
Configuration Manual

MSc Research Project

Data Analytics

Maaz Ahmad
Student ID: 21134308

School of Computing

National College of Ireland

Supervisor: Michael Bradford

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Maaz Ahmad

Student ID: 21134308

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Michael Bradford

Submission Due Date: 25/04/2023

Project Title: Configuration Manual

Word Count: 1997

Page Count: 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Maaz Ahmad

Date: 27th May 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Maaz Ahmad
21134308

1 Introduction

This manual’s purpose is to help users set up their own machines and get the results
they want. The associated documents contain thorough information about the required
hardware and software to build the environment. The manual includes code snippets,
graphics from exploratory data analysis, and model assessments.

2 Environment

The environment needed to run the code solution is thoroughly described in this section.
The setup for the Google Colaboratory, the required Python libraries and packages, and
other crucial components are all covered in this section. This information is essential for
making sure the code solution runs without a hitch and for making sure users can easily
reproduce the study’s findings.

2.1 Hardware Required

The computational tasks for the current research project were carried out using a specific
hardware specification, though other requirements were also taken into account. The
hardware specifications are compiled in Table 1 to give a thorough overview of the system
configuration. Figure 1 also provides a thorough illustration of the machine’s system
configuration, improving understanding of the used hardware components.

Table 1: Hardware Specification
Hardware Used in this Project Alternative
System VivoBook ASUS Any Windows/Mac/Linux machine
OS Windows 11 Any Windows/Macos/Linux Distribution
RAM 8GB >4GB
Processor Intel(R) Core(TM) i5-8265U Any Intel/AMD/Apple Silicon
Hard Disk 258GB >10GB
GPU Nvidia Any integrated/Nvidia/AMD

1



Figure 1: Hardware Specification

2.2 Setting Up Google Colab Environment

Python was the programming language used for the research project, and Google Colab
was used to carry it out, as shown in Figure 2. Colab, a hosted Jupyter notebook service,
provides an easy-to-use platform for running Python code directly in a web browser,
making it an excellent choice for deep learning and machine learning tasks. For a limited
time, Colab offers free access to computing resources, including GPUs, without the need
for configuration. However, users must upgrade to Colab Pro in order to access TPU.

Figure 2: Google Colab

2



The dataset 1 was taken from Kaggle and then downloaded to local disk and then
extracted from zip to normal file shown in Figure 3 and then uploaded to google drive.
After it Successful upload with the help of google colab mount we can mount the data to
google colab as shown in Figure 4.

Figure 3: Data Extraction

1https://www.kaggle.com/datasets/shrutisaxena/yoga-pose-image-classification-dataset

3



Figure 4: Mount google drive to Colab

As shown in Figure 5, after mounting the drive, a runtime must be assigned, and
TPU must be chosen for quicker processing. The candidate used Google Colab Pro,
which came with a premium TPU, but standard GPUs can also be used and do just fine.

Figure 5: Assign Runtime

3 Implementation

The research project’s data acquisition, model construction, training, results, and visu-
alizations are all covered in detail in this section, along with step-by-step instructions for
reproducing the study using the provided code.

3.1 Reading the Data

After mounting the data to the google colab. The directories for training and testing
data are assigned to fetch data seen in Figure 6.

4



Figure 6: Assign the directories to fetch data

3.2 Data Preparation

The process of Data Preparation starts from the first notebook name ”Data Separation”
in which the data is created by taking 5 or 6 images from each class and stored into a
new file called test data after the data is copied the same image will be removed from old
data-set which can be seen in Figure 7.

Figure 7: Splitting the data into to parts

3.3 Model Training of ResNet-50

For ResNet-50 and DenseNet-121 training open a new colab notebook and start by im-
porting the libraries as show in Figure8. After importing all the libraries initialising the
ResNet-50 model as shown in Figure9

Figure 8: Importing the libraries

5



Figure 9: Initialising the ResNet-50 model

The model must then be fitted to the training set of data after the model architecture
has been established. The model in this project was trained over 75 epochs.(Figure 10)

Figure 10: Running Training for ResNet-50

To print the accuracy of ResNet-50 model graph first we import Matplot libraries and
use the accuracy and validation accuracy to print the graph as show in Figure11. After
the code is executed a graph will pop-up as shown in Figure 12.

6



Figure 11: Code to plot graph for ResNet-50

Figure 12: Accuracy Graph for ResNet-50

3.4 Model Training of DenesNet-121

The pre-trained model for DenesNet-121 is then initialised(Figure 13).

7



Figure 13: Initialising the DenesNet-121 model

The data is then put into the model to train with DenesNet-121 for 75 epochs to give
an output like shown in Figure 14.

Figure 14: Running Training for DenesNet-121

8



Figure 15: Plotting graph for DenesNet-121

Then the accuracy and validation accuracy is used to plot an accuracy graph for
DenesNet-121 the code can be seen in Figure 15. Whereas, the graph can be seen in
Figure 16.

9



Figure 16: Accuracy Graph for DenesNet-121

At the end of the training make an folder in your drive as trainedcnn then save
the weight of both the model ResNet-50 and DenesNet-121 is save in to the drive in a
trainedcnn folder by using the model.save command as shown in Figure 17.

Figure 17: Saving trained ResNet-50 and DenesNet-121

10



3.5 Model Training of Custom CNN without Augmentation

For the Custom CNN model I used a new Colab notebook. Where you can start by
installing Keras Tuner pip file refer Figure 18 for this. And then you can import all the
important libraries as shown in Figure19.

