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Standardised Versioning of 
Datasets: a FAIR–compliant 
Proposal
Alba González–Cebrián    ✉, Michael Bradford, Adriana E. Chis    & Horacio González–Vélez   

This paper presents a standardised dataset versioning framework for improved reusability, recognition 
and data version tracking, facilitating comparisons and informed decision-making for data usability and 
workflow integration. The framework adopts a software engineering-like data versioning nomenclature 
(“major.minor.patch”) and incorporates data schema principles to promote reproducibility and 
collaboration. To quantify changes in statistical properties over time, the concept of data drift 
metrics (d) is introduced. Three metrics (dP, dE,PCA, and dE,AE) based on unsupervised Machine Learning 
techniques (Principal Component Analysis and Autoencoders) are evaluated for dataset creation, 
update, and deletion. The optimal choice is the dE,PCA metric, combining PCA models with splines. 
It exhibits efficient computational time, with values below 50 for new dataset batches and values 
consistent with seasonal or trend variations. Major updates (i.e., values of 100) occur when scaling 
transformations are applied to over 30% of variables while efficiently handling information loss, yielding 
values close to 0. This metric achieved a favourable trade-off between interpretability, robustness 
against information loss, and computation time.

Introduction
The significance of data versioning lies in its capacity to monitor changes over time, promote reproducibility, 
and encourage collaboration. While the Research Data Alliance (RDA) and the DataCite Metadata Schema1,2 
incorporate versioning for data citation, their frameworks have limitations in aligning with the FAIR (Findable, 
Accessible, Interoperable, and Reusable) principles3. For instance, they often rely on traditional publication 
indexing, hindering efficient discovery based on dataset attributes. Inadequate tools for understanding version 
differences led to users navigating dense documentation, resulting in inefficient discovery, low reusability of 
already preprocessed datasets and sub-optimal resource reuse, undermining the recognition of previous data 
curation efforts and, ultimately, reproducibility4.

To address these issues, we propose optimising the DataCite schema to enhance the findability, reusability, 
and recognition of data versions. A set of foundational principles for effective data versioning practices5 empha-
sises the need to identify new versions, distinguish between revisions, releases, granularity levels, and dataset 
manifestations, and comply with provenance and citation standards. While some research has explored data 
monitoring or timestamp-based data versioning, a clear standard that encompasses and reflects the multiple 
dimensions of changes in data versions is lacking.

In this study, we present two layers of the same global solution. Firstly, we propose a standard data version tag 
based on the widely recognised software versioning format of “major.minor.patch”. This aligns with the 
foundational principles from Klump et al.5 and complies with existing fields in the DataCite schema. Secondly, 
we introduce the concept of a data drift field to be integrated into the DataCite metadata schema, serving as the 
“minor” term of the version tag. We introduce three data drift metrics leveraging Machine Learning (ML) 
models to capture and quantify data drift, i.e., changes in statistical properties or distributions across data ver-
sions, namely dP using Principal Component Analysis (PCA), dE,PCA using PCA and splines, and dE,AE using 
Autoencoders (AE) and splines.

Our experimental approach focused on working with real datasets to reflect real-world data dynamics. The 
methodology involves performing common operations, including the creation of new information, updates 
to existing records, and deletions, simulating scenarios frequently encountered in dynamic datasets. This 
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systematic approach serves to validate the technical quality of our dataset while introducing common changes 
that often occur in real-world data. Therefore, our contribution lies not only in proposing a standard data 
versioning nomenclature but also in demonstrating the practical value of this approach by applying it to real 
datasets.

We outline the structure of the paper as follows: Section 2.1 describes the proposed data versioning nomen-
clature and explores potential metrics to quantify the “minor” term, specifically related to data drift. The 
methods used to calculate the three metrics mentioned above are further explained in Section 2.2. Section 2.4 
describes the seven open datasets used to evaluate this work, including their source repository and relevant 
features. Section 3 presents the results, which are further discussed from Sections 4.1 to 4.3, demonstrating the 
coherence of the proposed metrics across different datasets and scenarios and highlighting the advantages and 
disadvantages of each metric. Both dE,PCA and dE,AE metrics exhibited similar behaviours, indicating higher data 
drift values for atypical data batches and variable scale updates. The dP metric showed less sensitivity to scale 
changes, given that the covariance structure remained unaffected. Simulated information loss demonstrated that 
dE,PCA was more stable than dP in the data drift values, preserving recognition of records in the reference dataset. 
The AE-based metric, dE,AE, displayed higher data drift values for noisy datasets, implying a need to refine the 
model-building stage. Regarding computational resources, dE,PCA had an intermediate model-building time and 
remained the fastest technique in execution time for revisions across all datasets and experiments. Overall, the 
dE,PCA metric offers the optimal stability, robustness, and computation time trade-off. Furthermore, the results 
highlighted the impact of dataset characteristics, suggesting potential contributions for specific data attributes. 
Lastly, Section 4.4 summarises the paper’s main ideas and contributions, including proposing a standardised 
data version labelling based on existing DataCite fields while allowing for domain-specific solutions within the 
standard.

Methods
In this section, first, we present in Section 2.1 a conceptual and technical definition of the proposed standard for 
naming data versions. Next, in Section 2.2 we describe different approaches to determine a standard minor term, 
specifically a data drift metric. Three different data drift metrics (d) will be proposed, being based either on the 
PCA loadings (P, i.e., dP) or on the reconstruction error (E) obtained after projecting the data matrix onto the 
model M (i.e., dE ,M), which can be a PCA (dE,PCA) or an Autoencoder model (dE,AE). Lastly, we describe the 
experimental setup implemented to assess these approaches. Throughout this paper, the term “revisions” refers 
to new versions of a dataset, following the terminology proposed by Klump et al.5.

The proposed solution.  In line with Klump et al.‘s Foundational Principle #6, our proposed versioning pro-
tocol aims to adopt the traditional versioning semantics used in software, which follows the “major.minor.
patch” format. However, universality and modularity must be considered to establish a standardised data ver-
sioning nomenclature based on this syntax. Universality refers to the ability to work with common concepts 
across various contexts and industries, avoiding the creation of ad hoc version naming systems for each field or 
environment. Modularity entails employing strategies based on orthogonal components or modules that can 
operate independently of one another. This provides flexibility in determining the technical tools used to quantify 
each term of the version tag, which may vary depending on the specific context or environment. Taking these 
requirements into account, we propose the following naming standard for data versions:

	 1.	 Patch Version (“major.minor.patch”): In data versioning, a patch version update typically involves 
small, specific fixes or corrections applied to the dataset. These updates address inconsistencies, errors, 
or bugs without significantly changing the data structure or functionality. Patch updates are generally 
backwards-compatible, allowing the seamless application to existing datasets without major modifications. 
We propose representing the patch version with timestamps that identify specific operations. The DataCite 
Metadata Schema includes the “datacite.VersionDate” field, dedicated to capturing timestamping 
information related to data versions in a precise and standardised manner2. This field adheres to recog-
nised timestamp formats like ISO 8601, ensuring consistent representation and interoperability across 
datasets. It enables accurate documentation and tracking of temporal changes in dataset versions, facili-
tating navigation and interpretation based on temporal characteristics within the academic and research 
community.

