

National College of Ireland
Digital Business Transformation

Academic Year i.e. 2022/2023

James Croke

x17480714

x17480714@student.ncirl.ie

ShadeStack

Technical Report

Contents
Contents .. 2

Executive Summary ... 3

1.0 Introduction .. 4

1.1. Background ... 4

1.2. Aims ... 4

1.3. Technology .. 5

1.4. Structure ... 7

2.0 System ... 7

2.1. Requirements .. 7

2.1.1. List of Functional Requirements ... 7

2.1.1.1. Use Case Diagram ... 8

2.1.1.2. Termination/Post Condition Tags: .. 9

2.1.1.3. Alternative/Exceptional Flow Use Cases ... 9

2.1.1.4. Functional Requirements ... 9

Functional Requirement 1: User Registration... 9

Functional Requirement 2: User Login ... 10

Functional Requirement 3: User Account (Update Profile) .. 11

Functional Requirement 4: Create Room ... 12

Functional Requirement 5: Add User .. 13

Functional Requirement 6: Remove User ... 14

Functional Requirement 7: Message Room .. 15

Functional Requirement 8: Message Persons ... 16

Functional Requirement 9: Review Room Messages .. 17

Functional Requirement 10: Review Personal Messages ... 17

Functional Requirement 11: Search .. 18

Functional Requirement 12: Details ... 19

Functional Requirement 13: Block .. 20

2.1.2. Data Requirements ... 21

2.1.3. Environmental Requirements ... 21

2.1.4. Usability Requirements ... 21

2.2. Design & Architecture / Implementation ... 22

2.3. Graphical User Interface (GUI) .. 34

2.4. Testing ... 36

2.5. Evaluation ... 53

3.0 Conclusions ... 53

4.0 Project Plan ... 53

 .. 54

5.0 Further Development or Research ... 54

6.0 References .. 54

7.0 Appendices .. 55

7.1 Reflective Journals .. 55

7.2 Project Proposal .. 70

Objectives ... 72

Background ... 72

Technical Approach ... 74

Technical Details ... 75

Special Resources Required .. 77

Project Plan ... 77

Testing ... 79

Executive Summary
ShadeStack is a web application currently in development for browsers, using multiple
additional technologies to allow shrouded or unknown players within the gaming
community to search for other players of their skill level on platforms such as Xbox,
PlayStation, and pc.

In whatever game they are choosing to play, the users will be able to create a room with
their own specific parameters or join another room to team up with players and create their
own temporary posse or permanent clan.

Once a player has joined a room, they can communicate with other users of that room to
figure out how they are going to connect.

This room can also be used as a 3rd party for communication as some games may have
cross-play, but their independent platforms does not support the use of text communication
between each other.

Rooms can also be created for the sole purpose of gamers to socialize and talk if they wish
about a game.

The application is more aimed towards the professional finesse rather than casual as the
target market would be players of high skill or rank within their game to form chosen teams
for Esports. This encourages the development of professional gaming and the market itself

then, as players will generally compete within tournaments on platforms such as
GameBattles to win cash prizes, or slowly increase their skill for their own benefit.

1.0 Introduction
1.1. Background

Throughout my years of getting older, gaming has been a huge impact towards my balance
of a healthy lifestyle with work and hobbies. It has enabled me to procrastinate from where
I am [usually] based to instantly being able to jump into some work and repeating the cycle
after some burnout.

Within my 17 years of gaming, I have been majorly involved within the social aspect of
casual and professional playing, with communicating randomly to persons in online matches
to seeking a more objective oriented version to communicating. This can contain looking for
specified players with certain skill sets, to looking for specified groups with certain skill sets,
generally known as clans.

These clans range from an entire plethora of AAA titles to smaller independent developer
games. With the development of platforms such as Xbox, PlayStation, Steam and others like
Nintendo, Nvidia, and Google Stadia, it has allowed the progression of communication to
find players for groups better but not full as an entirety.

Generally, with these platforms it is not as simple as just going to a brand forum or
dedicated communication area to find players, it is a lot more complicated with layers upon
layers of verification to then initialize a post for a high possibility of no one to join due to the
extra complications.

With ShadeStack the aim of development is to have enough layers of verification there but
make the application easily accessible to login and instantly chat within a thread to find a
player of choice or even go through extra steps to investigate player skill, games, and
connection stability through profiles. Platforms are all included within the user details.

1.2. Aims
Main Objectives of ShadeStack are as follows:

- Easy to navigate UI

- Retrieve and store relevant user information (e.g. games on list, name, age, gender,
platform)

- Creation of rooms w/ adding and removing users

- Search for users

- Personal Messaging

- Real Time Chatting/Messaging

1.3. Technology

Developed through IDE’s such as VS Code Shadestack will be created using React Routing,
Social Auth, Firebase, The React Context API, Chat Engine, Environment Variables,, REST
APIS, and standard web development languages such as HTML, CSS and JavaScript.
Identification of user requirements have been made through personal recommendation and
knowledge throughout the years of gaming but, will also be gathered from persons after
consent forms signed and options been chosen regarding the format of ethics.

The technologies stated within the previous heading (technical approach) are to be used
and are as follows.

