~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Maaz Ahmad
Student ID: 21134308

School of Computing
National College of Ireland

Supervisor: Michael Bradford

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Maaz Ahmad
Student ID: 21134308
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Michael Bradford
Submission Due Date: 25/04/2023
Project Title: Configuration Manual
Word Count: 1997
Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Maaz Ahmad

Date: 27th May 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U

Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | (I
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Maaz Ahmad
21134308

1 Introduction

This manual’s purpose is to help users set up their own machines and get the results
they want. The associated documents contain thorough information about the required
hardware and software to build the environment. The manual includes code snippets,
graphics from exploratory data analysis, and model assessments.

2 Environment

The environment needed to run the code solution is thoroughly described in this section.
The setup for the Google Colaboratory, the required Python libraries and packages, and
other crucial components are all covered in this section. This information is essential for
making sure the code solution runs without a hitch and for making sure users can easily
reproduce the study’s findings.

2.1 Hardware Required

The computational tasks for the current research project were carried out using a specific
hardware specification, though other requirements were also taken into account. The
hardware specifications are compiled in Table|l|to give a thorough overview of the system
configuration. Figure [1] also provides a thorough illustration of the machine’s system
configuration, improving understanding of the used hardware components.

Table 1: Hardware Specification

Hardware Used in this Project Alternative

System VivoBook ASUS Any Windows/Mac/Linux machine

(0N Windows 11 Any Windows/Macos/Linux Distribution
RAM 8GB >4GB

Processor = Intel(R) Core(TM) i5-8265U Any Intel/AMD/Apple Silicon

Hard Disk 258GB >10GB

GPU Nvidia Any integrated/Nvidia/AMD

Device specifications

Device name
Processor
Installed RAM
Device ID
Product ID

System type

Pen and touch

Related links Domain or workgroup ~ System protection ~ Advanced system settings

Windows specifications

Edition Windo Home Single La
Version

Installed on

OS build

Experience

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1: Hardware Specification

2.2 Setting Up Google Colab Environment

Python was the programming language used for the research project, and Google Colab
was used to carry it out, as shown in Figure[2] Colab, a hosted Jupyter notebook service,
provides an easy-to-use platform for running Python code directly in a web browser,
making it an excellent choice for deep learning and machine learning tasks. For a limited
time, Colab offers free access to computing resources, including GPUs, without the need
for configuration. However, users must upgrade to Colab Pro in order to access TPU.

Bl commemt 2% share £ q)
File Edit View Insert Runtime Tools Help A

+ Code + Text Connect ~ A
Vo R & DR

mport shutil

bunt (

at /content/drive

image files - os.listdir(os.path.join(original dir, class_dir))

or i inr

Figure 2: Google Colab

The dataset El was taken from Kaggle and then downloaded to local disk and then
extracted from zip to normal file shown in Figure (3| and then uploaded to google drive.
After it Successful upload with the help of google colab mount we can mount the data to
google colab as shown in Figure [4

Select a Destination and Extract Files

Files will be extracted to this folder:

C\Users\maazu\Downloads\archive (1) Browse...

Show extracted files when complete

Figure 3: Data Extraction

Thttps://www.kaggle.com/datasets/shrutisaxena/yoga-pose-image-classification-dataset

Files

z (B) ®
o

MountDrive

» [sample_data

Figure 4: Mount google drive to Colab

As shown in Figure 5] after mounting the drive, a runtime must be assigned, and
TPU must be chosen for quicker processing. The candidate used Google Colab Pro,
which came with a premium TPU, but standard GPUs can also be used and do just fine.

Notebook settings

Hardware accelerator
TPU v

Runtime shape

[] omit code cell output when saving this notebook

Cancel Save

Figure 5: Assign Runtime

3 Implementation

The research project’s data acquisition, model construction, training, results, and visu-
alizations are all covered in detail in this section, along with step-by-step instructions for
reproducing the study using the provided code.