	 2.	 Minor Version (“major.minor.patch”): A minor version update in data versioning typically encom-
passes enhancements, additions, or updates that do not significantly disrupt the existing data structure 
or compatibility and may improve data processing mechanisms. This information can be represented by 
a data drift metric, quantifying the informational change between a data version and a reference point, 
typically the oldest version sharing the same data model (major term). Standardised data drift metrics 
must be defined and agreed upon to capture the extent of drift between dataset versions, a topic explored in 
more detail in Subsection 2.2. The DataCite Metadata Schema’s “relatedIdentifier” element allows 
for specifying relationships between different dataset versions2. We propose incorporating the data drift 
metric as a custom metadata field, “dataDriftMetric”, within this element. This enables researchers 
to document and compare data drift metrics explicitly, providing insights into version changes, assessing 
reliability and relevance, and making informed decisions regarding data usability. Data consumers can 
better understand the implications of using specific dataset versions and evaluate the impact of data drift 
on downstream analyses.

	 3.	 Major Version (“major.minor.patch”): A major version update in data versioning signifies significant 
and substantial changes to the dataset, often involving substantial modifications, additions, and deletions 
to the data structure, schema, or underlying data model. Informing others about the data model or schema 
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promotes data interoperability, understanding, and reuse. The DataCite Metadata Schema incorporates the 
“datacite.SchemaVersion” field to describe a dataset’s data model or schema in a comprehensive 
and structured manner2. This field allows the representation of commonly used data models or schemas, 
such as Dublin Core and Data Documentation Initiative (DDI). It also supports supplementary metadata 
fields such as “datacite.DataModelDescription” and “datacite.DataModelIdentifi-
er”, which provide additional granularity regarding the data model. These fields encompass descriptions, 
identifiers, or controlled vocabularies, offering specific information about the structure, ontologies, or 
standards employed to define the dataset data model. By including the major version term, researchers can 
effectively communicate the underlying structural organisation and semantic relationships within the data-
set, enabling others to interpret and integrate the data into their workflows and analyses while adhering to 
established data modelling practices and conventions.

The structure of the version label presented here mirrors the granularity levels used in traditional software 
versioning. It employs terms that embody general concepts applicable to all types of datasets, making it compli-
ant with the requirement of universality and suitable for an interdisciplinary standard. Furthermore, it satisfies 
the modularity requirement since even if certain terms are updated (e.g., changing the technique for computing 
data drift or adjusting the level of time precision in timestamps), the conceptual meaning of the term within the 
version name remains consistent. The only requirement is maintaining coherence in the technical details applied 
across the versioning process to obtain the version terms.

Using the combination < > = < . . >minor, patch data drift, time stamp , it becomes efficient to map new 
versions regarding content drift and novelty while referencing the dataset source. Similarly, as new concepts are 
added, < > = < . . >major minor data model data drift, ,  can trigger the reassessment of ML models based on 
previous data models. The minor term can serve as a standard metric for monitoring data across a data model, 
which is particularly beneficial for dynamic datasets. Subsection 2.2.1 describes different ML models used to 
compute the indices employed as the minor term, elaborated upon in Subsection 2.2.2.

Standard data drift metrics for the minor term.  This section presents various methodologies for quan-
tifying data drift and integrating it as a fundamental component within a standardised content-based data ver-
sioning framework. The objective is to develop a universally applicable tool that enables the characterisation of 
content changes across different versions of data that adhere to the same data schema. Data drift is the concept 
which refers to changes or deviations that occur in the statistical properties or distributions of data over time. 
By quantifying and including data drift metrics within the metadata, researchers and data consumers can gain 
insights into the extent of changes, facilitating accurate comparisons between versions and making informed 
decisions regarding the suitability and reliability of different dataset versions.

There are several options in the literature for measuring data drift. Most basic methods are based on com-
mands for comparing flat datasets, such as the “diff ” Unix one. Yet, while such commands serve for dataset 
content comparison, they present several limitations, especially when dealing with complex or non-structured 
data. As they do not fit any model capturing the data structure, they might not be robust against changes in 
data formats, missing values, and other anomalies, making them less resilient to noisy or messy data, which 
are precisely very susceptible to yielding future data versions where some preprocessing or data cleaning was 
applied. Tools that look into the statistical properties of datasets might identify patterns invisible to simple 
character-by-character comparisons. A simple case could be the contention of a new data version by changing 
the numerical precision, which could lead to substantial data drift values using text-based comparison, whereas 
this information loss, as far as it does not affect the data patterns, would not yield an increase in data drift values 
based on statistical properties.

Some examples of classical statistical concepts for distance measurement are based on parametric approaches, 
such as the Kullback-Leibler (KL) divergence6 and the Jensen-Shannon Divergence (JSD)7, which measure the 
dissimilarity between the probability distributions of two datasets. However, these approaches are univariate, 
and applying them to multivariate datasets would require corrections to control high false positive rates8 when 
comparing the distances between dataset versions, which present their limitations themselves9. To overcome this 
limitation, multivariate approaches can be used instead for detecting changes in multivariate datasets.

Some examples of more sophisticated parametric techniques included the Cumulative Sum (CUSUM) algo-
rithm10 and Bayesian Change Point Detection11, which compared the expected behaviour of the data with the 
observed new incoming values. However, recent approaches increasingly advocate using ML models for data 
monitoring12. These ML-based approaches leverage ensemble models13, the k-Nearest Neighbours (KNN) algo-
rithm14, or autoencoders15 to detect and quantify data drift. These methods often redefine the quantification of 
data drift as a supervised problem, focusing on distinguishing between normal observations and atypical ones.

We propose using metrics derived from unsupervised ML algorithms to overcome the limitations of super-
vised approaches and the need for predefined categorisations. This approach enables the detection of changes in 
datasets regardless of their specific use for modelling tasks. However, it should be noted that unsupervised mod-
els do not directly capture the interoperability between data and the models based on them, such as changes in 
predictive performance. Assessing this aspect would require a generic data version tag representing the impact of 
new data versions on models, which is beyond the scope of data monitoring and falls under Continual Learning.