VS Code

Integrated development environments developed by Google and Microsoft used to edit
source code that can be used alongside a variety of programming languages, including Java,
JavaScript, Go, Node.js, Python, C++ and Dart. VS being built on the Electron framework,
used to develop Node.js applications for web running on the Blink layout engine.

React Routing

React (also known as React.js or ReactJS) is a free and open-source front-end JavaScript
library for building user interfaces based on UI components. React Router is a powerful
routing library built on top of React that helps you add new screens and flows to your
application incredibly quickly, all while keeping the URL in sync with what's being displayed
on the page. React is only concerned with state management and rendering that state to
the DOM, so creating React applications usually requires the use of additional libraries for
routing, as well as certain client-side functionality.

Social Auth

Login authentication through 3rd Party applications.

Firebase

A platform developed by Google for creating mobile and web applications. Originally an
independent company founded in 2011. Now in the year of 2021 it has been 9 years since
Google acquired the platform and is now one of their flagship offerings for app

development providing a whole plethora of services for app and web development i.e.,
Firebase for storing information which it is widely used for.

The React Context Api

The React Context API is a way for a React app to effectively produce global variables that
can be passed around. This is the alternative to "prop drilling" or moving props from
grandparent to child to parent, and so on.

Chat Engine

Chat Engine is an API providing a REST API, and NPM components to help with chat UI.

Environment Variables

EVs let you store globally scoped values to the environment your code is running in, making
them available throughout the codebase.

Rest APIs

A REST API (also known as RESTful API) is an application programming interface (API) that
conforms to the constraints of REST architectural style and allows for interaction with
RESTful web services.

HTML

The HyperText Markup Language is the standard markup language for documents designed
to be displayed in a web browser. It can be assisted by technologies such as Cascading Style
Sheets (CSS) for decorating a page and scripting languages to run commands.

CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation of
a document written in a markup language such as HTML.

JavaScript

Often abbreviated as JS, is a programming language of high-level, often just-in-time
compiled and multi-paradigm. It has the ability of dynamic typing, prototype-based object-
orientation and first-class functions.

Alongside HTML and CSS, JavaScript is one of the core technologies of the Worldwide WEb.
Over 97% of websites using it client-side for web page behaviour, often including third-party
libraries for additional functionality.

1.4. Structure
Throughout the remainder of the report structures as follows

Section 5 will outline the key stakeholders of ShadeStack, Use Cases and Functional
Requirements.

Section 6 will explain the data requirements.

Section 7 contains the User, Environmental and Usability Requirements.

Section 8 will outline ShadeStack’s system design and architecture.

Section 9 will describe the technical implementations its key features.

Section 10 contains images describing the graphical user interface.

Section 11 illustrate the different tested methods

Section 12 will cover evaluation conclusion

Section 13 will discuss further research

Section 14 include referral

2.0 System
2.1. Requirements
All requirements are verifiable. For example, users shall be able to use all system
functions contained within the application.

2.1.1. List of Functional Requirements
1. Users can create an account for the app
2.Users can login to the application with the created account.
3.Users can fill up their profiles with standard general information within gaming
such as Name, Age, Gender, Games, and Ranks within those games.
4.Users can create rooms
5.Users can message in rooms
6.Users can message persons
7.Users can review room messages

8.Users can review personal messages
9.Users can search for players
10.Users can look at the details of the accounts
11.Users can block users

2.1.1.1. Use Case Diagram

2.1.1.2. Termination/Post Condition Tags:

<TNOTIFY> User is notified of a successfully completed use case

<THOME> User is returned to the homepage

<TUSER> User is admitted to the app

<TWAIT> System is waiting

2.1.1.3. Alternative/Exceptional Flow Use Cases

<INVALID> 1. User is deemed to be invalid

2. User is notified of invalidity

3. User is required to rectify invalid information

4. New entered data is verified to be validated

<CANCEL> -User selects to cancel

-Process proceeds

-Changes do not apply

2.1.1.4. Functional Requirements

Functional Requirement 1: User Registration
Purpose: All users are required to create an account to access Shade Stack

Priority

HIGH

Use Case:

Title User Registration

Tags <FRACCOUNT> & <FRPROFILE>

Scope The scope of this use case is to allows users to
sign up and create an account to appear on the
application. Upon creation, the accounts will be
allowed to store data viewable to other’s.

Actors User

Precondition The user must enter into the application

Activation User creates an account

MainFlow -User indicates they are seeking to join

-Data is validated by the system

-Application generates a new account

- Values for the account are stored within the
database

- User is brought to their account management
page

Exceptional Flow <INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 2: User Login
Purpose: Users must sign into their account to access the application

Priority

HIGH

Use Case:

Title Sign In

Tags <FRSIGN>

Scope The scope of this use case is to allow Users to
sign into the system to use the application. Users
are validated and can only access the authorised
accounts.

Actors User

Precondition The user has created an account with the

application prior to this attempt

Activation User signs in

MainFlow -The system prompts the user for their login
requirements

-The User entered the information

-The system ensures the information is correct

- User is taken to the homepage

Exceptional Flow <INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 3: User Account (Update Profile)
Purpose: To update information on an account

Priority

HIGH

Use Case:

Title Update Profile

Tags <FRACCOUNT>

Scope The scope of this use case is to allow users to
edit the varying information chosen to be
displayed onto the account.

