 17

2.5 Evaluation

2.5.1 Unit Testing

Unit testing ensures that the functionality of each core component
is correct. For this development, I used JUnit to unit test as well as

ad hoc testing. The JUnit tests are described earlier in this
document (section 2.3.2).

Unit testing of the AIML code generated was also carried out on an

ad hoc basis using the tomcat interface. This was quicker than
waiting for an email response and easier to track that the correct

answers were given.

2.5.2 System Testing

The purpose of the system testing is to ensure that all components

work together correctly. The following system tests were carried
out;

Test

Name Empty Email sent to Investment Explorer

Before Access to the internet

 Access to an email client

Steps Create an email

 Address to iehobbes@gmail.com

 Leave subject blank

 Leave body blank

 Send

Expected

Investment Explorer will respond but will ask

the user to re-phrase their question

Result PASS

Test

Name Email with one question

Before Access to the internet

 Access to an email client

Sheila O‟Donnell, 11109815 18

Steps Create an email

 Address to iehobbes@gmail.com

 Add a subject

 Add a question to the body

 Send

Expected 1 answer returned

Result PASS

Test

Name Email with many questions

Before Access to the internet

 Access to an email client

Steps Create an email

 Address to iehobbes@gmail.com

 Add a subject

 Add 3 questions to the body

 Send

Expected 3 answers returned

Result PASS

Test

Name Email with 1 unknown question

Before Access to the internet

 Access to an email client

Steps Create an email

 Address to iehobbes@gmail.com

 Add a subject

Add 1 question that there is no answer in the

KB

 Send

Expected Response will tell user that IE doesn't know

Result PASS

Sheila O‟Donnell, 11109815 19

Test

Name Email with many questions, 1 unknown

Before Access to the internet

 Access to an email client

Steps Create an email

 Address to iehobbes@gmail.com

 Add a subject

 Add 3 questions that are known and 1 unknown

 Send

Expected

3 answers and 1 response saying that IE

doesn't know

Result PASS

Sheila O‟Donnell, 11109815 20

3 Conclusions & Recommendations

3.1 Application Improvements

The parsing algorithm that is used in the application is very simple.

A significant improvement to the application might be achieved by

utilising a natural language programming package such as Apache
OpenNLP (http://opennlp.apache.org/) to tokenise and parse the

emails.

3.2 Implementation Improvements

It would be useful if the main class IEExplorer.class were installed

as windows service. In that way, it wouldn‟t be necessary to logon
interactively to start the process; it could be running whenever the

server is available.

Unknown questions are currently stored in the database. It would
be an improvement if the application regularly scanned this table

and notified the admin user that these questions were missing

rather than it being an action that must be driven by the user.

The AIML generator should accept CSV files as well as Microsoft
Excel as this would negate the need to have Microsoft Excel

installed. However as Excel is ubiquitous in a business
environment, this improvement might be redundant.

http://opennlp.apache.org/

Sheila O‟Donnell, 11109815 21

4 Bibliography

Apache POI http://poi.apache.org/

Bush, N. Program D website. http://aitools.org/Main_Page

Davy Stockbrokers website. http://www.davy.ie

Irish Stock Exchange website. http://www.ise.ie

Flanagan, D. 2005. Java in a Nutshell, 5th Edition.

Git Community. http://git-scm.com/

Janetzko, D. 2008. Assistance and Assessment in Tutorial Dialogues

that Operate via E-mail.

SpringSource Community. http://www.springsource.org/

U.S. Securities and Exchange Commission website.
http://www.sec.gov/index.htm

Walls, C. 2011. Spring in Action.

http://poi.apache.org/
http://aitools.org/Main_Page
http://www.davy.ie/
http://www.ise.ie/
http://git-scm.com/
http://www.springsource.org/
http://www.sec.gov/index.htm

Sheila O‟Donnell, 11109815 22

5 Appendix

5.1 Database create script
create table if not exists ie_users(

 id INT not null auto_increment,

 name varchar(100) default '',

 email varchar(100) default '',

 last_contact DATE,

 PRIMARY KEY (id)

);

create table if not exists ie_raw_message(

 id INT not null auto_increment,

 sender varchar(100) default '',

 subject varchar(500) default '',

 date_sent date,

 body varchar(5000) default '',

 PRIMARY KEY (id)

);

create table if not exists ie_topic(

 id INT not null auto_increment,

 pattern varchar(250) default '',

 template varchar(5000) default '',

 PRIMARY KEY (id));

create table if not exists ie_conversation(

 id INT not null auto_increment,

 user_id INT not null,

 topic_id INT not null,

 PRIMARY KEY (id));

alter table ie_conversation add CONSTRAINT fk_ie_topic FOREIGN KEY

(topic_id) references ie_topic (id);

alter table ie_conversation add CONSTRAINT fk_ie_user FOREIGN KEY

(user_id) references ie_users (id);

create table if not exists ie_unknown(

 id INT not null auto_increment,

 question varchar(5000) default '',

 user_id INT not null,

 PRIMARY KEY (id));

alter table ie_unknown add CONSTRAINT fk_ie_user_unknown FOREIGN KEY

(user_id) references ie_users (id);

5.2 Ant build file

This is the ant build file that came with the ProgramD code base. I
have edited to accommodate my new code.

<project default="jars" basedir=".">

Sheila O‟Donnell, 11109815 23

 <!--Initialization Target-->

 <target name="init">

 <tstamp />

 <property name="Name" value="Program D" />

 <property name="version" value="4.6" />

 <property name="year" value="2006" />

 <property name="javac.compiler" value="modern" />

 <property name="javac.debug" value="on" />

 <property name="javac.optimize" value="on" />

 <property name="javac.deprecation" value="on" />

 <property name="javac.jvm-target" value="1.5" />

 <property name="javac.source" value="1.5" />

 <property name="src.dir" value="${basedir}/JavaSource" />

 <property name="webapp.dir" value="${basedir}/WebContent" />

 <property name="webapp.lib.dir" value="${webapp.dir}/WEB-

INF/lib" />

 <property name="compile.lib.dir" value="${basedir}/lib" />

 <property name="distrib.dir" value="${basedir}/distrib" />

 <property name="spring.dir" value="C:/Program

Files/springsource/sts-2.8.1.RELEASE/plugins" />

 <property name="build.dir" value="${basedir}/build.tmp" />

 <path id="build.classpath">

 <pathelement location="${compile.lib.dir}/gnu.getopt-

1.0.10.jar" />

 <pathelement location="${compile.lib.dir}/jsp-api.jar" />

 <pathelement location="${webapp.lib.dir}/js.jar" />

 <pathelement location="${compile.lib.dir}/servlet-api.jar"

/>

 <pathelement location="${webapp.lib.dir}/log4j-1.2.13.jar"