Figure 1 summarises our approach implemented to evaluate several strategies for quantifying data drift, all of 
which involve the combination of an ML model and a formula to compute a data drift index. All the models are 
built using the Primary Source dataset (Model Building flow in Fig. 1). Afterwards, they are used to compare the 
information with the new dataset versions, also called Revisions (Model Exploitation flow in Fig. 1), resulting 
in a certain data drift metric. In the Results section, we illustrate the behaviour of the proposed metric when 
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different operations are applied to a Primary Source dataset to obtain new versions. However, it is important 
to note that other techniques for measuring data drift may be more suitable for specific datasets. The proposed 
framework is compatible with using alternative data drift metrics according to particular data models as long as 
they retain the same conceptual meaning within the proposed versioning nomenclature. Further research could 
explore different data drift metrics and their applicability to various data models. The following sections explain 
each proposed data drift metric used to compute the version numbers.

Unsupervised ML models.  Unsupervised learning is the set of tools from ML used to extract information from 
the data without defining any explicit prediction problem. Among these approaches, some compression models 
aim to use a reduced-dimensionality representation of the data to reconstruct it. The common denominator 
of data compression models is that they trade lower precision of the reconstructed data for more compression 
power, i.e., by achieving a significant reduction of the dimensionality spanned by the dataset. In some of our 
previous work, we explored the use of PCA and AE to detect similarities across data versions16:

•	 PCA: Let X be a matrix with N observations on K variables. After some pre-processing, such as mean-cen-
tring and unit variance scaling, a PCA model is estimated17. This is done by compressing the X matrix into a 
subspace of lower dimension A (with A ≤ K). PCA is based on the bi-linear decomposition of X in X = TP⊤ 
+E, where T is an N × A matrix of scores and P is a K × A matrix of loadings. The A columns of the loading 
matrix P are the loading vectors pa, with a A1, 2, ,= … . The score matrix T can be considered as a collection 
of column vectors ta (latent variables or principal components), obtained as T = XP, and with each one of 
them obtained as =t Xpa a. From the scores matrix, one can recall the explained part of X in the PCA model as 
�X TP�= . Thus, the original data can be decomposed by the part explained (i.e., predicted) by the model 
(signal or �X), and the error not considered in any of the A latent variables (noise or E). PCA models have also 
been proposed for data monitoring and implementing tools for Statistical process control (SPC), such as 
control charts to monitor the statistical properties of incoming data and detect shifts or abnormalities18.

•	 AE: It is a specific type of feed-forward neural network that involves a two-step process: encoding and decod-
ing19–21. In this framework, the input data is compressed into a lower-dimensional code through the encoding 
function (φ: X → T) and then reconstructed to obtain the output. The main purpose of AE is to perform dimen-
sionality reduction, where the mathematical framework allows for the inclusion of non-linearities in the encoding 
and decoding process. The encoding function φ maps the observations in the input matrix X to a lower-dimen-
sional representation T. Subsequently, the decoding function ψ reconstructs the low-dimensional representation T 
back into an approximation of the original input, denoted as X�. The goal of AE is to find a set of weights that mini-
mise the reconstruction error, which is computed as the difference between the reconstructed output X� and the 
original input X, i.e., = −�E X X. AE aim to minimise this reconstruction error by optimising the weights, thereby 
obtaining a faithful representation of the original input. AE provide a powerful tool for learning meaningful 
representations of data by capturing relevant features in the lower-dimensional code T. Including non-linear 
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Fig. 1  Flowchart summarising our approach to quantify data drift using several strategies. Each strategy 
employs an ML model and an associated data drift metric. First, for a Primary Source dataset, we build ML 
models and predictive models based on the Mean Squared Error (MSE models), conforming the Model 
Building Phase. Similarly, for a Revision dataset, i.e., a new dataset version, corresponding ML models are built. 
These models are used during the Model Exploitation Phase to compute the associated data drift metric (e.g., 
dE,AE, dE,PCA, and dP).
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activation functions allows AE to capture complex patterns and relationships in the data, enabling them to perform 
efficient dimensionality reduction and reconstruction tasks.

Data drift indices for the minor term.  From unsupervised models, two different indices are computed to quan-
tify the data drift:

•	 P-drift: This metric can be used only if the PCA model is applied. The proposed metric to measure the drift 
between the Primary Source (PS, original version) and a Revision (R, newer version) of a dataset (dP) relies on 
the cosine of the angle between pairs of homologous loading vectors22. First, a PCA model for the X(PS) dataset 
is fitted, yielding the set of parameters P{ , }PS PS( ) ( )λ , where the a terms in the vector λ refer to the variances of 
each of the latent variables ta. Next, a PCA model for the R dataset, yielding the same parameters: λ P{ , }R R( ) ( ) . 
Both models are compared by computing the absolute value of the cosine between pairs of homologous load-
ing vectors, and then a weighted sum is computed with all of them, as expressed in Eq. (1):
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These products are then weighted by the relative importance of their respective PC, added, and scaled to a 
range between 0 and 100. The relative importance is represented by the fraction of variance in the a-th PC.

•	 E-drift: On the other hand, this metric expressed in Eq. (2) quantifies the level of corruption or deviation in a 
dataset compared to a reference dataset. The E-drift is model-agnostic and rooted in the reconstruction Mean 
Squared Error (MSE), making it applicable regardless of the modelling technique. A permutation strategy is 
used to compute the E-drift. Different percentages of cells from the PS dataset are permuted, ranging from 1% 
to 100% with increments of 10%. These permutations are repeated J times (by default J = 10) to ensure that 
the model will not be based on a single random iteration of the process. The permuted datasets are projected 
onto the models fitted with the PS dataset, and the MSE is computed for each permutation percentage. These 
values of MSE and the percentage of permuted values are used to fit splines predicting the percentage of 
permuted (i.e., corrupted) values for a given MSE value. Splines are a mathematical technique that provides 
a smooth curve or surface to a set of data points23. The key notion is to try to fit the overall shape of a certain 
curve or surface as closely as possible by breaking it up into smaller segments, called “splines”, and then use 
mathematical functions, commonly cubic polynomials, to describe the shape of each spline. Splines can pro-
vide a smooth and continuous representation of the data, making them particularly useful when working with 
noisy data or describing curves with unknown generic shapes, as in this work.