3.1 Reading the Data

After mounting the data to the google colab. The directories for training and testing
data are assigned to fetch data seen in Figure [6]

© criginal dir

new dir

Figure 6: Assign the directories to fetch data

3.2 Data Preparation

The process of Data Preparation starts from the first notebook name ”Data Separation”
in which the data is created by taking 5 or 6 images from each class and stored into a
new file called test data after the data is copied the same image will be removed from old
data-set which can be seen in Figure [7]

° for class_dir in class_dirs:

new class_dir = os.path.join(new_dir, class_dir)
os.makedirs(new _class dir, exist ok=)

image files = os.listdir(os.path.join(original dir, class dir))

for 1 in range(5):
original_image path = os.path.join(original_dir, class_dir, image files[i])
new_image path = os.path.join(new_class_dir, image files[i])
shutil.copy(original image path, new_image path)

os.remove(original image path))

Figure 7: Splitting the data into to parts

3.3 Model Training of ResNet-50

For ResNet-50 and DenseNet-121 training open a new colab notebook and start by im-
porting the libraries as show in Figurd] After importing all the libraries initialising the
ResNet-50 model as shown in FigurdJ)

import tensorflow as tf
from tensorflow import keras
t ImageDataGenerator

Figure 8: Importing the libraries

resnet = keras.applications.resnet.ResNet5e(weights="imagenet"', include top= , input_shape=(224, 224, 3))

in resnet.layers:

X
x = keras, layers,GlobalAveragePooling2D() (x)

X layers.Dense(512, activation="relu")(x)

X layers.Dropout(0.5)(x)

predictions = keras.layers.Dense(107, activation= x"')(x)

resnet_model = keras.models.Model(inputs=resnet.input, outputs=predictions)

Figure 9: Initialising the ResNet-50 model

The model must then be fitted to the training set of data after the model architecture
has been established. The model in this project was trained over 75 epochs.(Figure

resnet_history = resnet model.fit(train data, validation data=validation data, epochs=100, steps per epoch=len(train data), validation steps=len(validation data))
print("R max(resnet_history.history['val m

Epoch 1/100
138/138 [== - 137s 964ms/step - loss accuracy - val loss: 4.6508 - val accuracy
Epoch 2/100
138/138 [== =] - 1325 952ms/step - loss - accuracy - val_loss: 4.6295 - val_accuracy
Epoch 3/100

- 131s 946ms/step - loss - accuracy - val_loss: 4.6043 - val_accuracy

- 130s 94ems/step - loss - accuracy - val_loss: 4.5806 - val_accuracy
Epoch 5/100
138/138 [== - 131s 945ms/step - loss - accuracy - val_loss: 4.5493 - val_accuracy
Epoch 6/100
138/138 [== =] - 1305 941ms/step - loss - accuracy - val_loss: 4.5373 - val_accuracy
Epoch 7/100
138/138 - 1305 943ms/step - loss: 4.5349 - accuracy - val loss: 4.5030 - val accuracy
Epoch 8/100
138/138 [== =] - 1305 943ms/step - loss - accuracy - val loss: 4.4826 - val accuracy
Epoch 9/100

=] - 1305 942ms/step - loss - accuracy: 0. - val_loss: 4.4444 - val_accuracy

Epoch 10/100
138/138 [== - 1325 954ms/step - loss - accuracy: 0.0309 - val loss: 4.4141 - val accuracy

Figure 10: Running Training for ResNet-50

To print the accuracy of ResNet-50 model graph first we import Matplot libraries and
use the accuracy and validation accuracy to print the graph as show in FigurdI1] After
the code is executed a graph will pop-up as shown in Figure [12]

° import matplotlib.pyplot as plt

plt.plot(resnet _history.history['accuracy’])
plt.plot(resnet_history.history['val accuracy
plt.title(ResNet Accuracy’)
plt.xlabel("epoch")

plt.ylabel('accuracy")

plt.legend(["train’, °

plt.show()

Figure 11: Code to plot graph for ResNet-50

ResNet Accuracy

—— train

0.14 e
validation

0.12

0.10 -

0.08 -

accuracy

0.06

0.04 -

0.02 -

0 20 40 60 80 100
epoch

Figure 12: Accuracy Graph for ResNet-50

3.4 Model Training of DenesNet-121
The pre-trained model for DenesNet-121 is then initialised (Figure [13)).

densenet = keras.applications.densenet.DenseNet121(wei ! genet', include top= , input_shape=(
layer in densenet.layers:
layer.trainable =

densenet.output
keras.layers.GlobalAveragePooling2D() (x)
keras.layers.Dense(512, activation="relu’)(x)
keras.layers.Dropout(0.5)(x)
redictions = keras.layers.Dense(1 activation=
densenet_model = keras.models.Model(inputs=densenet.input, o =predictions)