Actors User, Server

Precondition The user must have an account with information
already provided

Activation The user edits profile

MainFlow -System displays existing data

-User alters information

-System validates data

-Profile is updated

Exceptional Flow <CANCEL>

<INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 4: Create Room
Purpose: To update information on an account

Priority

HIGH

Use Case:

Title Create Room

Tags <FRROOM>

Scope The scope of this use case is to allow users to
create a room for users to message into to
connect together.

Actors User

Precondition The user has created an account with the
application prior to this attempt

Activation The user creates a room

MainFlow -System displays room creation action

-User clicks on create room

-User enters room name

-User enters other parameters

-User creates room

Exceptional Flow <CANCEL>

<INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 5: Add User
Purpose: To update information on an account

Priority

HIGH

Use Case:

Title Add User

Tags <FRROOM>

Scope The scope of this use case is to allow users to
add other users into the room.

Actors User

Precondition The user has created or joined a room prior to
this attempt.

Activation The user adds a user

MainFlow -System displays the add user action

-User clicks on add user

-User enters specific name

-User adds user

Exceptional Flow <CANCEL>

<INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 6: Remove User
Purpose: To update information on an account

Priority

HIGH

Use Case:

Title Remove User

Tags <FRROOM>

Scope The scope of this use case is to allow users to
remove users from a room.

Actors User

Precondition The user has created or joined another room
prior to this attempt and is admin.

Activation The user removes a user from a room.

MainFlow -System displays remove user action

-User clicks on remove user

-User enters name

-System checks admin rights.

-System validates user.

-System removes user from room

Exceptional Flow <CANCEL>

<INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 7: Message Room
Purpose: To send messages to another user

Priority

HIGH

Use Case:

Title Room Messaging

Tags <FRMESSAGEROOM>

Scope The scope of the use case is to allow users to
send messages within the room to each other.

Actors User

Precondition The user must have created or joined a room.

Activation The user sends a message

MainFlow -User enters existing room

-System displays text box

-The user types a message to send

-The user clicks send

-The message is sent and saved to the room

Exceptional Flow <CANCEL>

<INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 8: Message Persons
Purpose: To send messages to another user

Priority

HIGH

Use Case:

Title Personal Messaging

Tags <FRMESSAGEPM>

Scope The scope of the use case is to allow a user to
send a personal message to another user.

Actors User

Precondition The user must have another person to message

Activation The user sends a message

MainFlow -System displays search box

-The user searches for the person they want to
message

-User clicks on account

-System displays account

-User clicks on message account

-System displays text box

-User types message

-User sends message

-System sends and saves message

Exceptional Flow <CANCEL>

<INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 9: Review Room Messages
Purpose: To view previous chat logs

Priority

MID

Use Case:

Title Review Rooms Messages

Tags <FRROOMLOGS>

Scope The scope of this use case is to review any
previous messages saved and sent to a room.

Actors User

Precondition The user must be existing within that room

Activation The user views previous sent messages

MainFlow -User enters room

-User reviews messages sent

Exceptional Flow <INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 10: Review Personal Messages
Purpose: To view previous chat logs

Priority

MID

Use Case:

Title Review Personal Messages

Tags <FRMESSAGELOGS>

Scope The scope of this use case is to review any
previous messages received or sent.

Actors User

Precondition The user must have sent or received messages
from a user.

Activation The user views previous sent messages

MainFlow -The user reviews existing messages

-The user clicks on an account

-The user reviews the messages

Exceptional Flow <INVALID>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 11: Search
Purpose: To look for another user

Priority

HIGH

Use Case:

Title User Search

Tags <FRSEARCH>

Scope The scope of this use case is to allows users to
search for other players within the application.

Actors User

Precondition The user must save a name to search for

Activation The user searches for an account

MainFlow -System displays search bar

-User inputs name

-User is presented

Exceptional Flow <INVALID>

<CANCEL>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 12: Details
Purpose: To view details of an account

Priority

HIGH

Use Case:

Title View Details

Tags <FRDETAILS>

Scope The scope of this use case is to allows user to
view details of accounts

Actors User

Precondition The user must have an account to view

Activation The user views the account

MainFlow -The user clicks to view details of an account
after searching

Exceptional Flow <INVALID>

<CANCEL>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

Functional Requirement 13: Block
Purpose: To block another user

Priority

HIGH

Use Case:

Title Block

Tags <FRBLOCK>

Scope The scope of this use case is to block another
user.

Actors User, Server

Precondition The user must have an account to block.

Activation The user blocks the account

MainFlow -System displays search bar

-User inputs name

-System displays account

-User clicks on account

-User blocks account

Exceptional Flow <INVALID>

<CANCEL>

TERMINATION SUCCESS: <TNOTIFY>

FAILURE:<THOME>

POST CONDITION SUCCESS: <TUSER>

FAILURE:<TWAIT>

2.1.2. Data Requirements
User Data

Standard information such as personal details are also necessary. All users will be required
to create a Username and Password to log in and out of the application.

Skills and Experience Data

Upon Creating an account through Shade Stack, they are required to supply information
relating to gaming and requisites to professional level organization’s.