The final expression used to obtain the E-drift value using the model M, and having a fold of J splines 
obtained by doing J repetitions of each permutation level, is outlined in Eq. (2). The new dataset is passed 
through PCA and AE models, which reconstruct the data and yield the MSE R PCA,  and MSE R AE,  values, respec-
tively. The percentage of permuted values (i.e. Mpj

) is estimated by the J splines fitted with the MSE values 
obtained by reconstructing permuted versions of the PS dataset, as explained above.
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This process yields two values of E-drift: dE,PCA and dE AE, , corresponding to the MSE values and the splines 
obtained using the PCA and AE models, respectively. When the Revision dataset comes, it will be reconstructed 
by either the AE or the PCA model. This will yield a new value of the MMSE R ,  passed to a fold of J splines Mf{ } J. 
Each j spline will yield a certain value Mpj , equivalent to a percentage of permutation p(%) simulated on the 
Primary Source dataset. Finally, the result of the J splines will be averaged and scaled to a range between 0 and 100.

Experimental setup.  This work proposes a generic data drift metric based on ML models. To assess the 
behaviour of the metric with different datasets, several versioning events were tested, including creation, updates, 
and deletions:

•	 For the creation event, new information was added to the dataset, simulating dynamic datasets. In datasets 
already containing subsets, such as dataset DS 01, with data recorded in different months, the subsets were 
used to obtain the primary source and the block of new batches. The primary source was obtained for datasets 
without such partitions using the first 75% of the dataset. Sets of new observations were created by overlap-
ping windows, with each iteration excluding the first record from the previous iteration and including the 
latest record. This allowed for assessing the coherence of the data drift indices within and between metrics. 
Moreover, the different time resolutions expressed by different sizes of the newly added batches also enabled 
us to explore the relationship between the changes in data drift metrics and the sample size of the Revisions.

•	 The update event involved changing existing records in the dataset and generating a new view. For these 
experiments, variables were transformed into a different scale. This was done by performing cubic root 
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transformations on various percentages of columns. One would expect variable scale shifts to yield higher 
data drift values as the percentage of shifted variables increases. Substantial data drift values resulting from a 
change in scale could be interpreted as indicative of a change in the data model, particularly if the magnitudes 
of recordings of certain variables have undergone modifications. In such cases, elevated minor terms in the 
version tag should trigger major updates to the data version. In this scenario, looking at the dPCA metric will be 
particularly interesting. Since, for its computation, a new PCA model is fitted on the Revision dataset, it could 
be insensitive to shifts in scale as far as they would not break the correlation structure between variables.

•	 The deletion event involved the removal of records present in the primary source dataset. To perform such 
experiments, a certain percentage of records was deleted from the Primary Source dataset by decimating the 
time series, simulating a lower sampling frequency. These deletion scenarios assessed how each unsupervised 
model could recognise the same patterns as in the Primary Source and how the information loss affected each 
data drift metric.

For each scenario, up to 100 repetitions were executed, changing the records within the added batches, the 
columns transformed, or the cells deleted for missing data imputation. For creation event experiments, the 
number of repetitions was limited by the number of samples of each memory size that could be obtained from 
the Revision dataset, e.g., for the batch size of 100%, only the whole Revision could be considered, without the 
possibility of changing the observations across repetitions. This was done to assess the repeatability of each data 
drift metric when the observations within the revision set varied.

Regarding pre-processing, the datasets were standardised using mean centering and unit variance scaling. 
PCA models were fitted to explain over 90% of the dataset variance. AEs for the primary source were trained by 
adding white noise to the original dataset to prevent over-fitting. The data generated following a white noise 
distribution was multiplied by a noise factor parameter, denoted as cε, which was used to adjust the noise level. 
Besides, 20 epochs were typically enough to ensure convergence of the AE. Finally, it is important to mention 
that the hyperparameters considered to optimise AE’s architecture included one or two hidden layers, with var-
ying nodes within each layer, following previous works that used AEs to track changes over data15. The activation 
functions used were “relu” and “tanh” for the hidden layers and linear activation for the last layer.

The posterior analysis of the results obtained by the data drift metrics was coupled with the assessment pro-
vided by an exploratory analysis of data fluctuations over time. Such exploratory analysis was based on classical 
time series decomposition, treating each variable as the combination of a trend, seasonal and irregular compo-
nent24,25. The technical details of this exploratory analysis and the results are in Section 3 of the Supplementary 
Material (Supplementary Figures 6 to 12). These insights were useful to determine if, for instance, the creation 
experiments yielding high data drift values corresponded to datasets where a trend was present. Besides, it also 
enabled us to check that the considered datasets covered different possibilities, such as short-term (i.e., daily) 
and long-term (i.e., yearly) seasonality.

Open Dataset Selection and Description.  The proposed versioning schema was evaluated using several 
time series datasets. Three key criteria guided the selection of datasets in this study. Firstly, the datasets were cho-
sen for their openness, ensuring they were publicly accessible for transparency and reproducibility. This allowed 
users to scrutinise the production details and readily access the data to test the proposed data versioning standard. 
Secondly, the selected datasets contained dynamic information, particularly time series data, which undergo 
frequent changes such as updates, additions, and deletions. This dynamic nature was essential for evaluating the 
effectiveness of versioning tools. Lastly, the datasets were required to exhibit heterogeneity in terms of their tem-
poral characteristics, encompassing trends and seasonality. This diversity in temporal features enabled the explo-
ration of how the proposed data drift metrics responded to different changes across data versions. Nevertheless, 
the proposed methodology can be extended with all sorts of quantitative data sets, with AEs admitting categorical 
variables and PCA having some adaptations to deal with them26. Table 1 summarises the datasets used in this 
work. All of these datasets show a long dataset structure with more records than variables, which is typical in 
time series datasets. To provide further insights into the different dynamics of each dataset, a univariate explor-
atory analysis was carried out to assess the existence of trend and seasonality components (see Section 3 of the 
Supplementary Material for more information). Next, we provide a concise description of each dataset together 
with the rationale for its selection in our evaluation:

DS 01 –SML2010 dataset: This dataset consists of approximately 40 days of monitoring in a domotic house.  
It was used to fit a predictive module based on artificial neural networks for short-term forecasts of indoor 
temperature. The dataset contains two subsets: one captured during March and April 2011 (approximately 28 

Identifier Dataset Records (N) Variables (K) N(PS) Magnitudes Trend Seasonality

DS 01 SML201031 4,137 22 2,764 continuous no daily

DS 02 Hungarian chickenpox cases32 522 20 262 counts no yearly

DS 03 Global land temperature33 1,365 485 1,200 continuous yes yearly

DS 04 Sales prediction34 64 4 48 continuous yes yearly

DS 05 Air quality35 9,357 12 7,110 continuous no daily

DS 06 Ozone level detection36 2,536 71 1,451 continuous no yearly

DS 07 Dublin footfall counts 202237 8,760 99 6,569 counts yes weekly

Table 1.  Summary of the datasets used in the experiments assessing the proposed data drift metrics.
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days) and the other captured in May 2011 (approximately 14 days). In total, 4,137 time instants are available. 
For experiments involving the addition of rows, the data from March were used as the Primary Source, and the 
batches from June were added in different sizes. This is an example of a dataset with a partition into two versions 
known a priori, which incorporated variables recording different magnitudes and presented a certain stationary 
component.