/>

 <pathelement location="${webapp.lib.dir}/mail.jar" />

 <pathelement

location="${spring.dir}/org.springframework.jdbc_3.1.0.RC1.jar" />

 </path>

 <property name="javadoc.dir" value="${basedir}/docs/api" />

 <property name="main.jar" value="${distrib.dir}/programd-

main.jar" />

 <property name="rhino.jar" value="${distrib.dir}/programd-

rhino.jar" />

 <property name="war" value="${distrib.dir}/programd.war" />

 <property name="distrib.src.dir"

value="${distrib.dir}/distrib.src.tmp" />

 <property name="distrib.bin.dir"

value="${distrib.dir}/distrib.bin.tmp" />

 <property name="distrib.war.dir"

value="${distrib.dir}/distrib.war.tmp" />

 <property name="distrib.src.zip" value="${distrib.dir}/programd-

${version}-src.zip" />

 <property name="distrib.bin.zip" value="${distrib.dir}/programd-

${version}-bin.zip" />

Sheila O‟Donnell, 11109815 24

 <property name="distrib.war.zip" value="${distrib.dir}/programd-

${version}-war.zip" />

 <property name="distrib.src.tar.bz2"

value="${distrib.dir}/programd-${version}-src.tar.bz2" />

 <property name="distrib.bin.tar.bz2"

value="${distrib.dir}/programd-${version}-bin.tar.bz2" />

 <property name="distrib.war.tar.bz2"

value="${distrib.dir}/programd-${version}-war.tar.bz2" />

 <filter token="year" value="${year}" />

 <filter token="version" value="${version}" />

 <filter token="date" value="${TODAY}" />

 <filter token="log" value="true" />

 <filter token="verbose" value="true" />

 </target>

 <!--Generate CoreSettings from core.xml.-->

 <target name="core-settings" depends="init">

 <xslt in="conf/core.xml"

out="JavaSource/org/aitools/programd/CoreSettings.java"

style="resources/xslt/generate-settings-class.xslt">

 <factory name="net.sf.saxon.TransformerFactoryImpl" />

 </xslt>

 </target>

 <!--Prepare the build directory.-->

 <target name="prepare" depends="init">

 <mkdir dir="${build.dir}" />

 </target>

 <!--Prepare the source code.-->

 <target name="prepare-src" depends="init, prepare">

 <mkdir dir="${build.dir}" />

 <!--Copy resources.-->

 <copy todir="${build.dir}">

 <fileset dir="${webapp.dir}" includes="resources/schema/**"

/>

 </copy>

 </target>

 <!--Compile the source directory.-->

 <target name="compile" depends="init, prepare-src">

 <javac srcdir="${src.dir}" destdir="${build.dir}"

classpathref="build.classpath" debug="${javac.debug}"

deprecation="${javac.deprecation}" optimize="${javac.optimize}"

target="${javac.jvm-target}" source="${javac.source}">

 <compilerarg value="-Xlint" />

 <compilerarg value="-Xlint:-path" />

 <compilerarg value="-Xlint:-serial" />

 </javac>

 </target>

 <!--Create the jars.-->

 <target name="jars" depends="init, compile">

 <mkdir dir="${distrib.dir}" />

 <jar jarfile="${main.jar}">

Sheila O‟Donnell, 11109815 25

 <fileset dir="${build.dir}/" includes="org/**"

excludes="org/aitools/programd/interpreter/RhinoInterpreter.class" />

 <fileset dir="${src.dir}/"

includes="org/aitools/programd/gui/icons/**" />

 <fileset dir="${build.dir}/" includes="resources/schema/**"

/>

 </jar>

 <jar jarfile="${rhino.jar}">

 <fileset dir="${build.dir}/"

includes="org/aitools/programd/interpreter/RhinoInterpreter.class" />

 </jar>

 </target>

 <!--Create a WAR file.-->

 <target name="war" depends="init, compile">

 <delete file="${war}" />

 <war destfile="${war}" webxml="${webapp.dir}/WEB-INF/web.xml"

manifest="${webapp.dir}/META-INF/MANIFEST.MF">

 <fileset dir="${webapp.dir}">

 <include name="pages/**" />

 </fileset>

 <fileset dir="${basedir}">

 <include name="resources/**" />

 <exclude name="resources/database/**" />

 <exclude name="resources/icons/**" />

 <exclude name="resources/testing/**" />

 <exclude name="resources/xslt/**" />

 </fileset>

 <lib dir="${webapp.lib.dir}" />

 <classes dir="${build.dir}" />

 <classes dir="${basedir}/conf">

 <include name="log4j.xml" />

 </classes>

 <webinf dir="${webapp.dir}/WEB-INF">

 <include name="aiml.tld" />

 <include name="c.tld" />

 <include name="c-rt.tld" />

 <include name="dwr.xml" />

 </webinf>

 </war>

 </target>

 <!--Create the API documentation.-->

 <target name="javadoc" depends="init, prepare-src">

 <mkdir dir="${javadoc.dir}" />

 <javadoc packagenames="*" sourcepath="${src.dir}"

destdir="${javadoc.dir}" classpathref="build.classpath" author="true"

version="true" use="true" splitindex="true" noindex="false"

windowtitle="${Name} API" doctitle="${Name} API">

 <link href="http://java.sun.com/j2se/1.5.0/docs/api/" />

 <link

href="http://www.urbanophile.com/arenn/hacking/getopt/" />

 <link href="http://java.sun.com/j2ee/1.4/docs/api/" />

 </javadoc>

 </target>

 <!--Create the schema documentation.-->

Sheila O‟Donnell, 11109815 26

 <target name="schema-doc" depends="init">

 <property name="xs3p" value="/usr/local/xs3p/xs3p.xsl" />

 <property name="schema" value="../resources/schema" />

 <property name="schema-doc" value="../docs/schema" />

 <delete dir="${schema-doc}" />

 <xslt in="${schema}/AIML.xsd" out="${schema-doc}/AIML.html"

style="${xs3p}">

 <param name="title" expression="A Schema for AIML 1.0.1" />

 <param name="sortByComponent" expression="false" />

 </xslt>

 <xslt in="${schema}/bot-configuration.xsd" out="${schema-

doc}/bot-configuration.html" style="${xs3p}">

 <param name="title" expression="Program D Bot Configuration

Schema" />

 <param name="sortByComponent" expression="false" />

 </xslt>

 <xslt in="${schema}/ChatLog.xsd" out="${schema-

doc}/ChatLog.html" style="${xs3p}">

 <param name="title" expression="Program D Chat Log Schema"

/>

 <param name="sortByComponent" expression="false" />

 </xslt>

 <xslt in="${schema}/test-cases.xsd" out="${schema-doc}/test-

cases.html" style="${xs3p}">

 <param name="title" expression="Program D Test Suite Schema"