2.1.3. Environmental Requirements
The environmental requirements for Shade Stack are as follows:

Operating Systems:

• Windows version 7+

• MacOS 10+

Browser:

• Chrome

• Firefox

• Safari

Programming Language and Libraries/Frameworks:

• React

• Chat Engine

• HTML

• CSS

• JavaScript

2.1.4. Usability Requirements
Learnability:

ShadeStack must have an interface which provides the users with ease of access to using the
application. Each page should be easily understood.

Error Management:

The system must be designed to alert the user of any error that occurs.

Performance:

The application must be designed to perform well using its standard libraries.

2.2. Design & Architecture / Implementation

Figure: High Level Architecture of ShadeStack

Figure: Class Diagram showing the file structure.

The following are code snippets of the ShadeStack application. Throughout the code will
be comments embedded alongside details underneath each snippet describing
functionality.

Index.js

ReactDOM used to render the react app.

App.js

React
Route
r,
AuthP
rovide
r,
Switch
and
Route’
s used
to
define
page
paths
while
logge
d in.

Fireba
se.js

Used to setup auth and storage functions for firebase.

 AuthContext.js

Used to render auth user function.

Chats.js Part 1.(Please zoom in to read code)

Part 2.
(Please zoom

in to read
code)

Render for Block, Search and Chats main page. Main Comments embedded within code.

Return() brings back navbar, searchbar, and chatengine.

Auth, user variable, history, and accounts all setup within this page alongside chats.

Feed.js

Render for navbar with divs and ChatEngine feed using ChatEngineWrapper and ChatSocket.

Login.js

Div setup for logging in. Google button within login card for signInWithRedirect to
Google.

Profile.js (Please zoom in to read code)

Main Comments embedded.

The following Pages such as ErrorBoundary.js, SearchBar.js, UpdatePassword.js,
updateUser.js and index.css are all important to the entire build-up of the application but

are not the main classes and functions such as the previously stated and will not be included
within the document. These pages can still be viewed within the code repository
(https://github.com/ggjambo/ComputingProject).

2.3. Graphical User Interface (GUI)
Sign-In Page (Authentication):

- Google

Chats:

- Redirect to feed

- Redirect to profile

- Search for User

- Search for User to Block

- Search For Chats

- Allows for the creation of chat rooms

Chat Room:

- Allows for messaging into the room.

- Users can be added / removed

- Attachments added &

- Room deleted

Feed:

-Community feed to anonymously link up with new players

Profile:

- Update Avatar

- Change Password

- Account Bio to be implemented

2.4. Testing

Black-Box Testing:

Throughout the project's development, black-box testing was continuously carried out to
confirm the addition of new code and features. This was done by simply navigating the UI of
the application to see if it performed correctly.

Unit Testing:

Individual units of source code—sets of one or more computer program modules together
with associated control data, usage procedures, and operating procedures—are tested to
determine their suitability for use using unit testing.

Throughout the following are tests for each individual page created with its associated tests
to render the outcomes of the page.

Throughout the test suites there was an underlying error with Jest itself not being able to
recognize the output of the AuthContext class to be function. There was also and error with
Jest not being able to recognize the auth.AuthStateChanged to be a function and the React
Router API. Others I could not figure out how to fix for testing but still tried.

App.test.js

firebase.test.js

Chats.test.js

Feed.test.js

Login.test.js

Profile.test.js

SearchBar.test.js

UpdatePassword.test.js (Please zoom in to read code)

AuthContext.test.js

updateUser.test.js (Please zoom in to read code)

The outcomes of the tests are as follows:

console.error

Warning: React.jsx: type is invalid -- expected a string (for built-in components) or a
class/function (for composite components) but got: undefined. You likely forgot to export
your component from the file it's defined in, or you might have mixed up default and
named imports.

 Check your code at Profile.test.js:30.

 28 | <MemoryRouter>

 29 | <AuthProvider currentUser={mockUser}>

 > 30 | <ErrorBoundary>

 | ^

 31 | <Profile />

 32 | </ErrorBoundary>

 33 | </AuthProvider>

 console.error

 The above error occurred in the <AuthProvider> component:

 in AuthProvider (at Profile.test.js:29)

 in Router (created by MemoryRouter)

 in MemoryRouter (at Profile.test.js:28)

 ● Profile › displays user info and logout button

 TypeError: _firebase.auth.onAuthStateChanged is not a function

 21 | //Whenever the state of auth changed call user data

 22 | useEffect(() => {

 > 23 | auth.onAuthStateChanged((user) => {

 | ^

 24 | setUser(user);

 25 | setLoading(false);

 26 | if(user) history.push('/chats');

 ● Profile › logs out the user when Logout button is clicked

 TypeError: _firebase.auth.onAuthStateChanged is not a function

 21 | //Whenever the state of auth changed call user data

 22 | useEffect(() => {

 > 23 | auth.onAuthStateChanged((user) => {

 | ^

 24 | setUser(user);

 25 | setLoading(false);

 26 | if(user) history.push('/chats');

 ● Profile › navigates to Update Password page when Change Password button is clicked

 TypeError: _firebase.auth.onAuthStateChanged is not a function

 21 | //Whenever the state of auth changed call user data

 22 | useEffect(() => {

 > 23 | auth.onAuthStateChanged((user) => {

 | ^

 24 | setUser(user);

 25 | setLoading(false);

 26 | if(user) history.push('/chats');

 ● Profile › updates user avatar when Update Avatar button is clicked and file is selected