DS 02 –Hungarian Chickenpox Cases dataset: This dataset consists of a time series of reported cases of chick-
enpox at the county level between 2005 and 2015. The dataset can be used for both county-level and nation-level 
case count prediction. For this work, the counts per county were used. The Primary Source contained records 
from 2005 to 2010, and the last five years were treated as a new blocks of records for the creation event exper-
iments. This is an example of a dataset whose variables record the same discrete magnitude (i.e., counts). 
Although it was not one of the most abundant datasets in terms of records, there was enough information to 
appreciate a yearly stationary component and relatively low levels of noise (Supplementary Figure 7).

DS 03 –Global land temperature dataset: The original source of this dataset contained monthly measurements 
of global land temperatures by country, reported between 1743 and 2013. The measurements were aggregated 
by the average and variability of temperature measurements within each country each month. Due to a high 
rate of missing values in previous years, the data used for our experiments started in 1900. The Primary Source 
dataset included data from 1900 to 1999, and the measurements from this century constituted the block of new 
records. This dataset was particularly interesting for the creation experiments, as it presented a trend indicating 
the global temperature increment. Comparing this dataset to DS 04 was of special interest, as the former has the 
largest number of variables. In contrast, the latter is the dataset with the lowest number of variables and number 
of records.

DS 04 –Sales prediction: This dataset provides a company’s revenue, sales, and costs measured monthly 
from 2015 until March 2020. It is a fairly small and thin dataset compared to the other datasets, and it was 
included to test the performance of the ML models when the available records are scarce, which makes it a 
particularly interesting case study for deletion experiments. Moreover, as its variables presented a trend com-
ponent, it was also interesting for the creation experiments, where new future records are added to a reference 
dataset with previous records. For the experiments involving the creation of new records, the data from 2015 
until 2018 was used as the Primary Source, and the records from 2019 until March 2020 were treated as the 
Revision set.

DS 05 –Air Quality dataset: This dataset includes responses from a gas multi-sensor device deployed in an 
Italian city from 2004 to April 2005. Hourly response averages and gas concentration references from a certified 
analyser were recorded. For the experiments involving the creation of new records, the data from 2004 was used 
as the Primary Source, and measurements from 2005 were treated as the new records. These dataset variables 
do not present any increasing or descending trend but show a daily seasonal component and higher noise levels 
than the other datasets.

DS 06 –Ozone Level Detection dataset: This dataset includes ground ozone level data collected from 1998 
to 2004 in the Houston, Galveston, and Brazoria areas. The dataset focused on eight-hour peaks of ozone levels 
above a certain threshold. This work used data from 1998 to 2001 as the Primary Source. Its variables present a 
yearly seasonal component, and it also displays higher levels of variability.

DS 07 –Dublin footfall counts dataset: This dataset contains pedestrian footfall counts recorded in Dublin, 
Ireland, for 30 streets during 2022. Three variables were recorded for each street: the number of people passing 
in, the number of people going out, and the total number of people passing by the street regardless of their direc-
tion. It is an example of a dataset without a specific research context to determine the number of time steps for 
forecasting or the subset of records for the Primary Source. In this case, the first 75% of the records representing 
the oldest data were used to fit the Primary Source model. This dataset, as DS 02, measured discrete variables 
(counts of footfalls) instead of continuous ones. Moreover, it also presents an ascending trend in various streets, 
making it of particular interest for the creation experiments since some data drift could be expected as newer 
records were compared to the previous reference values.

Results
Before computing the data drift metrics explained in Section 2.2.2, the first step was to select the subsets used 
as Primary Sources for each dataset and obtain their PCA and AE models. Figure 2 shows the goodness-of-fit 
coefficients for each model (Fig. 2a) and the time required to fit the models employed by each data drift metric 
(Fig. 2b) using the PS dataset partitions. Further information about the splines fitting the model between the 
MSE and the percentages of permuted values can be found in Supplementary Figures 1 and 2.

Figures 3 to 4 illustrate the relationship between the data above drift metrics and different levels of changes 
simulated for the datasets. In the following plots, solid lines represent average values over the repetitions of each 
artefact level. The shaded areas cover the 5th and 95th percentile over the repetitions performed at each level 
of the simulated scenario, assessing the variability of the values. The times required to compute each data drift 
metric were also measured and are represented in Supplementary Figures 3 to 5.

Figure 3 displays each dataset’s data drift metric values when creation events are simulated. The experiments 
employed an initial partition of each dataset as a reference. Subsequently, they updated it by incorporating 
batches of varying sizes from the remaining dataset partition, which was not utilised in constructing the Primary 
Source model.

Figure 4 shows the results of update events simulated as the transformation of variables’ scales, as the trans-
formation of values can result in significant shifts that may disrupt the multivariate patterns within the dataset.

Finally, Fig. 5 demonstrates the impact of deletion events on the data drift metrics.
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Discussion
To interpret the results shown in Figs. 3 to 5, it is important to recall the meaning of each data drift metric. 
Values of 0 indicate a total agreement between Primary Sources (X(PS)) and Revisions (X(R)) for all data drift 
metrics. Values of 100 would indicate either a total mismatch of the covariance structure according to dP, or 
that X(R) are as similar to X(PS) as completely random values, according to both dE,PCA and dE,AE metrics. Values of 
dP between 0 and 100 can be interpreted similarly to the absolute value of the correlation coefficient. Non-null 
values of dE,PCA and dE,AE below 50 would indicate that X(R) present some changes compared to X(PS), but still, 
most of their values hold information shared by both versions. On the contrary, values of dE,PCA and dE,AE above 
50 would indicate that more than half of the values within X(R) do not present a structure like those seen in X(PS).

Overall, the results show the characteristics of the different approaches to quantify the data drift in the con-
text of various events and datasets. First, there is a model-building stage when the Primary Source data is used 
to fit the ML models. The outcomes of this stage are shown in Fig. 2, proving that both ML models used for the 
proposed data drift metrics fitted the datasets acceptably (Fig. 2a), with the noticeable exception of DS 04, which 
shows a decay in the goodness-of-fit for both the PCA and the AE, especially for the latter. This result already 
highlights the need to assess the goodness of models for each specific dataset, making the necessary adjustments 
if required. This misfitting for DS 04 must also be considered when evaluating the upcoming results, illustrating 
the performance of the data-drift metrics, as the results obtained, particularly by the AE model, would invalidate 
any further results based on such a model.