/>

 <param name="sortByComponent" expression="false" />

 </xslt>

 </target>

 <!--Make the distribs.-->

 <target name="distribs" depends="init, source-distribs, binary-

distribs, war-distribs" />

 <!--The source distribs.-->

 <target name="source-distribs" depends="init">

 <delete dir="${distrib.src.dir}" />

 <copy todir="${distrib.src.dir}">

 <fileset dir="${basedir}">

 <exclude name=".*" />

 <exclude name=".*/**" />

 <exclude name="aiml/**" />

 <exclude name="build.tmp/**" />

 <exclude name="classes/**" />

 <exclude name="distrib/**" />

 <exclude name="docs/**" />

 <exclude name="ffm/**" />

 <exclude name="lib/*-listener/*.jar" />

 <exclude name="logs/**" />

 </fileset>

 </copy>

 <zip destfile="${distrib.src.zip}">

 <zipfileset dir="${distrib.src.dir}" prefix="ProgramD/">

 <exclude name="bin/simple-console" />

 <exclude name="bin/simple-gui-console" />

 </zipfileset>

Sheila O‟Donnell, 11109815 27

 <zipfileset dir="${distrib.src.dir}" prefix="ProgramD/"

filemode="744">

 <include name="bin/simple-console" />

 <include name="bin/simple-gui-console" />

 </zipfileset>

 </zip>

 <tar destfile="${distrib.src.tar.bz2}" compression="bzip2">

 <tarfileset dir="${distrib.src.dir}" prefix="ProgramD/">

 <exclude name="bin/simple-console" />

 <exclude name="bin/simple-gui-console" />

 </tarfileset>

 <tarfileset dir="${distrib.src.dir}" prefix="ProgramD/"

mode="744">

 <include name="bin/simple-console" />

 <include name="bin/simple-gui-console" />

 </tarfileset>

 </tar>

 <delete dir="${distrib.src.dir}" />

 </target>

 <!--The binary distribs.-->

 <target name="binary-distribs" depends="init, jars">

 <delete dir="${distrib.bin.dir}" />

 <copy todir="${distrib.bin.dir}">

 <fileset dir="${basedir}">

 <include name="**" />

 <exclude name=".*" />

 <exclude name=".*/**" />

 <exclude name="aiml/**" />

 <exclude name="build.tmp/**" />

 <exclude name="build.xml" />

 <exclude name="classes/**" />

 <exclude name="distrib/**" />

 <exclude name="docs/**" />

 <exclude name="ffm/**" />

 <exclude name="lib/*-listener/*.jar" />

 <exclude name="logs/**" />

 <exclude name="JavaSource/**" />

 <exclude name="secret.key" />

 </fileset>

 <fileset dir="${basedir}">

 <include name="distrib/programd-main.jar" />

 <include name="distrib/programd-rhino.jar" />

 </fileset>

 </copy>

 <zip destfile="${distrib.bin.zip}">

 <zipfileset dir="${distrib.bin.dir}" prefix="ProgramD/">

 <exclude name="bin/simple-console" />

 <exclude name="bin/simple-gui-console" />

 </zipfileset>

 <zipfileset dir="${distrib.bin.dir}" prefix="ProgramD/"

filemode="744">

 <include name="bin/simple-console" />

 <include name="bin/simple-gui-console" />

 </zipfileset>

 </zip>

 <tar destfile="${distrib.bin.tar.bz2}" compression="bzip2">

Sheila O‟Donnell, 11109815 28

 <tarfileset dir="${distrib.bin.dir}" prefix="ProgramD/">

 <exclude name="bin/simple-console" />

 <exclude name="bin/simple-gui-console" />

 </tarfileset>

 <tarfileset dir="${distrib.bin.dir}" prefix="ProgramD/"

mode="744">

 <include name="bin/simple-console" />

 <include name="bin/simple-gui-console" />

 </tarfileset>

 </tar>

 <delete dir="${distrib.bin.dir}" />

 </target>

 <!--The war distribs.-->

 <target name="war-distribs" depends="init, war">

 <delete dir="${distrib.war.dir}" />

 <copy todir="${distrib.war.dir}">

 <fileset dir="${basedir}">

 <include name="conf/**" />

 <include name="resources/testing/AIML.aiml" />

 <include name="resources/testing/AIML.xml" />

 </fileset>

 <fileset dir="${distrib.dir}">

 <include name="programd.war" />

 </fileset>

 </copy>

 <zip destfile="${distrib.war.zip}">

 <zipfileset dir="${distrib.war.dir}" prefix="ProgramD/" />

 </zip>

 <tar destfile="${distrib.war.tar.bz2}" compression="bzip2">

 <tarfileset dir="${distrib.war.dir}" prefix="ProgramD/" />

 </tar>

 <delete dir="${distrib.war.dir}"/>

 </target>

 <!--Clean up everything.-->

 <target name="clean" depends="init, buildclean, distclean"/>

 <!--Clean the build stuff.-->

 <target name="buildclean" depends="init">

 <delete dir="${build.dir}"/>

 <delete file="${main.jar}"/>

 <delete file="${rhino.jar}"/>

 </target>

 <!--Clean up all the distrib stuff.-->

 <target name="distclean" depends="init, source-distclean, binary-

distclean, war-distclean"/>

 <!--Clean up the source distribs.-->

 <target name="source-distclean" depends="init">

 <delete dir="${distrib.src.dir}"/>

 <delete file="${distrib.src.zip}"/>

 <delete file="${distrib.src.tar.bz2}"/>

 </target>

 <!--Clean up the binary distribs.-->

Sheila O‟Donnell, 11109815 29

 <target name="binary-distclean" depends="init">

 <delete dir="${build.dir}"/>

 <delete file="${main.jar}"/>

 <delete file="${rhino.jar}"/>

 <delete dir="${distrib.bin.dir}"/>

 <delete file="${distrib.bin.zip}"/>

 <delete file="${distrib.bin.tar.bz2}"/>

 </target>

 <!--Clean up the war distribs.-->

 <target name="war-distclean" depends="init">

 <delete file="${war}"/>

 <delete dir="${distrib.war.dir}"/>

 <delete file="${distrib.war.zip}"/>

 <delete file="${distrib.war.tar.bz2}"/>

 </target>

 <!--Generate the multibot test files.-->

 <target name="multibot" depends="init">

 <delete file="resources/testing/multibot/bots.xml"/>

 <xslt in="resources/xslt/generate-multibot.xslt"

 out="resources/testing/multibot/bots.xml"

 style="resources/xslt/generate-multibot.xslt">

 <factory name="net.sf.saxon.TransformerFactoryImpl"/>

 </xslt>

 </target>

</project>

5.3 Ieexplorer-start.bat

This is the main program batch file that runs the application -

ieexplorer-start.bat.

@echo off

@rem Reset the quit variable.

set quit=

@rem Enter the bin directory.

pushd "%~p0"

@rem Check for needed environment space.

call common_functions.bat check_env %1 %2 %3 %4

@rem Get "base" directory (root of Program D installation)

if "%quit%"=="" call common_functions.bat set_base

@rem Configuration

set MAIN_CLASS=org.aitools.programd.sod.IEExplorer

set START_MEM=128m

set MAX_MEM=256m

set CORE_CONF=%BASE%\conf\core.xml

@rem Start Program D using the SimpleConsole main class.

if "%quit%"=="" call common_functions.bat start_programd %MAIN_CLASS% %START_MEM%

%MAX_MEM% "%CORE_CONF%"

:end

@rem On exit, go back to the original directory.

popd

Sheila O‟Donnell, 11109815 30

This script depends on the common_functions.bat which is included
in the build CD.