 TypeError: _firebase.auth.onAuthStateChanged is not a function

 21 | //Whenever the state of auth changed call user data

 22 | useEffect(() => {

 > 23 | auth.onAuthStateChanged((user) => {

 | ^

 24 | setUser(user);

 25 | setLoading(false);

 26 | if(user) history.push('/chats');

 FAIL src/firebase.test.js

 ● Test suite failed to run

 INTERNAL ASSERTION FAILED: Expected a class definition

 13 | appId: "1:326095191226:web:1ee10ee668753d305f9683",

 14 | measurementId: "G-HJ3L04PHTR"

 > 15 | }).auth();

 | ^

 16 |

 17 |

 18 | const storage = firebase.storage();

 FAIL src/components/Feed.test.js

 ● Test suite failed to run

 INTERNAL ASSERTION FAILED: Expected a class definition

 13 | appId: "1:326095191226:web:1ee10ee668753d305f9683",

 14 | measurementId: "G-HJ3L04PHTR"

 > 15 | }).auth();

 | ^

 16 |

 17 |

 18 | const storage = firebase.storage();

 FAIL src/components/Chats.test.js (78.82 s)

 ● Chats › renders chats page

 TypeError: Cannot read properties of undefined (reading 'Provider')

 19 | render(

 20 | <MemoryRouter>

 > 21 | <AuthContext.Provider value={{ user: mockUser }}>

 | ^

 22 | <Chats />

 23 | </AuthContext.Provider>

 24 | </MemoryRouter>

 at Object.<anonymous> (src/components/Chats.test.js:21:22)

 FAIL src/App.test.js

 ● Test suite failed to run

 INTERNAL ASSERTION FAILED: Expected a class definition

 13 | appId: "1:326095191226:web:1ee10ee668753d305f9683",

 14 | measurementId: "G-HJ3L04PHTR"

 > 15 | }).auth();

 | ^

 16 |

 17 |

 18 | const storage = firebase.storage();

Test Suites: 9 failed, 1 passed, 10 total

Tests: 8 failed, 2 passed, 10 total

Snapshots: 0 total

Time: 108.393 s

Ran all test suites.

2.5. Evaluation
The system was evaluated by determining whether or not all of the requirements
established at the outset of the project were met, as well as whether or not the project's
end goals were met. It was also evaluated for speed and performance.

Given circumstances on how this is met, the application was not 100% complete. Some
issues still remain within the project such as the searchbar’s, and Profile updating not
working. Some functionality is still missing as well and yet to be implemented such as
account bios.

As these are the only issues to remain within the project, it is roughly around 80-85%
complete with some bits of code needing to be fleshed out. As for speed and performance
logging in, setting up rooms, adding users, sending messages, sending attachments, deleting
rooms, and sending messages within the community feed are all up to scratch.

The application works as intended and is mostly finished.

3.0 Conclusions
ShadeStack is a very adverse communication platform in terms of other platforms out there
from highly known brands to smaller companies. It is very simple to use, all you need to do
is click the google button, sign in with your account and you’re in. From communicating
within the community feed to then creating a room with found members it is a very quick
way to find teammates for games ad sorting out details. On other platforms you may be
only able to contact a person one by one and them not even see the message, as well as
that some chat rooms available online only feature the communication of games, not to link
players up. ShadeStack is an all in one platform for enabling players to quickly and
comfortably communicate with other users to exchange details for meetups. A disadvantage
of ShadeStack is that it is not complete. It would have been nice to search for players to
then find their details and or the search functions work to find different already created
rooms to meetup quicker. Another disadvantage of ShadeStack is that the community feed
is at risk of spam and users not directly communicating about their gaming details. Other
than these disadvantages ShadeStack would be have been a very complete application for
randomly searching chats/users, to communicating with them.

4.0 Project Plan

5.0 Further Development or Research
With additional time and resources, the project would definitely be 100% complete for the
issues that are still remaining with the application. Accounts would then be searchable /
blockable, rooms searchable, and bios available for accounts.

6.0 References

7.0 Appendices

7.1 Reflective Journals

Supervision & Reflection

Student Name James Croke

Student Number 17480714

Course Digital Business Transformation

Supervisor Adriana Chis

Month: October

What?

Reflect on what has happened in your project this month:

Throughout the initial weeks of this first semester I began to brainstorm and research into
interests of mine and what I could do to translate one I could pick into a project.

I ended up finalizing that idea to creating a web application for the short- and long-term
networking of gamers. This being the most suitable option was decided due to my knowledge and
understanding of web development.

With what I have found, the technologies such as React Routing, Social auth, Firebase, the React
Context API, Chat Engine, Environment Variables and Rest APIs gives a solid foundation for
development of the application.

Gaming has also been a big passion of mind especially the pro side of it and really motivated me
towards creating some network for gamers given the lack of resources out there for quick finding
of players.

So What?

Consider what that meant for your project progress. What were your successes? What challenges
still remain?

Successes:

From the technologies that I have found so far has led to a significant head start into development
of the project.

There will be no need into researching specific technologies for certain requirements of the
project as they are already there.

Requirements gathering is pretty much completed also and will just require research from the
listed technologies in order to implement.