Figure 13: Initialising the DenesNet-121 model

The data is then put into the model to train with DenesNet-121 for 75 epochs to give
an output like shown in Figure

t_model.fit(train_data, valida lidation data, epoc er_ train_data), validat eps=len(validation data))
int("DenseNet Best Acc , max(d history.h [ccuracy'1))

Epoch 1/100

138/138 [= p 4.4100 - accuracy: 0.0563 - val l 8158 - val_accuracy: @.
Epoch 2/100

138/138 [= 828ms/step - 3. - accurac .1548 - val_loss: 3.0546 - val_accuracy:
Epoch 3/100

138/138 827ms/step - : accuracy: @. val_loss: 2.6563 - val_accuracy
Epoch 4/100

138/138 13s 821ms/step - : 2.6 accurac .3286 - val_loss: 2.3602 - val_accuracy: ©

- accuracy: 0.3690 - val_loss: 2.2355 - val_accuracy:

accuracy: ©. val_loss: 2. val_accuracy:
Epoch 7/100
138/138 824ms/step - loss: 2.8336 - accuracy: 0. val_loss: 2. - val_accuracy: ©
Epoch 8/100
138/138 819ms/step - H accurac . val_loss: 1. val_accuracy:
Epoch 9/100

8/138 [13s 821ms/step - g accuracy: 0.4774 - val loss: 1. - val_accuracy: ©.
Epoch 16/100
138/138 [= 826ms/step - : 1.7325 - accuracy: 0.5155 - val loss: 1. - val_accuracy:

Figure 14: Running Training for DenesNet-121

plt.plot(densenet_history.history[‘accuracy'])
plt.plot(densenet history.history['val accuracy'])
plt.title(DenseNet Accuracy’)

plt.xlabel(epoch’)
plt.ylabel("accuracy’)
plt

Figure 15: Plotting graph for DenesNet-121

Then the accuracy and validation accuracy is used to plot an accuracy graph for
DenesNet-121 the code can be seen in Figure [I15] Whereas, the graph can be seen in
Figure (16|

DenseNet Accuracy

accuracy
e o o © o ©
w F L o -] (o]
1 1 1 I 1 1

o
M
1

e
=
1

0 20 40 60 80 100
epoch

Figure 16: Accuracy Graph for DenesNet-121

At the end of the training make an folder in your drive as trainedcnn then save
the weight of both the model ResNet-50 and DenesNet-121 is save in to the drive in a
trainedcnn folder by using the model.save command as shown in Figure [17]

[] resnet model.save("/content/dri ive/trainedcnn/resnetmodel.h5")

[] densenet model.save("/content/drive/MyDrive/trainedcnn/densenetmodel.h5™)

Figure 17: Saving trained ResNet-50 and DenesNet-121

10

3.5 Model Training of Custom CNN without Augmentation

For the Custom CNN model I used a new Colab notebook. Where you can start by
installing Keras Tuner pip file refer Figure [1§| for this. And then you can import all the
important libraries as shown in Figurdl9]

° pip install keras-tuner

[» Looking in indexes: ;
Collecting keras-tuner
Downloading keras tuner-1.3.5-py3-none-any.whl (176 kB)

176.1/176.1 kB 4.6 MB/s eta 0:60:00
Requirement already satisfied: packaging in /usr/local/lib/python3.9/dist-packages (from keras-tuner) (23.1)
Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from keras-tuner) (2.27.1)
Collecting kt-legacy
Downloading kt lesacy-1.0.5-py3-none-any.uhl (9.6 kB)
Requirement already satisfied: idna<d,>=2.5 in fusr/local/lib/python3.9/dist-packages (from requests->keras-tuner) (3.4)
Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->keras-tuner) (2.0.12)
Requirement already satisfied: certifi>=2017.4.17 in Jusr/local/lib/python3.9/dist-packages (from requests-keras-tuner) (2622.12.7)
Requirement already satisfied: urllib31.27,=1.21.1 in /usr/local/1ib/python3.9/dist-packages (from requests->keras-tuner) (1.26.15)
Installing collected packages: kt-legacy, keras-tuner
Successfully installed keras-tuner-1.3.5 kt-legacy-1.0.5

Figure 18: Installing Keras Tuner

|] 1mport os
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

1 tensorflow.keras.preprocessing. image import ImageDataGenerator
ron kerastuner.tuners import RandomSearch
n kerastuner.engine.hyperparameters import HyperParameters

Figure 19: Importing libraries for Custom CNN model

Then assign the dataset path for Kear Tuner(Figure .