5.4 AIML generator bat

This is the AIML generator bat - aiml_gen.bat. It transforms the
MS Excel file created by a business user into an AIML document

that the application can consume.

@echo off

@rem Reset the quit variable.

set quit=

@rem Enter the bin directory.

pushd "%~p0"

@rem Configuration

set MAIN_CLASS=org.aitools.programd.sod.IEAIMLGenerator

@rem set the classpath

set CLASSPATH="c:\program files\springsource\sts-

2.8.1.RELEASE\plugins\org.springframework.jdbc_3.1.0.RC1.jar;C:\Program

Files\springsource\sts-

2.8.1.RELEASE\plugins\org.springframework.core_3.1.0.RC1.jar;C:\Program

Files\springsource\sts-

2.8.1.RELEASE\plugins\org.springframework.beans_3.1.0.RC1.jar;C:\Program

Files\springsource\sts-

2.8.1.RELEASE\plugins\org.springframework.transaction_3.1.0.RC1.jar;C:\Program

Files\springsource\sts-

2.8.1.RELEASE\plugins\org.springframework.asm_3.1.0.RC1.jar;C:\axis-1_4\lib\commons-

logging-1.0.4.jar;C:\ProgramD\lib\mysql-connector-java-3.1.12-

bin.jar;c:\programd\distrib\programd-main.jar;c:\programd\lib\poi-3.8-

20120326.jar;c:\programd\lib\poi-ooxml-3.8-20120326.jar"

@rem run the generator

if "%quit%"=="" java -cp %CLASSPATH% %MAIN_CLASS% "C:\Documents and Settings\Sheila\My

Documents\NCIRL\Dropbox\Project\Glossary.xls" C:\ProgramD\aiml\sod\glossary.aiml

@rem For tomcat testing, copy to

copy C:\ProgramD\aiml\sod\glossary.aiml C:\var\programd\resources\testing

:end

@rem On exit, go back to the original directory.

popd

5.5 AIML files

The AIML files generated are available in c:\programd\aiml\sod and

are included on the CD.

5.6 Project Proposal

Project Proposal

Sheila O‟Donnell, 11109815 31

Investment Explorer

Sheila O‟Donnell, 11109815, sheila.m.odonnell@gmail.com

Degree Programme Name e.g. BSc (Hons) in Business Information
Systems

23/09/2011

Sheila O‟Donnell, 11109815 32

Objectives
This project will build an expert system that will explore the

difficulties of human/machine interaction. It will endeavour to
overcome the typical problems that arise in these systems and will

explore the following objectives ;
Explore internet application development with specific emphasis on

SMTP/IMAP and the Twitter API

Understand the difficulties that exist in human/machine
communication

Create a system that will interact „intelligently‟ with a human
counterpart. The aim will be to move towards a solution that is

indistinguishable from a human response.
Utilise languages and technologies in a way to expand my

understanding of their power and functionality

Background
Interaction between humans and machines has always presented

problems typically due to the unpredicable way that humans
communicate. Artifical Intelligence is the science and engineering

of making intelligent machines, especially intelligent computer
programs. It is related to the similar task of using computers to

understand human intelligence§
This project will build an AIML system with a developed knowledge

base that will interact with humans via email and twitter. The
content of the knowledge base will likely be an expert on products

available to retail investors** in Ireland. The system will attempt to
answer typical questions about the availibility of assets, the risks

associated with same and the likely return on investment.

The system will attempt to be aware of its own limitations and
forward the question to a human if it is beyond its knowledge base.

Technical Approach
The technical approach will be as follows;

Research & Design
Research

Requirements Analysis – document clearly the deliverables.
Testing/Validation Plan – document an ongoing

testing/validation plan (system test) as well as an end-user
testing approach

§ John McCarthy, Stanford University 2007 (http://www-

formal.stanford.edu/jmc/whatisai/)
** Retail investor is one who buys and sells assets for his/her own portfolio. They are

unlikely to have professional investment experience

http://www-formal.stanford.edu/jmc/whatisai/
http://www-formal.stanford.edu/jmc/whatisai/

Sheila O‟Donnell, 11109815 33

Implementation Plan – it may be necessary to host the

system in a location other than the development server, it
which case an implementation plan will be required

Prototype – this early prototype will confirm basic functionality but
will be missing the richness of a fully developed AIML knowledge

base
Review & enhancement – following a technical review of the

prototype, improvements will be identified and applied
Prototype – this prototype will contain most of the deliverable

functionality but will require some further enhancements
Review & finish – no major changes are expected at this point

Final presentation

Special resources required
None at this time

Project Plan
Gantt chart using Microsoft Project with details on implementation

steps and timelines

Technical Details
Key to the success of the system will be the design of the AIML
knowledge base. It is expected that the design will cover the

following functionality
1. Processing questions – the system will accept input via email

and/or twitter. This will require that the system can parse the
content from the messages so that it can be analysed.

2. Answering questions – the system will use the knowledge base
to find a suitable answer for the user and then wrap the

response in the correct protocol.
3. Maintain conversations – the system will be aware of

conversations it has had from the same source and will be able
to refer back to information already shared with this user.

Sheila O‟Donnell, 11109815 34

4. Clarifying – the system will be able to challenge the users

request if it is unclear with a view to responding well
5. Limitations – the system will recognise if the information is not

stored in its knowledge base and respond to the user in kind. It
will also notify the system administrator that the knowledge base

is lacking information and needs to be addressed.

It is expected that the project will utilise the following technologies
- AIML – an XML compliant language that will be used to define

the knowledge base
- Program E or similar

- MySQL – database that will be used
- Apache Webserver/Tomcat Application Server

- Java will be the primary development language though PHP may
also be used

- SMTP and IMAP protocols – using Gmail as it provides an IMAP

interface for incoming email and SMTP protocol for outgoing
emails. This will negate the need to setup a separate email

server††.
- Twitter API

System Overview

The system will consist of
Server which will host the AIML knowledge base and the automated

response agent.
The agent will scan the system inbox for messages and the twitter

feed for questions and will respond using the same medium.
The agent will attempt to distinguish between genuine messages

and „junk‟.
The agent will notify the system administrator when the knowledge

base is lacking

Evaluation
The project will be evaluated by 2 methods;
Technical Assessment – there will be a number of tests designed to

confirm that the system responds meaningfully in the majority of
cases. Errors (responding with a standard answer or fail to

respond) will be used as a yardstick to gauge improvement over

time.
Human Trials – it will be necessary to ask for human interaction to

show that the system is answering in a useful way. In order to
control the human interaction and to obtain quantifiable results, a

questionnaire will be designed to guide testers.

†† ICANDO project 2008, School of Computing, National College of Ireland

Sheila O‟Donnell, 11109815 35

Consultation 1
Dr Dietmar Janetzko
“Leave out objective #2 and #4. They emphasize your personal

development. Clearly, this is essential. However, it common
practice to emphasize engineering-related objectives.”