Challenges remaining:

- Identify methods of coding using the technologies found

- Research more into potential functional requirements that can be added to the project from the
existing technologies

-Research if additional technologies need to be added in order to complete the project

-Complete Project Proposal

-Start Coding

Now What?

What can you do to address outstanding challenges?

-Use trustworthy resources in order to learn

-Become more familiar with the technologies

-Figure out if there technologies that work cohesively with what is currently found with the
technologies

-Slowly complete project proposal with research that has been found

-Become familiar with the first part of the application for example the login and registration and
start there

Student Signature James Croke

Supervision & Reflection

Student Name James Croke

Student Number 17480714

Course Digital Business Transformation

Supervisor Adriana Chis

Month: November

What?

Reflect on what has happened in your project this month:

During the course of this month has been very busy as a lot of other projects have had deadlines.

It has been very difficult to put time into the computing project as these other projects have taken
priority for the moment due to the level of difficulty for learning and development.

In the Computing Project the project proposal and technical document have been worked on.

The project proposal itself completed and the technical document currently in progress.

As for the coding of the project, that is yet to be initialized.

So What?

Consider what that meant for your project progress. What were your successes? What challenges
still remain?

Successes:

The project proposal is completed.

The technical document is nearly finished.

Other projects are nearly finished to begin coding of the computing project.

Challenges remaining:

- Begin the computing project

- Finish the Technical document

Now What?

What can you do to address outstanding challenges?

-Finish projects as soon as possible

Student Signature James Croke

Supervision & Reflection

Student Name James Croke

Student Number 17480714

Course Digital Business Transformation

Supervisor Adriana Chis

Month: December

What?

Reflect on what has happened in your project this month:

During the course of this month has also been very busy as a lot of other projects deadlines have been
coming up.

It has been very difficult to put time into the computing project as these other projects have taken priority
but progress has been made with finishing the prototype and completing the presentation.

In the Computing Project the project technical document has also been worked on and nearly finished.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Successes:

Prototype finished.

The technical document is nearly finished.

Challenges remaining:

-Finish researching room viewing for application.

-Implement room viewing and other functions.

- Finish the Technical document

Now What?

What can you do to address outstanding challenges?

-Finish projects as soon as possible to continue on with research.

Student Signature James Croke

Supervision & Reflection

Student Name James Croke

Student Number 17480714

Course Digital Business Transformation

Supervisor Adriana Chis

Month: January

What?

Reflect on what has happened in your project this month:

As the month has led on to the second semester it was time to plan again which projects needed to be
prioritized in order to be as productive as possible.

Due to their not being too much strenuous work left with the computing project it has left a bit of a
comfortable workflow for the next while with researching and implementation.

It would take awhile to figure out how to implement the room viewing but it will be done.

The same for account searching/editing.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Successes:

Prototype finished.

Calm workflow.

The technical document is nearly finished.

Challenges remaining:

-Finish researching room viewing for application.

-Finish researching account searching/editing.

-Implement room viewing and other functions.

- Finish the Technical document

Now What?

What can you do to address outstanding challenges?

-Research as planning has been completed.

Student Signature James Croke

Supervision & Reflection

Student Name James Croke

Student Number 17480714

Course Digital Business Transformation

Supervisor Adriana Chis

Month: February

What?

Reflect on what has happened in your project this month:

As this month has led on finding how to implement room viewing has been quite difficult as there is not a
lot of coverage online.

That being said research into testing has also been difficult as there is a lot of different code from what has
already been done in order to be perform this task for unit, bottom-up, and component testing. It will take
awhile to learn this new style.

Hopefully research into the functionality will not be too difficult before implementing code for testing.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Successes:

Some research has been completed.

Challenges remaining:

-Implementation for room viewing needs to be completed

-Implementation for testing of the application needs to be completed

- Finish the Technical document

Now What?

What can you do to address outstanding challenges?

-Continue researching with the time I have before other projects need to be started.

-Start implementing testing.

Student Signature James Croke

Supervision & Reflection

Student Name James Croke

Student Number 17480714

Course Digital Business Transformation

Supervisor Adriana Chis

Month: March

What?

Reflect on what has happened in your project this month:

Throughout this month I have found more information on all of the final functionality for the application.

The code for testing has additionally been looked into.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Successes:

Prototype finished.

Calm workflow

The technical document is nearly finished.

Challenges remaining:

-Implement room viewing for application.

-Implement account searching/editing.

-Implement room viewing and other functions.

- Finish the Technical document

Now What?

What can you do to address outstanding challenges?

-Continue Coding.

Student Signature James Croke

Supervision & Reflection

Student Name James Croke

Student Number 17480714

Course Digital Business Transformation

Supervisor Adriana Chis

Month: April

What?

Reflect on what has happened in your project this month:

Throughout this month I have implemented the final functionality for the application as best as I could.

The code for testing has also been written to the best of my ability.

So What?

Consider what that meant for your project progress. What were your successes? What challenges still
remain?

Successes:

Prototype finished.

Application Finished.

Calm workflow.

The technical document is nearly finished.

Challenges remaining:

- Finish the Technical document

Now What?

What can you do to address outstanding challenges?

-Continue finalizing the technical document.