11

dataset path = '/content/drive/MyDrive/dataset
train generator = datagen. flow from dlrectory(
dataset path,
target size=input shape[:2],
batch _size=

subset="trainir

val generator = datagen.flow from directory(
dataset path,
target size=input shape[:2],
batch_size=32
subset="validation")

Figure 20: Assign the directories to fetch data for Keras Tuner

And then you can build the model with different hyperparameter in my case it 3 and

7 and low and high for that you can refer the Figure [21}

build model(hp):
model = keras.Sequential()

r i in range(hp.Int(’ layers®, 3, 7)):
filters = hp.Choice(filters {] +ormat(1), [32,
kernel _size = hp.choice(’ 1 Z .format (i
activation = hp.Choice(’ ivat (}'.format(i)]
model.add(layers. (ﬁnle(flltGrs*flltLFS, kernel slkakcrncl _size,
activation=activation, input_shape=input_shape))
model . add(layers.MaxPooling2D())

model.add(layers.Flatten())

for i in Pange(hp.lnt('ﬁ"" 3
units = hp.Choice("’ 3 '; = i), 28, 256, 512, 1024])
activation = hp. Ch01ce(5 tivation {}'.format(i), [

model.add(layers. Densp(unlts unlts, aLtlvatlon activation))

model . add(layers.Dense(187, activation='softmax’))

model.compile(optimizer=keras.optimizers.Adam(hp.Choice(' lear > rate’, [le-2, 1e-3, 1le-4])),
loss="categorical ssentropy’, metrics=["a

return model

Figure 21: Initialising the Custom CNN model with Keras Tuner

12

] tuner = RandomSearch(
build model,
objective="val a
max_trials=10,
directory="tune
project name="yc

° tuner.search(train_generator, validation data=val generator, epochs=10)

[> Trial 10 Complete [@06h 15m 42s]
val accuracy: 0.016205910593271255

Best val accuracy So Far: 0.4385128617286682
Total elapsed time: @4h 57m @4s

Figure 22: Searching for best Custom CNN model with Keras Tuner

Then with the help of Keras Tuner run the model for 10 epochs for 10 trial after
completion of to the trial you will find the best fit model for the data set cab be seen in
Figure After finding the best fit model put the same data to get trained for 75 epochs
to find the accuracy and validation accuracy like Figurd23]

° best_model old history = best_model.fit(train_generator, epochs=75, validation data=val generator)

Epoch 2/75

H 138/138 | A40s 3s/step - loss: 0.0610 - accuracy: 0.9725 loss: 2.8884 accuracy: 0.4290
Epoch 3/75
138/138 | A40s 3s/step - loss: 0.0638 - accuracy: 0.9737 loss: 2.8793 accuracy: 0.4299
Epoch 4/75
138/138 | 4405 3s/step - loss: 0.0552 - accuracy: 0.9732 loss: 2,9018 accuracy: 0.4433
Epoch 5/75
138/138 | 4405 3s/step - loss: 0.8534 - accuracy: 0.9712 loss: 2.9524 accuracy: 0.4471
Epoch 6/75
138/138 | 4405 3s/step - loss: 0.8492 - accuracy: 0.9755 loss: 2.9052 accuracy: 0.4500
Epoch 7/75
138/138 | A40s 3s/step - loss: ©.8553 - accuracy: 0.9714 loss: 2,9209 - val accuracy: 0.4528
Epoch 8/75
138/138 | A43s 3s/step - loss: 0,0488 - accuracy: 0.9741 loss: 2.9686 accuracy: 0.4404
Epoch 9/75
138/138 | 453s 3s/step - loss: 0.0485 - accuracy: 0.9739 loss: 2.9989 accuracy: 0.4557
Epoch 10/75
138/138 | 450s 3s/step - loss: 0.6471 - accuracy: 8.9739 loss: 2,9787 accuracy: 0.4461