On a related note, in terms of the time required by each data drift metric, there are differences between the 
model-building phase shown in Fig. 2b and the execution time obtained for the new version of the datasets in 
the creation, update, and deletion experiments. When the models are fitted using the Primary Source dataset 
partition, the dP requires less than a second in most cases, followed by the dE,PCA approach, which generally is one 

Fig. 2  Values of the R2 coefficients of each ML model (a) and of the computation time required to estimate all 
the elements required for each of the data drift options (b) for each of the PS datasets (x-axis).

Fig. 3  Values of the metrics (y-axis) when new batches of different sizes (x-axis) were added to the Primary 
Source dataset.
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order of magnitude faster than the dE,AE metric. Yet, the computation time for newer versions (Supplementary 
Figures 3 to 5) is generally shorter and never reaches the order of seconds. In these cases, dE,PCA is the fastest 
approach, followed by dPCA and dE,AE, which alternate the slowest marks depending on the dataset and the events 
being simulated. The following sections will address the results of each simulated event in more detail.

Creation events.  Results from the creation events aimed to answer two questions: (i) Would data drift met-
rics yield values between 0 and 50, indicating a major agreement between revisions and primary sources, even if some 
disparate batches are present in the revision?; and (ii) Would non-null values of data drift metrics be aligned with 
actual changes appreciated in seasonal or trend components of time series?

Results from Fig. 3 indicate that the dP metric generally exhibits higher values than dE,PCA and dE,AE, and 
between the latter two, dE,PCA is the one being closer to yield data drift values below 50. Yet, dE,PCA values are 
far from null in most cases, which would be interpreted as the Revision datasets being somewhat different to 
the Primary Source but still alike for most of the values. This leads to the second research question, seeking the 
interpretability of these results.

Fig. 4  Values of the metrics (y-axis) when they were computed on Revisions with different percentages of 
variables (x-axis) transformed to a different scale with a cubic root transformation.

Fig. 5  Values of the metrics (y-axis) when they were computed on Revisions obtained by down-sampling the 
original time series, reducing the sample size (x-axis) of the resulting new versions.
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To interpret data drift values from Fig. 3, we inspected the outcomes at low levels of memory size, i.e., we 
increased the time resolution to check if the data drift values showed some meaningful evolution with time. One 
aspect worth mentioning is the higher variability of data drift values for smaller batch sizes across all datasets, 
particularly noticeable for DS 02 and DS 05 (Fig. 3b and e, respectively). On the one hand, this evident impact 
of batch sizes on the metrics’ variability is due to a decrease in the available time windows used for different 
repetitions as the batch sample size increases. For instance, the metrics’ values for a 100% batch memory size 
are the outcomes over all the records in the Revision dataset. Nevertheless, the variability can also be increased 
due to the presence of disparate batches. Figure 6 illustrates the data drift values obtained for each one of the 
batches at a high time resolution (10% of memory size for all datasets except for DS 04, with batch sizes of 25% 
of the memory size as 5% and 10% of memory size did not reach samples with more than a single observation).

When examining the batch-wise data drift values in Fig. 6, it becomes apparent that both dE,PCA and dE,AE 
reflect patterns observed in the time series and extracted in either the trend or the seasonal components during 
the exploratory analysis (see Supplementary Figures 6 to 12). The following paragraphs will address some of the 
most insightful ones.

DS 02 (Fig. 6b) shows five peaks in the count of Hungarian Chickenpox cases, lasting around 50–60 iterations 
each, aligned with the yearly seasonal component (see Supplementary Figure 7). These results suggest that the 
appearance of drifted batches corresponds to the peaks in counts. Still, results for dE,PCA and dE,AE converge to 
lower values with bigger batches (Fig. 3b), as these dynamics with peaks are part of the normal patterns already 
present in the Primary Source data.

DS 04 combines two aspects; first of all, a scarcity of data that has already affected PS models by yielding the 
lowest goodness-of-fit of all (Fig. 2a), which is null for the Autoencoder and explains why new batches are con-
stantly seen as random noise (i.e., dE,AE = 100). The second aspect is an ascending trend in all the DS 04 features 
that results in values within the Revision set out of the range seen for the Primary Source set (see Supplementary 
Figure 9). This factor explains why some new batches trigger major updates (i.e., dE,PCA = 100 as well for low 
memory size levels), as both the data substantially varies and the PS model did not have enough information to 
capture the dynamic of the dataset (explaining also the high dE,AE values). Therefore, when new values out of range 
come, even if they respect the general patterns and dynamics of the data, they will yield high data drift values.

It is of special interest to juxtapose the case of DS 04 with DS 03 and DS 07. These two latter datasets also show 
clear ascending trends in many of their variables, but they are much richer in data. When enough data is available 
to fit the PS models, the result is quite different. As can be seen in Fig. 6c, both dE,PA and dE,AE values show a slight 
increase towards the last batches, which is aligned with extreme values derived from the globally ascending trend of 
temperatures worldwide (Fig. 7). Nonetheless, the availability of enough data makes both the AE and PCA models 
more robust to such changes, yielding increased data drift values but still recognising the patterns within the data.

Yet, the case of DS 07 showcases that dE,PCA is more robust to the appearance of extreme values than dE,AE, 
which triggers major updates for this dataset as well. Figure 8 shows some of the streets within DS 07 showing 
ascending trends ended by a dramatic decay in footfall counts by the end of 2022. The ubiquity of this decay, 
which is also appreciated in the decay of dE,AE in Fig. 6g, might indicate the need for a sensor maintenance check. 
Still, most streets of the Revision batches showed footfall count values out of the PS range but aligned with an 
ascending trend already present in the PS set, and this dynamic was only successfully captured by dE,PCA.

DS 05 also showed more variability in Fig. 3e than the rest of the datasets. Supplementary Figure 10 shows 
that the trend component for some variables in DS 05 (namely AH, NO2(GT), PT08.S1(CO) and T) exhibits a 
peak that resembles, to some extent, the dynamic appreciated in Fig. 6e for dE,PCA. Nonetheless, the reasons for 
dE,PCA and dE,AE trajectories in Fig. 6e are less clear, suggesting that batches might be disparate in a multivariate 
manner rather than in a univariate one, which would not be visible in plain sight.

Fig. 6  Values of the metrics (y-axis) when computed on batches of a 10% of the Revision subset for each one of 
the datasets, except for DS 04, with batches of a 25% size.
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Finally, cases such as DS 01 and DS 06, where no extreme values were present in the Revision set, at least in 
plain sight, show stable and low values (far below 50) for both dE,PCA and dE,AE, whereas this is not the case for dP, 
which shows abrupt changes along the incoming batches. Whereas these changes in dP for DS 06 (Fig. 6f) seem 
to relate to the seasonal component of variables (see Supplementary Figures 11 and 12), it is harder to interpret 
its changes for DS 01 (Fig. 6a).