“I will connect you with another student who also addresses this

project so that join collaborate on the common core while also
specialising on the particular aspects of each of you individual

projects.”
“… a deliverable of a previous project that provides some insight

into this type of application. Please consider in particular section
2.9.3”‡‡

Consultation 2
Dr Stephan Weibelzahl

“One thing that you might want to clarify further is the process of
requirements/information elicitation. It would be great if you had a

systematic approach to creating the database. I can see aspects of
this (e.g., the different types of questions you anticipate), but how

do you find out what possible questions are? How do you figure out

what the answer is?”
“The proposed feature where the system would recognise its own

limitations is an interesting one. AIML has some built in features to
do this (e.g., no match), but maybe you can explore this in more

depth, as it is a typical shortcoming of expert systems.”

Proposed Supervisor
Names of academic staff member that has agreed to act as a
supervisor for this project.

Signature of student and date

5.7 Project Plan

‡‡ ICANDO project 2008, School of Computing, National College of Ireland

Sheila O‟Donnell, 11109815 36

5.8 Requirements Specification

Title Requirements Specification (RS)

Document Control

Revision History

Date Version Scope of Activity Prepared Reviewed Approved

04/10/11 Draft Create SOD X X

Distribution List

Name Title Version

Paul Stynes Lecturer II 2

Dr Dietmar Janetzko

Related Documents

Title Comments

Title of Use Case Model

Title of Use Case Description

Sheila O‟Donnell, 11109815 37

Table of Contents

Title Requirements Specification (RS) 36

Document Control 36

Revision History 36

Distribution List 36

Related Documents 36

1 Introduction 39

1.1 Purpose 39

1.2 Project Scope 39

1.3 Definitions, Acronyms, and Abbreviations 39

2 User requirements definition 39

3 System architecture 40

4 Requirements specification 41

4.1 Physical environment requirements 42

4.1.1 Requirement 1 „Investment Explorer‟ Server 42

4.1.2 Requirement 2 Email Server 42

4.2 Interface requirements 43

4.2.1 Requirement 1 Parse Message 43

4.2.2 Requirement 2 Parse Inbox 43

4.2.3 Requirement 2 Consume IMAP message 43

4.2.4 Requirement 3 Generate SMTP message 44

4.2.5 Requirement 4 Identification of major topics in an email 44

4.2.6 Requirement 5 Junk Filter 44

4.3 Functional requirements 45

4.3.1 Requirement 1 - <Bot> Answer Question 45

4.3.2 Requirement 2 - <Bot> Ask for Clarification 47

4.3.3 Requirement 3 - <Bot> Prompt User for Further

Information 48

4.3.4 Requirement 4 – Recognition of Knowledge Limitation 49

4.3.5 Requirement 5 – Spawn email to Human Expert 50

4.3.6 Requirement 6 – Notify Admin of missing Knowledge 51

4.3.7 Requirement 7 – User Modeling of a potentially large
number of senders 52

4.4 Documentation requirements 54

4.4.1 Requirement 1 User Manual 54

Description & Priority 54

4.4.2 Requirement 2 System Configuration 54

Description & Priority 54

4.5 Data requirements 55

4.5.1 Requirement 1 General Knowledge Data 55

Description & Priority 55

4.5.2 Requirement 2 Investment Knowledge Data 55

Description & Priority 55

4.5.3 Requirement 3 Catch-all Data 55

Sheila O‟Donnell, 11109815 38

Description & Priority 55

4.5.4 Requirement 4 User Model Data 56

Description & Priority 56

Non-Functional Requirements 57

4.5.5 Performance/Response time requirement 57

4.5.6 Availability requirement 57

4.5.7 Recover requirement 57

4.5.8 Robustness requirement 57

4.5.9 Security requirement 57

4.5.10 Reliability requirement 57

4.5.11 Maintainability requirement 57

4.5.12 Portability requirement 57

4.5.13 Extendibility requirement 57

4.5.14 Reusability requirement 57

4.5.15 Resource utilization requirement 58

5 System models 58

6 System evolution 58

7 Appendices 59

Use case 4.3.1 59

Use case 4.3.2 60

Use case 4.3.3 61

Use case 4.3.4 62

Use case 4.3.5 64

Use case 4.3.6 65

Use case 4.3.7.6.1 66

Use case 4.3.7.6.2 67

Use case 4.3.7.6.3 69

Sheila O‟Donnell, 11109815 39

6 Introduction

6.1 Purpose

The purpose of this document is to set out the requirements for the

development of an expert system that will answer user questions

about investment products.
The intended customers are people who need to make a decision about

their approach to their financial future.

6.2 Project Scope

The scope of the project is to develop a system that will allow users to
access an „Expert‟ in investment products with a view to choosing one

that best suits their financial objectives.

The system will have

 an interface via Email

 a developed AIML knowledge base

 a system defined expert to answer the questions

6.3 Definitions, Acronyms, and Abbreviations

AIML – Artificial Intelligence Markup Language
KB – Knowledge Base

MiFID – Markets in Financial Instruments Directive

7 User requirements definition

This section is not applicable to this document.

Sheila O‟Donnell, 11109815 40

8 System architecture

The primary method of communication will the system will be via the
Gmail email service. The Apache webserver will be used for testing

purposes.

Sheila O‟Donnell, 11109815 41

9 Requirements specification
All requirements should be verifiable. For example, experienced

controllers shall be able to use all the system functions after a total of
two hours training. After this training, the average number of errors

made by experienced users shall not exceed two per day.
The following table demonstrates how to make requirements verifiable

incorporate metrics as follows:

Property Measure Reasoning

Speed Respond in

under 30
minutes

Communication is asynchronous therefore

immediate response will not be measured.
The system will however be expect to

respond in a timely fashion.

Size Unknown yet At design, it is difficult to determine the size
requirement of the system

Ease of Use 1 – 2 hours
learning

The UI is email. As this medium is in
common usage, it is expected that users will

not have any difficulty using the system

Reliability

Robustness

Portability None User will be unaware of the platform on

which the system is operating

Sheila O‟Donnell, 11109815 42

9.1 Physical environment requirements

This section describes the environment where the equipment is to

function and if there are any environmental restrictions, such as
temperature, humidity or magnetic interference.

9.1.1 Requirement 1 ‘Investment Explorer’ Server

The system requires a server on which to operate. This server

will house the email client, database and expert functionality of
the system.

It will also host an Apache webserver which will allow the AIML
knowledge base to be tested in isolation without utilising the

email server.

9.1.2 Requirement 2 Email Server

Googles Gmail will be used as the email service for this system.

The reasoning behind this is that Google provide an IMAP
interface to read emails and an SMTP interface to send them.

This negates the need to setup an independent email server and
eliminates the complication of managing such a server.

Sheila O‟Donnell, 11109815 43

9.2 Interface requirements

9.2.1 Requirement 1 Parse Message

9.2.1.1 Description & Priority

The system will be required to parse an email message into the
follow parts;

1. Message headers – this will be discarded

2. Email address – to uniquely identify the user

3. Topic(s) – these will be presented to the system as questions

Priority
The priority of this requirement is HIGH.