Student Signature James Croke

7.2 Project Proposal

National College of Ireland

Project Proposal

 ShadeStack

31st Oct 2022

Digital Business Transformation

Academic Year i.e., 2022/2023

James Croke

X17480714

X17480714@student.ncirl.ie

mailto:X17480714@student.ncirl.ie

Objectives
ShadeStack is a web application currently in development for browsers, using multiple additional
technologies to allow shrouded or unknown players within the gaming community to search for
other players of their skill level on platforms such as Xbox, PlayStation, and pc.

In whatever game they are choosing to play, the users will be able to create a room with their own
specific parameters or join another room to team up with players and create their own temporary
posse or permanent clan.

Once a player has joined a room, they can communicate with other users of that room to figure out
how they are going to connect.

This room can also be used as a 3rd party for communication as some games may have cross-play,
but their independent platforms does not support the use of text communication between each
other.

Rooms can also be created for the sole purpose of gamers to socialize and talk if they wish about a
game.

The application is more aimed towards the professional finesse rather than casual as the target
market would be players of high skill or rank within their game to form chosen teams for Esports.
This encourages the development of professional gaming and the market itself then, as players will
generally compete within tournaments on platforms such as GameBattles to win cash prizes, or
slowly increase their skill for their own benefit.

 Main Objectives of ShadeStack are as follows:

- Easy to navigate UI

- Retrieve and store relevant user information (e.g. games on list, name, age, gender, platform)

- Creation of rooms w/ adding and removing users

- Search for users

- Personal Messaging

- Real Time Chatting/Messaging

Background
Throughout my years of getting older, gaming has been a huge impact towards my balance of a
healthy lifestyle with work and hobbies. It has enabled me to procrastinate from where I am
[usually] based to instantly being able to jump into some work and repeating the cycle after some
burnout.

Within my 17 years of gaming, I have been majorly involved within the social aspect of casual and
professional playing, with communicating randomly to persons in online matches to seeking a more
objective oriented version to communicating. This can contain looking for specified players with
certain skill sets, to looking for specified groups with certain skill sets, generally known as clans.

These clans range from an entire plethora of AAA titles to smaller independent developer games.
With the development of platforms such as Xbox, PlayStation, Steam and others like Nintendo,
Nvidia, and Google Stadia, it has allowed the progression of communication to find players for
groups better but not full as an entirety.

Generally, with these platforms it is not as simple as just going to a brand forum or dedicated
communication area to find players, it is a lot more complicated with layers upon layers of
verification to then initialize a post for a high possibility of no one to join due to the extra
complications.

With ShadeStack the aim of development is to have enough layers of verification there but make the
application easily accessible to login and instantly chat within a thread to find a player of choice or
even go through extra steps to investigate player skill, games, and connection stability through
profiles. Platforms are all included within the user details.

State of the Art

The only other applications out there that performs similarly are called lookingforclan.com, chat-
avenue.com/videogames/ and cmxchat.com/gaming-chat/.

Lookingforclan.com seeks to create clans between players but does not have chat rooms to quickly
and readily find players looking to join as a team to compete together.

chat-avenue.com/videogames/ seeks to create chat rooms for gamers but only to discuss the latest
in video game news, new releases and cheat codes on various systems.

cmxchat.com/gaming-chat/ offers the same as the previous chat-avenue.com/videogames/ with
nothing for connecting gamers to play.

Technical Approach
Developed through an IDE’ such as (VS Code) Shadestack will be created using React Routing, Social
Auth, Firebase, the React Context Api, Chat Engine, Environment Variables and Rest APIs to create.

Identification of user requirements have been made through personal recommendation and
knowledge throughout the years of gaming but, will also be gathered from persons after consent
forms signed and options been chosen regarding the format of ethics.

Functional Requirements:

A1 Users can create an account for the application (ShadeStack)

Users can login to the application with the created account.

Users can fill up their profiles with standard general information within gaming such as Name, Age,
Gender, Games, and Ranks within those games.

Users can create rooms:

8.0 Users can add other users a created room
Users can remove users from a created room

Users can message in rooms or personal message

Users can go back to previous messages of a room or personal messages to review information

Users can search for players

A2 Users can look at the details an account
A3
A4 Users can block certain information being displayed

Project milestones, activities, and tasks will be calculated and documented using an iterative
approach throughout the coming future, a rigid approach will be taken through the projects
development and examined to stay readily close to the plan as said within tab number 7.0.

Technical Details
The technologies stated within the previous heading (technical approach) are to be used and are as
follows.

VS Code

Integrated development environments developed by Google and Microsoft used to edit source code
that can be used alongside a variety of programming languages, including Java, JavaScript, Go,
Node.js, Python, C++ and Dart. VS being built on the Electron framework, used to develop Node.js
applications for web running on the Blink layout engine.

React Routing

React (also known as React.js or ReactJS) is a free and open-source front-end JavaScript library for
building user interfaces based on UI components. React Router is a powerful routing library built on
top of React that helps you add new screens and flows to your application incredibly quickly, all
while keeping the URL in sync with what's being displayed on the page. React is only concerned with
state management and rendering that state to the DOM, so creating React applications usually
requires the use of additional libraries for routing, as well as certain client-side functionality.

Social Auth

Login authentication through 3rd Party applications.

Firebase

A platform developed by Google for creating mobile and web applications. Originally an independent
company founded in 2011. Now in the year of 2021 it has been 9 years since Google acquired the
platform and is now one of their flagship offerings for app development providing a whole plethora
of services for app and web development i.e., Firebase for storing information which it is widely used
for.