In conclusion, as per the second question formulated at the beginning of this section, dE,PCA seems to yield 
more interpretable data drift values than dP and dE,AE. Another aspect to mention is that despite the qualitative 
agreement between the dynamics of dE,PCA and dE,AE appreciated in Figs. 3 and 6, the latter metric shows higher 
values of average data drift, especially for DS 05 and DS 07 (Fig. 3e and g, respectively). One possible explanation 
could be that the AE tend to overfit more than PCA. Noisier datasets, such as DS 05 and DS 07, could therefore 
yield a higher data drift due to the noisier nature of these signals. Consequently, one potential solution may 
involve augmenting the noise parameter employed during AE fitting when dealing with noisy datasets. By doing 
so, the model might exhibit more robustness to such variations, leading to lower data drift values.

Update events.  Next, the update-event experiments showcase the outcomes when the dataset values are 
altered. Results from the update events aimed to answer the following two questions: (i) Would data drift metrics 
reach values of 100, indicating that a major update of the version number is needed, revealing a change of units in 
the measurements?; and (ii) Would data drift metrics show consistent outcomes to shifts in scale regardless of the 
variables’ magnitudes?

The results in Fig. 4 show that the dP metric generally demonstrates lower values than dE,PCA and dE,AE metrics. 
This discrepancy can be attributed to the fact that the scale of the dataset values directly influences the latter two 
metrics. Conversely, a change in ranking does not necessarily imply a breakdown of the correlation structure, as 
correlations operate on normalised variable values. As long as the underlying patterns remain intact, the yielded 
P(R) loading matrix will be similar to the P(PS) loading matrix, thereby explaining the lower values of the dP metric.

Thereby, as per the first question formulated at the start of this section, the results from Fig. 4 would favour 
the use of dE,PCA or dE,AE metrics. Both show values of 100, or at least above 50, when over 30% of variables have 
been shifted. As per the second question, they seem to be heavily affected by the nature of the variables, showing a 
completely different performance for DS 02 and DS 07 (Fig. 4b and g, respectively), which have discrete variables 

Fig. 7  Examples of values of the trend component for variables referring to continents from the DS 03 used for 
the PS (black) and the Revision batches (red).

Fig. 8  Four examples of increasing trend components for variables from the DS 07 used for the PS (black) and 
the Revision batches (red).
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instead of continuous ones. This suggests the need for special modifications for the data drift metrics to deal with 
different types of variables. Still, this could be easily accommodated by the framework described in Section 2.1.

Deletion events.  Finally, simulations of deletion events aimed to answer the following question: Would data 
drift metrics yield null values, indicating that previously seen records are detected as so? Fig. 5 illustrates that the dP 
metric shows a higher sensitivity to information loss than the other two metrics, dE,PCA and dE,AE. This is expected 
since the model fitted with the down-sampled Revision set may be significantly affected by the information loss, 
leading to a higher data drift value. This effect is exacerbated for DS 04 (Fig. 5d), which has the smallest sample 
size, and therefore is more affected by the information loss. Besides, even for datasets DS 01 (Fig. 5a), DS 05 
(Fig. 5e) and DS 07 (Fig. 5g), where dP does not seem to vary according to the memory size, it yields values con-
sistently higher than dE,PCA.

On the contrary, both dE,PCA and dE,AE metrics do not require retraining the model and instead project the 
records remaining in the Revision dataset onto the Primary Source models, explaining the lower data drift 
values for both metrics over all the percentages of deleted records and datasets. Among these two metrics, 
dE,PCA exhibits more stable results, accurately recognising the records as part of the reference dataset used as the 
Primary Source for all datasets except for DS 04, which shows an increase from 30% of deleted records. This sug-
gests that the underlying PCA model employed by dE,PCA is more robust to information loss than the AE-based 
approach used by dE,AE.

In short, answering the research question posed above, the results from Fig. 5 show that the dE,PCA metric 
yields the lowest values across all datasets and downsampling percentages. Interestingly, it is worth noting that 
dE,AE shows higher data drift values for DS 05 and DS 07, as observed in the creation event experiments (Fig. 3e 
and g, respectively). As mentioned earlier, this could be attributed to the noisy nature of these datasets, which 
affects the AE performance. Increasing the AE robustness by exposing it to training datasets with higher noise 
factors during the model-building stage could mitigate this issue and lead to lower data drift values.

Concluding remarks.  In conclusion, in this study, we proposed a standardised data versioning framework 
that addresses the limitations of existing approaches, particularly in terms of findability, reusability, and recogni-
tion of data versions. By incorporating principles from the RDA and the DataCite Metadata Schema, we aimed to 
enhance the tracking of changes in data over time, facilitate reproducibility, and foster collaboration. One of the 
key limitations of current data versioning frameworks is the reliance on citations from journal papers to make 
new data versions discoverable. Users often search for datasets based on specific attributes or features rather than 
following paper citations. Moreover, the lack of tools to understand the differences between data versions results 
in inefficient discovery and reuse, leading to sub-optimal resource utilisation. We have proposed a standardised 
data versioning nomenclature to overcome these limitations based on the widely recognised software versioning 
format of “major.minor.patch”. This terminology aligns with the foundational principles of effective data 
versioning practices and complies with the existing fields in the DataCite schema.

Within this framework, we have introduced the concept of a data drift metric as the “minor” term of the 
version tag. Data drift refers to changes or deviations in the statistical properties or distributions of data over 
time. By quantifying data drift and including it as a standard metric within the DataCite metadata schema, 
researchers and data consumers can gain insights into the extent of modifications within datasets, making 
informed decisions regarding data usability. We have explored and evaluated three data drift metrics, namely dP, 
dE,PCA, and dE,AE. These metrics leverage ML models to quantify data drift and capture dataset changes.

Our experiments have revealed important insights into the performance of these metrics under different sce-
narios, including creation, update, and deletion events. According to the performed experiments, the dE,PCA met-
ric showed bounded values below 50 in creation event experiments, showing interpretable values that consistently 
increased along with time series changes (Figs. 3 and 6). As discussed in Section 4.1, at a higher time resolution 
(i.e., for small batch sizes), the metric successfully reflected variations, if present. Still, overall, the PS PCA model 
seemed to successfully capture the general patterns of the data, keeping dE,PCA values below 50 provided that 
Revision sets were batches long enough in time, representing complete seasonal patterns, and not small batches 
with only the extreme values within a cycle. Next, Section 4.2 discussed the update experiments performing scale 
transformations (Fig. 4), concluding that the dE,PCA consistently triggered major updates of the data version (i.e., 
dE,PCA = 100) when more than 30% of the variables had suffered a scale shift. Nevertheless, this outcome was not 
consistent for datasets with variables with a nature other than continuous (DS 02 and DS 07). Deletion experi-
ments (Fig. 5) also showed that the dE,PCA metric was the most robust against the loss of information, keeping data 
drift values equal to 0 for almost all cases, except for DS 04, which showed higher data drift values for Revisions 
retaining more than 30% of records from the Primary Source set. Nonetheless, the DS 04 was already a special 
case study showcasing the outcomes when information scarcity compromises the model-building step with the 
PS. Therefore, results unlike the ones expected for the rest of the datasets could be expected. Finally, regarding 
computational time, the dE,PCA approach presents the best trade-off solution, with a model-building time gener-
ally under two minutes (Fig. 2b) and execution times (Supplementary Figures 3 to 5) consistently under a second.