9.2.2 Requirement 2 Parse Inbox

9.2.2.1 Description & Priority

The system will be required to parse an email inbox where the user

messages are stored.
It will be necessary to perform the following tasks

4. Login to the mail server

5. Logout of the mail server

6. Read message

7. Move message

8. Delete message

Priority
The priority of this requirement is HIGH.

9.2.3 Requirement 2 Consume IMAP message

9.2.3.1 Description & Priority

Googles Gmail service will be used to handle incoming and outgoing
email messages thereby negating the need to setup a dedicated

email server.

The message will be passed to „Parse Message‟ requirement.
Priority

The priority of this requirement is HIGH.

Sheila O‟Donnell, 11109815 44

9.2.4 Requirement 3 Generate SMTP message

9.2.4.1 Description & Priority

The answer returned from the will be packaged as an SMTP
message and send to the mail server.

Priority
The priority of this requirement is HIGH.

9.2.5 Requirement 4 Identification of major topics in an email

9.2.5.1 Description & Priority

In order to present the question to the system, it will necessary to
parse the question from the email.

There may be more than one question in the email.
Priority

The priority of finding one question is HIGH.
The priority of finding subsequent questions in the same message is

MEDIUM.

9.2.6 Requirement 5 Junk Filter

9.2.6.1 Description & Priority

From time to time, messages are inadvertently sent to the wrong

recipient. This requirement will ensure that these messages are not
treated as actual input for the system.

Priority
The priority of this requirement is MEDIUM.

Sheila O‟Donnell, 11109815 45

9.3 Functional requirements

This section lists the functional requirements which describe the

system shown below.

9.3.1 Requirement 1 - <Bot> Answer Question

9.3.1.1 Description & Priority

The system will present the question to the automated response
agent (bot) which will in turn search the AIML Knowledge base for

an answer.
If an answer is found, it will be returned to the calling object.

The priority of this requirement is HIGH.

9.3.1.2 Requirement Activation

The user has no direct access to this requirement. The parsing of

the messages sent by the user will be handled by another
requirement and the question presented to this requirement.

9.3.1.3 Technical issues

No technical issues with the requirement at this time.

9.3.1.4 Risks

This functionality is key to the success of the system.

Sheila O‟Donnell, 11109815 46

9.3.1.5 Dependencies with other requirements

This requirement depends on interface requirement 1 – Parse

Message.

9.3.1.6 Functional Requirements

This requirement is described in Use case 4.3.1

Sheila O‟Donnell, 11109815 47

9.3.2 Requirement 2 - <Bot> Ask for Clarification

9.3.2.1 Description & Priority

This requirement builds on requirement 1. If the answer that is
found by the agent is ambiguous, the agent will request a

clarification from the user.
The priority of this requirement is MEDIUM.

9.3.2.2 Requirement Activation

This requirement will only be called when there is more than one

answer that could match the question.

9.3.2.3 Technical issues

There are no perceived technical issues with this requirement at

this time.

9.3.2.4 Risks

This requirement may still fail if

 The clarification returned by the user does not dismiss the

ambiguity. The agent will continue to question the user in
order to improve the answer.

 The user may deliberately or inadvertently answer nonsense.

9.3.2.5 Dependencies with other requirements

This requirement depends on requirement 1.

9.3.2.6 Functional Requirements

This requirement is described in Use case 4.3.2

Sheila O‟Donnell, 11109815 48

9.3.3 Requirement 3 - <Bot> Prompt User for Further Information

9.3.3.1 Description & Priority

It may be necessary for the agent to prompt the user for further
information. This might occur if the agent has asked for a

clarification but not yet received a response from the user.
The agent will wait an acceptable amount of time before prompting.

An acceptable amount of time will need to be defined.
The agent will only prompt once – it may be the case that the user

has found the answer elsewhere.
The priority of this requirement is LOW.

9.3.3.2 Requirement Activation

The user will not trigger this requirement. This requirement will

only be called if the conversation has lulled i.e. the agent has sent a
message to the user and is expecting a response.

9.3.3.3 Technical issues

It will be difficult to determine an acceptable time if the user is
finished questioning the system. The user is under no obligation to

notify the system that he is finished.

9.3.3.4 Risks

This requirement has the potential to send too many unsolicited
messages to the user therefore it will be important to restrict its

use.
There will be a configuration setting that will allow the Admin user

to turn this functionality off.

9.3.3.5 Dependencies with other requirements

This requirement depends on requirement 1 and 2.

9.3.3.6 Functional Requirements

This requirement is described in Use case 4.3.3

Sheila O‟Donnell, 11109815 49

9.3.4 Requirement 4 – Recognition of Knowledge Limitation

9.3.4.1 Description & Priority

If the system is unable to answer the question asked, it will do the
following;

 Inform the user

 Allow the user to escalate to a human expert

 Notify the admin user that there is a gap in the AIML
knowledge base

The priority of this requirement is MEDIUM.

9.3.4.2 Requirement Activation

The user will not access this requirement directly. This functionality

will be required if the system is unable to find an answer.

9.3.4.3 Technical issues

The success of the system will be measured by how infrequently

this functionality is required.

9.3.4.4 Risks

In order to simulate a human experience, the system needs to
develop a rich knowledge base. Limitations of the existing KB must

be recognized in order to enhance it.

9.3.4.5 Dependencies with other requirements

This requirement depends on the interface requirements “Generate

SMTP message” and “Consume SMTP message”

9.3.4.6 Functional Requirements

This requirement is described in Use case 4.3.4

Sheila O‟Donnell, 11109815 50

9.3.5 Requirement 5 – Spawn email to Human Expert

9.3.5.1 Description & Priority

If the knowledge base does not contain the answer to a question,
the system will spawn an email to a human expert. For the

purposes of this project, the human expert and the admin user are
the same.

This requirement will be called in tandem with requirement 6.
Once the system has sent the email, the responsibility of

responding to the user transfers to the human expert.
The priority of this requirement is MEDIUM.

9.3.5.2 Requirement Activation

The user will be unaware of this functionality. It will appear to the

user that another expert has been drafted in to help with their
question.

9.3.5.3 Technical issues

No technical issues identified at this time.

9.3.5.4 Risks

No risks identified at this time.

9.3.5.5 Dependencies with other requirements

This requirement will be called in tandem with requirement 6 and is

dependent on requirement 4.

9.3.5.6 Functional Requirements

This requirement is described in Use case 4.3.5

Sheila O‟Donnell, 11109815 51

9.3.6 Requirement 6 – Notify Admin of missing Knowledge

9.3.6.1 Description & Priority

If the knowledge base does not contain the answer to a question,
the system will notify the admin user that there is a gap in the

knowledge base. For the purposes of this project, the human
expert and the admin user are the same.

This requirement will be called in tandem with requirement 5.
Once the system has sent the email, it is the responsibility of the

admin user to update the knowledge base so as to improve the
responses of the system.

The priority of this requirement is MEDIUM.

9.3.6.2 Requirement Activation

The user will be unaware of this functionality.