Figure 23: Training the Custom CNN without Augmentation

13

Save the model in trainedcnn file using model.save commandand then print the test
accuracy result as shown in Figure 24 You can also plot a accuray graph by using
accuracy and validation accuracy refer Figure [25§426)

[] best model.save("/co

[] test loss, test acc = test.evaluate(val generator, verbose=2)
print('Test accuracy: ', test acc)

33/33 - 165 - loss: 3.3229 - accuracy: 0.4366 - 16s/epoch - 475ms/step
Test accuracy: 0.4366062879562378

Figure 24: Saving trained Custom CNN without Augmentation

o plt.plot(best model old history. histor‘y['r"‘ Iracy
plt. plot(best model old history.history['va
plt.title("CNN Accuracy With Augmentation’
plt.xlabel(’ Zpu_?s)

plt.ylabel("Accuracy
plt.legend([‘train’
plt.show()

Figure 25: Code to plot accuracy graph for Custom CNN without Augmentation

14

CNN Accuracy Without Augmentation

— train
validation

Accuracy

(o] 10 20 30 40 50 60 7O
Epochs

Figure 26: Accuracy graph for Custom CNN without augmentation

Because of multiple classes classification matrix was performed for the Custom CNN
model without augmentation. In which we can see Accuracy, Macro avg and weighted

avg in the Figurd27]

° from sklearn.metrics import classification report
y_pred labels = np.argmax(y_pred, axis=1)
y_true = val generator.classes
class names = list(val generator.class indices.keys())

print(classification report(y true, y pred labels, target names=class names, digits=4))

accuracy 0.0114
macro avg 0.0099 0.0092 0.0094
weighted avg 0.0124 0.0114 0.0118

Figure 27: Classification matrix for Custom CNN without Augmentation

3.6 Model Training of Custom CNN with Augmentation

For the data augmentation part, the data go through flipping, resizing and scaling all of
this is done and can be seen in Figure 28|

15

[] datagen augmentation = ImageDataGenerator(rescale=1./255,
width shift range = 0.1,
height shift range = 0.1,
shear_range = 0.1,

Zoom range= 0.1,
horizontal flip=True,
fill mode="nearest’,
validation split=0.2)

Figure 28: Initialising data for Custom CNN with Augmentation

| dataset path = '/content/drive/MyDrive
train generator augmentation = datagen.flow from directory(
dataset path,
target size=input shape[:2],
batch size=32,
subset="training")

_generator_augmentation = datagen.flow from directory(
dataset path,
target size=input shape[:2],
batch size=32,
subset="validation")

Figure 29: Assign the directories to fetch data for Keras Tuner

Figure 29Then the dataset path is put in for training and validation. Whereas in
Figure 30| the data set is loaded from the keras model.load command and then put for
training using new augmented data. Where it runs for 75 epochs to get accuracy and
validation accuracy.

16

[] best model with augmentation = keras.models.load model("/c

o best model_augmentation history = best model with_augmentation.fit(train generator augmentation, epochs=75, validation data=val generator augmentation)

138/138 |== - 4335 35/5LEp - 1055 ¥.Y0d4 - dllurdly: v.9/710 - Vdl 1055 £.8094 - Vdl dCCurdey: v.433/
7 Epoch 3/75
138/138 | - 4505 3s/step - loss: ©.8683 - accuracy: 0.9716 - val _loss: 2.9183 - val accuracy: 0.4395
Epoch 4/75
138/138 | - 451s 3s/step - loss: @.8571 - accuracy: 0.9728 - val loss: 2.9865 - val accuracy: 0.4423
Epoch 5/75
138/138 [== - 4505 3s/step - loss: 0.8555 - accuracy: 0.9732 - val _loss: 2.9416 - val accuracy: 0.4376
Epoch 6/75
138/138 | - 4505 3s/step - loss: 8.8537 - accuracy: 8.9758 - val_loss: 2.9315 - val accuracy: 8.4357
Epoch 7/75
138/138 | - 4495 3s/step - loss: 8.8522 - accuracy: 0.9739 - val loss: 3.0035 - val accuracy: 0.4204
Epoch 8/75
- 448s 3s/step - loss: 8.8576 - accuracy: 0.9714 - val loss: 3.0024 - val accuracy: 0.4261
Epoch 9/75
138/138 [== - 449s 3s/step - loss: ©.8492 - accuracy: 0.9728 - val loss: 2.9748 - val accuracy: 0.4337
Epoch 10/75
- 450s 3s/step - loss: 0.8471 - accuracy: 0.9723 - val loss: 2.9937 - val accuracy: 0.4385