The React Context Api

The React Context API is a way for a React app to effectively produce global variables that can be
passed around. This is the alternative to "prop drilling" or moving props from grandparent to child to
parent, and so on.

Chat Engine

Chat Engine is an API providing a REST API, and NPM components to help with chat UI.

Environment Variables

EVs let you store globally scoped values to the environment your code is running in, making them
available throughout the codebase.

Rest APIs

A REST API (also known as RESTful API) is an application programming interface (API) that conforms
to the constraints of REST architectural style and allows for interaction with RESTful web services.

HTML

The HyperText Markup Language is the standard markup language for documents designed to be
displayed in a web browser. It can be assisted by technologies such as Cascading Style Sheets (CSS)
for decorating a page and scripting languages to run commands.

CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the presentation of a
document written in a markup language such as HTML.

JavaScript

Often abbreviated as JS, is a programming language of high-level, often just-in-time compiled and
multi-paradigm. It has the ability of dynamic typing, prototype-based object-orientation and first-
class functions.

Alongside HTML and CSS, JavaScript is one of the core technologies of the Worldwide WEb. Over
97% of websites using it client-side for web page behaviour, often including third-party libraries for
additional functionality.

Special Resources Required
The use of Google and Facebook API’s will be attempted within the login / verification of registering
for a new account.

Project Plan
Below details the task board and Gantt Chart:

Testing
Components / Unit Testing, Bottom-Up Integration Testing and System Testing Tests:

User Tests:

Test Application Boots up

Test Application has Network Connectivity

A1 Login/Register:

Test Displays ‘User/Password’ Text Boxes

Test can Accept Usernames/Passwords including after multiple invalid attempts

Test Validity of Account can be checked - Test ‘Username’ and ‘Password’ values can be
verified on Firebase

Test Logging In of Account can be done – Check if account is passed to next screen

 Test Invalidity of Account can be checked

Test Error Display Box can be presented after invalidity occurs

Test reverting to previous step can be performed after invalidity occurs

 Test to Display ‘Try Again’ Text Box after Invalid Validation of Details

A2 (Occurrence after previous tests) Profiles:

Test Displays ‘User/[[Age]]/Gender/Games/Ranks’ Text Boxes

 Test can Read Displays ‘User/[[Age]]/Gender/Games/Ranks’ values from the Database

Test the ability to edit ‘User/[[Age]]/Gender/Games/Ranks’ Text Boxes

Test ‘User/[[Age]]/Gender/Games/Ranks’ Text Box values update to Firebase

Test Invalidity of updating ‘User/[[Age]]/Gender/Games/Ranks’ Text Boxes

Test Error Display Box can be presented after invalidity occurs

Test reverting to previous step can be performed after invalidity occurs

Test to Display ‘Error’ Text Boxes if information cannot be read from
Firebase

A3 Rooms:

Test creation of rooms

Test Joining Room

Test showing error upon failed room join

Test shows new room

Test shows existing rooms

Test adding users to room

Test showing error upon non-existent user

Test removing users to room

Test showing error upon non-existent user

Test input into Chat

Test ‘Display is Typing’

Test shows the text on the right side

Test to Display ‘Try Again’ Text Box after Invalid text has been
inputted due to profanity or hacking attempts (e.g. SQL Injection)..

Test text is saved to Firebase

Test showing error upon no name created for room

A4 Personal Messaging:

Test search for user’s

Test input into Chat

Test ‘Display is typing’

Test shows the text on the right side

Test to Display ‘Try Again’ Text Box after Invalid text has
been inputted due to profanity or hacking attempts (e.g. SQL
Injection)..

Test text is saved to Firebase
Test showing error upon non existent

	Contents
	Executive Summary
	1.0 Introduction
	1.1. Background
	1.2. Aims
	1.3. Technology
	1.4. Structure

	2.0 System
	2.1. Requirements
	2.1.1. List of Functional Requirements
	2.1.1.1. Use Case Diagram
	2.1.1.2. Termination/Post Condition Tags:
	2.1.1.3. Alternative/Exceptional Flow Use Cases
	2.1.1.4. Functional Requirements
	Functional Requirement 1: User Registration
	Functional Requirement 2: User Login
	Functional Requirement 3: User Account (Update Profile)
	Functional Requirement 4: Create Room
	Functional Requirement 5: Add User
	Functional Requirement 6: Remove User
	Functional Requirement 7: Message Room
	Functional Requirement 8: Message Persons
	Functional Requirement 9: Review Room Messages
	Functional Requirement 10: Review Personal Messages
	Functional Requirement 11: Search
	Functional Requirement 12: Details
	Functional Requirement 13: Block

	2.1.2. Data Requirements
	2.1.3. Environmental Requirements
	2.1.4. Usability Requirements
	2.2. Design & Architecture / Implementation
	2.3. Graphical User Interface (GUI)
	2.4. Testing
	2.5. Evaluation

	3.0 Conclusions
	4.0 Project Plan
	5.0 Further Development or Research
	6.0 References
	7.0 Appendices
	7.1 Reflective Journals
	7.2 Project Proposal

	Objectives
	Background
	Technical Approach
	Technical Details
	Special Resources Required
	Project Plan
	Testing