9.3.6.3 Technical issues

No technical issues identified at this time.

9.3.6.4 Risks

It is possible that the question may be beyond the knowledge of the

human expert. At this time, there is no mitigation for this risk.

9.3.6.5 Dependencies with other requirements

This requirement will be called in tandem with requirement 5 and is

dependent on requirement 4.

9.3.6.6 Functional Requirements

This requirement is described in Use case 4.3.6

Sheila O‟Donnell, 11109815 52

9.3.7 Requirement 7 – User Modeling of a potentially large number
of senders

9.3.7.1 Description & Priority

It is important that the system is able to maintain a conversation

with an interested user. In order to do so, it will be necessary to
use a method of user modelling.

In order to build a user model, it will be necessary to question the
user in order to establish the following;

 Personal profile – age, education

 Attitude to risk

 Time horizon

 Objectives/Goals

In this way, the system can respond with an answer that is

tailored to the user.
Over time, the model will become richer and allow the system to

respond with greater specificity.
The priority of this requirement is HIGH.

9.3.7.2 Requirement Activation

Initial questions will be answered generically but a record will be
kept of questions asked by a returning user. When the user

returns to the system many times, the system will seek to

establish the user model by questioning the user.

9.3.7.3 Technical issues

Although User Modeling is a mature discipline, it is new to the

developer. It is expected that significant time will be required to
research and develop this functionality.

9.3.7.4 Risks

This is a new area of learning for the developer therefore there is a
risk that this deliverable may not be meant. This risk can be

mitigated by the following;

1. Research into the discipline

2. Prototyping the functionality early to discover gaps

9.3.7.5 Dependencies with other requirements

This requirement does not depend on other requirements though it
will add a richness to the system overall.

Sheila O‟Donnell, 11109815 53

9.3.7.6 Functional Requirements

9.3.7.6.1 New user

This requirement is described in Use case 4.3.7.6.1

9.3.7.6.2 Returning user

This requirement is described in Use case 4.3.7.6.2

9.3.7.6.3 Establish knowledge about user

This requirement is described in Use case 4.3.7.6.3

Sheila O‟Donnell, 11109815 54

9.4 Documentation requirements

Examples of document requirements are

 How much documentation is required

 Should it be on-line, in book format or both

 To what audience is each type of documentation addressed

9.4.1 Requirement 1 User Manual

Description & Priority

The user manual will be a short document that will describe to a

novice user how to use the „Investment Explorer‟. It will be sent to
the user when he or she requests help from the system.

Priority
The priority of this requirement is LOW.

9.4.2 Requirement 2 System Configuration

Description & Priority

The system configuration document will cover the following topics;

 System installation and setup

 Adding additional information to the AIML Knowledge Base

 Adding additional filters to the junk mail filters

The target audience for this document is an IT professional who is a
competent administrator of Windows based systems.

Priority
The priority of this requirement is MEDIUM.

Sheila O‟Donnell, 11109815 55

9.5 Data requirements

Data requirements should consider the following:

 What should the format of data be for input and output

 How often will they be sent or received

 How accurate must they be

 To what degree of precision must the calculations be made

 How much data flow through the system

 Must the data be retained for any period of time

9.5.1 Requirement 1 General Knowledge Data

Description & Priority

Although the systems main function is to answer questions about
investment products, it will be able to hold a generic conversation

with the user.
Priority

The priority of this requirement is LOW.

9.5.2 Requirement 2 Investment Knowledge Data

Description & Priority

The Knowledge Base will be built using the following data sources;

 Information published by National Consumer Agency

 Information published by the Central Bank of Ireland
(Financial Services Authority)

 Information published by the Irish Stock Exchange

 Retail products offered by financial services companies in

Ireland

Priority

The priority of this requirement is HIGH.

9.5.3 Requirement 3 Catch-all Data

Description & Priority

When the system is unable to find an answer for the user, it will still

be necessary that it responds meaningfully. The purpose of this
data is

 at best to respond in kind (in reference to the topic) or

Sheila O‟Donnell, 11109815 56

 at worst to respond generically.

Priority
The priority of this requirement is MEDIUM.

9.5.4 Requirement 4 User Model Data

Description & Priority

The system requires a data store for the User Modeling information.
This will allow the system to maintain a conversation with the user.

Priority
The priority of this requirement is MEDIUM.

Sheila O‟Donnell, 11109815 57

Non-Functional Requirements

Specifies any other particular non-functional attributes required by the

system. Examples are provided below. Remove the requirement
headings that are not appropriate to your project.

9.5.5 Performance/Response time requirement

The communication between system and user is asynchronous.

However, the system will respond to the user in less than 30
minutes.

9.5.6 Availability requirement

For the purposes of this project, the system will only be available
when the processes are started by the admin user.

9.5.7 Recover requirement

See Availability requirement.

9.5.8 Robustness requirement

See Availability requirement.

9.5.9 Security requirement

The system will interface via email therefore it will be necessary to

ensure that the user modelling aspect is effective. If the system is
unsure of the identity of the user, it will assume that this is a new

user.

9.5.10 Reliability requirement

See Availability requirement

9.5.11 Maintainability requirement

From time to time the regulations applied to investment products

change (e.g. MiFID 2004). When these occur, the system will be
updated before the directive comes into effect.

9.5.12 Portability requirement

Not applicable to this development.

9.5.13 Extendibility requirement

Not applicable to this development.

9.5.14 Reusability requirement

Not applicable to this development.

Sheila O‟Donnell, 11109815 58

9.5.15 Resource utilization requirement

If time allows, time will be spent identifying system bottlenecks and
working towards their elimination.

10 System models
Entity-Relationship Diagram

11 System evolution
The system has the potential to evolve into a mature expert

knowledge system. Successful evolution is dependent on the following
criteria;

 Sufficient expert knowledge to populate the AIML knowledge
base

 Improving the answers given by the system through better
questioning of the user

 Mature user modeling so that the system has a solid base on
which to build new answers

Sheila O‟Donnell, 11109815 59

12 Appendices

Use case 4.3.1

Use case

Answer Question

Scope
The scope of this use case is to establish if this is a new or existing

user.
Description

This use case describes the simplest interaction with the system.
Use Case Diagram

Flow Description

Precondition
The system is in a ready state.

The Gmail email service is available.
The user has access to the internet.

The message has been parsed as only the user and topics are useful at
this point.

The system has found/created a profile for the user.

Activation
This use case starts when a User (<Actor>) sends an email to the

system.
Main flow

1. The system presents the topic to the bot
2. The answer is known

Sheila O‟Donnell, 11109815 60

3. The answer is returned to the calling object for wrapping as a

message
Alternate flow
A1 : The answer is unknown

1. The use case 4.3.2 is activated
2. The use case continues at position 3 of the main flow

Exceptional flow
None

Termination

The system has successfully responded to the users question.

Post condition
The system goes into a wait state.

Use case 4.3.2

Use case
Ask for Clarification

Scope
The scope of this use case is to clarify an ambiguous question asked

by the user.
Description

This use case describes what the system will do if the answer is not
readily found.