[] best nodel with augmentation.save("/conte

(’ test loss, test acc = best model with augmentation.evaluate(val generator augmentation, verbose=2)
print('Test accuracy after augmentation:', test acc)

[33/33 - 155 - loss: 3.4982 - accuracy: 0.4366 - 155/epoch - 458ns/step
Test accuracy after augnentation: .4366062879562378

Figure 31: Saving the trained model of Custom CNN with augmentation

After the model is trained with augmented data we use model.save command to save
the weight of model. Figurd3I] also print the test accuracy for custom CNN model with
data augmentation. Which can also be seen in a graphical presentation refer Figure

& B3l

17

'I' plt.plot(best model augmentation history.history[accuracy'])
plt.plot(best model augmentation history.history|[val accurac
plt.title('CNN Accuracy With Augmentation®)
plt.xlabel(epoch’)

plt.ylabel('accuracy')
plt. legend(["train’, °
plt. show()

Figure 32: Code to plot accuracy graph of Custom CNN with augmentation

CNN Accuracy With Augmentation

— ftrain
validation

accuracy
o
~
1

T T T T T T T T
o] 10 20 30 40 50 60 70
epoch

Figure 33: Accuracy graph of Custom CNN with augmentation

The classification matrix is performed in Figure [34] for the Custom CNN model with
data augmentation.

18

y pred = testaug.predict(val generator)

from sklearn.metrics import classification report
y_pred labels = np.argmax(y pred, axis=1)

y true = val generator.classes

class names = list(val generator.class indices.keys())

print(classification report(y true, y pred labels, target names=class names, digits=4))

accuracy 0.0105 1049
macro avg 0.0088 0.0089 0.0085 1049
weighted avg 0.0103 0.0105 0.0100 1049

Figure 34: Classification matrix for Custom CNN with Augmentation

3.7 Testing of ResNet-50, DenesNet-121, Custom CNN without
Augmentation and Custom CNN with Augmentation

In this Section, we test all the trained model using the data set we generate for testing
mentioned in Section [3.2] Figure [35] and [38 hows the accuracy for ResNet-50,
DenesNet-121, Custom CNN without augmentation and Custom CNN with augmenta-
tion.

resnet = keras.models.load model("/content/drive/MyDri

[| test loss, test acc = resnet.evaluate(test data, verbose=1)
print('Test accuracy on Resnet-50', test acc)

] - 51s 3s/step - loss: 4.3059 - accuracy: 0.0467
Test accuracy on Resnet-50 @.04672897234559059

Figure 35: Test of save model and Result of ResNet-50

19

[] densenet = keras.models.load model(

[| test loss, test acc = densenet.evaluate(test data, verbose=1)
ccuracy on DenseNet', test acc)

| - 225 1s/step - loss: 1.6681 - accuracy: 0.5439
Test accuracy on DenseNet 0.5439252257347167

Figure 36: Test of save model and Result of DenesNet-121

[] cnn = keras.models.load model("/content

[] test loss, test acc = cnn.evaluate(test data, verbose=1)
ithout Augmentation', test acc)

] - 95 479ms/step - loss: 3.5389 - accuracy: 0.4168
Test accuracy on CNN without Augmentation 0.4168224334716797

Figure 37: Test of save model and Result of Custom CNN without augmentation

20

[] cnnaug = keras.models.load model("/content/dri

| test loss, test acc = cnnaug.evaluate(test data, verbose=1)
n CNN with Augmentation’, test acc)

| - 85 473ms/step - loss: 3.7837 - accuracy: 0.4168
Test accuracy on CNN with Augmentation 0.4168224334716797