Figure 18: Installing Keras Tuner

Figure 19: Importing libraries for Custom CNN model

Then assign the dataset path for Kear Tuner(Figure 20).

11



Figure 20: Assign the directories to fetch data for Keras Tuner

And then you can build the model with different hyperparameter in my case it 3 and
7 and low and high for that you can refer the Figure 21.

Figure 21: Initialising the Custom CNN model with Keras Tuner

12



Figure 22: Searching for best Custom CNN model with Keras Tuner

Then with the help of Keras Tuner run the model for 10 epochs for 10 trial after
completion of to the trial you will find the best fit model for the data set cab be seen in
Figure 22. After finding the best fit model put the same data to get trained for 75 epochs
to find the accuracy and validation accuracy like Figure23.

Figure 23: Training the Custom CNN without Augmentation

13



Save the model in trainedcnn file using model.save commandand then print the test
accuracy result as shown in Figure 24. You can also plot a accuray graph by using
accuracy and validation accuracy refer Figure 25&26.

Figure 24: Saving trained Custom CNN without Augmentation

Figure 25: Code to plot accuracy graph for Custom CNN without Augmentation

14



Figure 26: Accuracy graph for Custom CNN without augmentation

Because of multiple classes classification matrix was performed for the Custom CNN
model without augmentation. In which we can see Accuracy, Macro avg and weighted
avg in the Figure27.

Figure 27: Classification matrix for Custom CNN without Augmentation

3.6 Model Training of Custom CNN with Augmentation

For the data augmentation part, the data go through flipping, resizing and scaling all of
this is done and can be seen in Figure 28.

15



Figure 28: Initialising data for Custom CNN with Augmentation

Figure 29: Assign the directories to fetch data for Keras Tuner

Figure 29Then the dataset path is put in for training and validation. Whereas in
Figure 30 the data set is loaded from the keras model.load command and then put for
training using new augmented data. Where it runs for 75 epochs to get accuracy and
validation accuracy.

16



Figure 30: Training model for Custom CNN with augmentation

Figure 31: Saving the trained model of Custom CNN with augmentation

After the model is trained with augmented data we use model.save command to save
the weight of model. Figure31 also print the test accuracy for custom CNN model with
data augmentation. Which can also be seen in a graphical presentation refer Figure 32
& 33.

17



Figure 32: Code to plot accuracy graph of Custom CNN with augmentation

Figure 33: Accuracy graph of Custom CNN with augmentation

The classification matrix is performed in Figure 34 for the Custom CNN model with
data augmentation.

18



Figure 34: Classification matrix for Custom CNN with Augmentation

3.7 Testing of ResNet-50, DenesNet-121, Custom CNN without
Augmentation and Custom CNN with Augmentation

In this Section, we test all the trained model using the data set we generate for testing
mentioned in Section 3.2. Figure 35, 36,37 and 38 hows the accuracy for ResNet-50,
DenesNet-121, Custom CNN without augmentation and Custom CNN with augmenta-
tion.

Figure 35: Test of save model and Result of ResNet-50

19



Figure 36: Test of save model and Result of DenesNet-121

Figure 37: Test of save model and Result of Custom CNN without augmentation

20



Figure 38: Test of save model and Result of Custom CNN with augmentation

3.8 Visualisation of Data

To visualise some data first we imported some libraries and the load the data set which
you want to visualise as done in Figure 39.

Figure 39: Importing Libraries for Visualization of data

21



Figure 40: Initialising data visualisation Class Janu Sirsasana

Then in that dataset you can just identify a class to show some sample image like
in Figure 40 I did for janu sirsasana and after you run the code you will se a figure 41
below. Similar with Figure42 & 43.

Figure 41: Image sample of Janu Sirsasana

22



Figure 42: Initialising data visualisation Class Bakasana

Figure 43: Image sample of Bakasana

At last I wanted to show the number of classes I am using in this model ii visualise
the seaborn graph the code and command can be seen in Figure44 and result can be seen
in Figure 45.

23



Figure 44: Initialising data visualisation for 107 class

Figure 45: Visualisation of 107 Classes in histogram

4 Conclusion

Users who follow the instructions in the preceding sections can successfully replicate and
use the codebase for this research project. This will make it possible to comprehend
the project’s inner workings better and to make contributions to its future development.
Similar results will be obtained by following the detailed instructions provided for data
collection, model building, training, and results visualization. This guide aims to make
it easier to replicate and build on existing research, which is crucial for the advancement
of machine learning and deep learning.

24



References

Team, K. (n.d.a). Keras documentation: Densenet.
URL: https://keras.io/api/applications/densenet/

Team, K. (n.d.b). Keras documentation: Kerastuner.
URL: https://keras.io/kerastuner/

Team, K. (n.d.c). Keras documentation: Resnet and resnetv2.
URL: https://keras.io/api/applications/resnet/

25


	Introduction
	Environment
	Hardware Required
	Setting Up Google Colab Environment

	Implementation
	Reading the Data
	Data Preparation
	 Model Training of ResNet-50
	 Model Training of DenesNet-121
	 Model Training of Custom CNN without Augmentation
	 Model Training of Custom CNN with Augmentation
	Testing of ResNet-50, DenesNet-121, Custom CNN without Augmentation and Custom CNN with Augmentation
	Visualisation of Data

	Conclusion