Use Case Diagram

Flow Description

Sheila O‟Donnell, 11109815 61

Precondition

The system is in a ready state.
The Gmail email service is available.

The user has access to the internet.
The message has been parsed as only the user and topics are useful at

this point.
The system has found/created a profile for the user.

Activation
This use case starts when a User (<Actor>) sends an email to the

system.
Main flow

1. The system presents the topic to the bot
2. The answer is unknown

3. The system asks the user for clarification
4. The system presents the clarification to the bot

5. The answer is returned to the calling object for wrapping as a

message
Alternate flow
A1 : The answer is known

1. The use case 4.3.1 is activated
2. The use case continues at position 5 of the main flow

Exceptional flow
None

Termination

The system has successfully responded to the users question.

Post condition
The system goes into a wait state.

Use case 4.3.3

Use case
Prompt User for further information

Scope
The scope of this use case is to trigger action by the user if the query

has not been completed.
Description

This use case describes what the system will do if the user fails to
respond to an earlier query.

Use Case Diagram

Sheila O‟Donnell, 11109815 62

Flow Description
Precondition

The system is in a ready state.
The Gmail email service is available.

The user has access to the internet.
The user has already contacted the system.

The system has found/created a profile for the user.
Activation

This use case starts when the system has been waiting for a response

from a User (<Actor>) for a pre-determined length of time.
Main flow

1. The system prompts the user for further information
Alternate flow
None

Exceptional flow
None

Termination

The system has prompted the user for further information.

Post condition
The system goes into a wait state

Use case 4.3.4

Use case
Recognition of Knowledge Limitation

Scope
The scope of this use case is to facilitate the recognition of the

limitations of the knowledge base.
Description

This use case describes what the system will do if the answer is not
readily found and clarification proves ineffective.

Sheila O‟Donnell, 11109815 63

Use Case Diagram

Flow Description

Precondition
The system is in a ready state.

The Gmail email service is available.
The user has access to the internet.

The message has been parsed as only the user and topics are useful at
this point.

The system has found/created a profile for the user.
Activation

This use case starts when a User (<Actor>) sends an email to the
system.

Main flow
1. The system presents the topic to the bot

2. The answer is unknown

3. The system asks the user for clarification
4. The system presents the clarification to the bot

5. The answer is still unknown
6. The system responds to the user notifying him that the answer is

unknown
7. The use case 4.3.5 is activated

8. The use case 4.3.6 is activated
Alternate flow
The alternate flow is that the answer is found and is described in Use Case 1.

Exceptional flow
None

Sheila O‟Donnell, 11109815 64

Termination

The system notifies the user that the answer is unknown.

Post condition
The system goes into a wait state

Use case 4.3.5

Use case

Spawn email to human expert
Scope

The scope of this use case is to notify the human expert.
Description

This use case describes what the system will do if a user question

failed to be answered and needs to be addressed.
Use Case Diagram

Flow Description
Precondition

The system is in a ready state.

The Gmail email service is available.
The user has access to the internet.

The message has been parsed as only the user and topics are useful at
this point.

The system has found/created a profile for the user.
The answer is not found.

Activation
This use case starts when a User (<Actor>) sends an email to the

system.
Main flow

1. The system can‟t find the answer
2. The system notifies the human expert

Alternate flow
None

Sheila O‟Donnell, 11109815 65

Exceptional flow

None

Termination
The system has notified the human expert.

Post condition

The system goes into a wait state

Use case 4.3.6

Use case
Notify Admin of missing Knowledge

Scope

The scope of this use case is to notify the admin that there is a gap in
the Knowledge Base.

Description
This use case describes what the system will do if a user question

failed to be answered and needs to be addressed.
Use Case Diagram

Flow Description
Precondition

The system is in a ready state.
The Gmail email service is available.

The user has access to the internet.
The message has been parsed as only the user and topics are useful at

this point.
The system has found/created a profile for the user.

The answer is not found.
Activation

This use case starts when a User (<Actor>) sends an email to the
system.

Main flow

Sheila O‟Donnell, 11109815 66

1. The system can‟t find the answer

2. The system notifies the admin user that there is a gap
Alternate flow
None

Exceptional flow
None

Termination

The admin user has been notified that there is a gap in the KB.

Post condition
The system goes into a wait state

Use case 4.3.7.6.1

Use case
New User

Scope
The scope of this use case is to establish if this is a new or existing

user.
Description

This use case describes the initial user interactions with the system.
Use Case Diagram

Flow Description

Precondition
The system is in a ready state.

Sheila O‟Donnell, 11109815 67

The Gmail email service is available.

The user has access to the internet.
The message has been parsed as only the user and topics are useful at

this point.
Activation

This use case starts when a User (<Actor>) sends an email to the
system.

Main flow
2. The system identifies the user and checks if a profile/model

already exists
3. The user (<Actor>) is unknown

4. The system will establish a new profile for this user (See E1)
5. Subsequent activity will be tracked against the profile

Alternate flow
A1 : The user is known

3. The system identifies the user and checks if a profile/model

already exists
4. The user (<Actor>) is known
5. The use case continues at position 4 of the main flow

Exceptional flow

None

Termination
The system knows the user.

Post condition

The system goes into a wait state

Use case 4.3.7.6.2

Use case
Existing User

Scope

The scope of this use case is to establish if this is a new or existing
user.

Description
This use case describes the initial user interactions with the system.

Use Case Diagram

Sheila O‟Donnell, 11109815 68

Flow Description

Precondition
The system is in a ready state.

The Gmail email service is available.
The user has access to the internet.

The message has been parsed as only the user and topics are useful at
this point.

Activation

This use case starts when a User (<Actor>) sends an email to the
system.

Main flow
1. The system identifies the user and checks if a profile/model

already exists
2. The user (<Actor>) is known

3. Subsequent activity will be tracked against the known profile
Alternate flow
A1 : The user is known

1. The system identifies the user and checks if a profile/model
already exists

2. The user (<Actor>) is unknown

3. The system will establish a new profile for this user (See E1)
4. The use case continues at position 3 of the main flow

Exceptional flow
None

Termination

Sheila O‟Donnell, 11109815 69

The system knows the user.

Post condition

The system goes into a wait state

Use case 4.3.7.6.3

Use case

Establish knowledge about user
Scope

The scope of this use case is to show that information established in
earlier interactions is available to the system.

Description
This use case describes the initial user interactions with the system.

Use Case Diagram

Flow Description
Precondition

The system is in a ready state.
The Gmail email service is available.

The user has access to the internet.
The message has been parsed as only the user and topics are useful at

this point.

The user profile has been found.
Activation

This use case starts when a profile has been established by the
system.

Main flow
1. The system gets the user model (E3)

Sheila O‟Donnell, 11109815 70

2. The question is answered in the context of the known user model

(E4)
Alternate flow
A1 : The user model is empty

1. The system adds the question to the model
2. The use case continues at position 2 of the main flow

Exceptional flow
None

Termination
The system knows the user.

Post condition

The system goes into a wait state