Figure 38: Test of save model and Result of Custom CNN with augmentation

3.8 Visualisation of Data

To visualise some data first we imported some libraries and the load the data set which
you want to visualise as done in Figure

import matplotlib.pyplot as plt
from PIL import ImageFile

import pandas as pd

ImageFile.LOAD TRUNCATED IMAGES =

base_dir = '/content/drive/MyDrive/dataset’
print('Number of post to be predicted: ',len(os.listdir(base dir)))

Number of post to be predicted: 107

Figure 39: Importing Libraries for Visualization of data

21

[] class dir =

[] fig, axes = plt.subplots(nrows=2, ncols=3,figsize=(10,5), subplot ku={'xticks':[],
for 1, ax in enumerate(axes.flat):
ax.imshow(plt, inread(os. path. join(class dir,os.listdir(class dir)[i])))
ax.set title(os.listdir(base dir)[1])
plt.tight layout()
plt. show()

Figure 40: Initialising data visualisation Class Janu Sirsasana

Then in that dataset you can just identify a class to show some sample image like
in Figure 0] I did for janu sirsasana and after you run the code you will se a figure
below. Similar with Figurd42| & [43]

ananda balasana ananda balasana

> ananda balasana
. r

ananda balasana

ananda balasana

=1
Ny "_/ .
\

-

Figure 41: Image sample of Janu Sirsasana

22

{] ddSS_dlr‘d = '"Jeontent /drive/M

[] fig, axes = plt.subplots(nrous=2, ncols=3,figsize=(18,5), subplot ku={ 'xticks™:[], ‘yticks":
for 1, ax 1n enumerate(axes, flat):

ax.imshow(plt. imread(os.path. join(class dird,os.listdir(class dird)[i])))
ax.set title(os, listdir(base dir)[1])

plt.tight layout()

plt. show()

Figure 42: Initialising data visualisation Class Bakasana

ananda balasana ananda balasana ananda balasana
E ‘k y N
\ Iy | /
. M I’ /, ~
D ‘ I 4
<R Y
1

ananda balasana ananda balasana ananda balasana

Figure 43: Image sample of Bakasana

At last I wanted to show the number of classes I am using in this model ii visualise
the seaborn graph the code and command can be seen in Figurdd4] and result can be seen

in Figure [45]

23

[] OF = pd.DataFrame(columns=["class’, count’|)
OF| "class’)=pd.Serdes([os, l1stdir(base dir)[x] for x 1n range(0,107)))
OF["count "]=pd.Serdes([len(os. listdir(os. path. join(base dir,o0s.listdir(base dir)[x]))) for x in range(d,107)))

import seaborn as sns

plt.figure(figsize=(14,10))

g=sns., barplot(x="class’, y="count’,data=0F)

g.set xticklabels(g.pet xticklabels(), rotation=98)
plt.tight layout()

Figure 44: Initialising data visualisation for 107 class

i

Figure 45: Visualisation of 107 Classes in histogram

count

4 Conclusion

Users who follow the instructions in the preceding sections can successfully replicate and
use the codebase for this research project. This will make it possible to comprehend
the project’s inner workings better and to make contributions to its future development.
Similar results will be obtained by following the detailed instructions provided for data
collection, model building, training, and results visualization. This guide aims to make
it easier to replicate and build on existing research, which is crucial for the advancement
of machine learning and deep learning.

24

References

Team, K. (n.d.a). Keras documentation: Densenet.
URL: https://keras.io/api/applications/densenet/

Team, K. (n.d.b). Keras documentation: Kerastuner.
URL: https://keras.io/keras,uner /

Team, K. (n.d.c). Keras documentation: Resnet and resnetv2.
URL: https://keras.io/api/applications/resnet/

25

	Introduction
	Environment
	Hardware Required
	Setting Up Google Colab Environment

	Implementation
	Reading the Data
	Data Preparation
	 Model Training of ResNet-50
	 Model Training of DenesNet-121
	 Model Training of Custom CNN without Augmentation
	 Model Training of Custom CNN with Augmentation
	Testing of ResNet-50, DenesNet-121, Custom CNN without Augmentation and Custom CNN with Augmentation
	Visualisation of Data

	Conclusion