For all these reasons, the dE,PCA metric shows the best trade-off regarding performance interpretability, stabil-
ity, robustness against information loss, and computation time. Nevertheless, future work is needed to address 
some of the limitations uncovered by the experiments. First, the dE,PCA metric presented some inconsistencies 
when working with non-continuous data sets, as seen with DS 02 and DS 07 in the update experiments per-
forming a cubic root transformation. Some adaptations of PCA to deal with non-continuous datasets could be 
adopted for such cases. Small datasets with scarce information, such as DS 04, can present some issues, prevent-
ing the obtention of a model that is accurate enough. One potential solution could be using data augmentation 
strategies for such cases during the model-building phase with the Primary Source.
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The final suggestion of terms for the standard version tag and their corresponding fields in the DataCite 
Metadata Schema and their conceptual meaning are summarised in Table 2. Despite this being the final sug-
gestion derived from this work, it has also been shown that the choice of data drift metric plays a crucial role in 
capturing and understanding data drift phenomena, and researchers should consider the specific characteristics 
of their datasets and choose the appropriate metric accordingly. Nevertheless, the proposed framework enables 
the choice of different models as best practices for each dataset, as long as the same technique is applied across 
all the version history.

Overall, our proposed standardised data versioning framework, coupled with incorporating data drift met-
rics, offers a comprehensive solution to improve the findability, reusability, and recognition of data versions. By 
leveraging ML techniques to quantify data drift and adopting the “major.minor.patch” format, research-
ers can effectively track changes in datasets, facilitate comparisons between versions, and make informed 
decisions regarding data usability and integration into workflows and analyses. While simpler tools for data com-
parison exist, these proposals using ML models are a first step that paves the way for more sophisticated tools 
that interact with such models and obtain further information. This is evident in the downsampling (Deletion 
event) experiments, which provide evidence about the resilience of data-drift metrics based on machine learning 
models against traditional comparison tools such as “diff ” commands. New tools exploiting the ML tools imple-
mented to enable the proposed data versioning standard could be used for further purposes, such as interpreting 
the differences between datasets or integrating more sophisticated mechanisms for data quality assurance.

The proposed technique could have a diverse user base, catering to key stakeholders in the research data eco-
system. First, data authors (data producers) could benefit from a systematic approach to monitor and quantify 
data drift, ensuring data quality and reproducibility. Secondly, if such a tool was implemented in a repository 
(data hosters), its managers would gain valuable insight for assessing dataset evolution within repositories, ena-
bling effective curation decisions. Thirdly, researchers and data curators (data consumers) would find utility in 
understanding dataset changes, facilitating comparisons, and ensuring reliable datasets for analysis. Collectively, 
our technique could contribute to enhanced data management practices, supporting collaborative research 
endeavours and augmenting the overall reliability and usability of research data. For this reason, we consider 
that the optimal step would be its implementation as a service in data repositories, where it can serve all the 
aforementioned roles and user profiles engaged in data-intensive projects.

Further work may include generalising the proposed framework to datasets, including categorical variables, 
by expanding the ML models to adaptations that deal with such data. For instance, Generalised Simultaneous 
Component Analysis (GSCA)27 can be applied as a more generalistic PCA framework for datasets with varia-
bles of mixed nature. Extending the framework to lower levels of granularity, i.e., to each independent record, 
is another clear path for future work, enabling the versioning of streaming datasets with single-record crea-
tion events. On this matter, the PCA framework already presents established schemes from Statistical Process 
Control for the online detection of unsupervised anomalies18,28. Finally, future research should also explore 
alternative data drift metrics, especially for datasets of reduced dimensions, given the results obtained with 
dataset DS 04 (Figs. 2, 3, 6, and 5). The proposed system’s applicability to data models other than time series and 
potential extensions towards Continual Learning frameworks assessing the relationship of the proposed data 
drift metrics with changes in the ML models based on such datasets should also be investigated.

Code availability
All experiments have been modelled and programmed using Python and open datasets. In the interest of 
full reproducibility, the code and datasets to reproduce the experiments are included in a .zip file available at 
Figshare29 and in the public GitHub repository30. The results have been obtained using Python 3.10.9 
and the packages used and their corresponding versions are: keras 2.11.0, keras_tuner 1.3.0, 
matplotlib 3.7.1, numpy 1.23.5, pandas 2.0.3, pytest 7.4.0, scikit_learn 
1.2.2, scipy 1.10.1, seaborn 0.12.2, statsmodels 0.13.5, tensorflow 2.11.0, 
and openpyxl 3.11.1. The instructions to run the scripts for the demos or the experiments are available in 
the README.md file included both in the .zip file at Figshare29 and in the GitHub repository30.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper and its 
Supplementary Information files29. Should raw data files be needed in another format, they are available from the 
original sources, allocated in the third-party repositories listed below:

• DS 01, SML2010, available from31;
• DS 02, Hungarian chickenpox cases, available from32;

Version tag term Meaning DataCite field

Patch Small, specific fixes or corrections applied to the dataset represented 
by timestamps “datacite.VersionDate”

Minor
Standardised data drift metric indicating the shift between a data 
version and a reference point, typically the oldest version sharing the 
same data model (major term). The metric can be interpreted as the 
equivalent level of random perturbation seen on the reference dataset

“dataDriftMetric” (custom field created 
using the “relatedIdentifier” element)

Major
Significant, and substantial changes to the dataset, often involving 
substantial modifications, additions, and deletions to the data 
structure, schema, or underlying data model

“datacite.SchemaVersion”, 
“datacite.DataModelDescription” 
and “datacite.DataModelIdentifier”

Table 2.  Summary of the final suggestion for the standard terms conforming to the data versioning tags.
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• DS 03, Global land temperature, available from33;
• DS 04, Sales prediction, available from34;
• DS 05, Air quality, available from35;
• DS 06, Ozone level detection, available from36; and
• DS 07, Dublin footfall counts 2022, available from37.
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